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ACTNESS OPERATOR 
GENERAL TOPOLOGY 
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Amsterdam 

. 

The role of bi compactness has increased tremendously during the last half 
century_ This abstract indicates a further strengthening of this notion at the expense 
of the Hausdorff property, e.g .. 

Let X be a set, and ffe a family of subsets of X. ·Let e denote the operator, which 
assigns to !I/-' the collection s .ffe , that is the family of all finite unions and arbitrary 
intersections of members from ff. We do not assume that e $1, necessarily contains 0 
and X as elements. · 

Such a family e !F on a set Xis called a minus-topology X, B !!,' over X .. It 
can, of co:urse, always be extended to a topology over X. . 

A subset S of X is called compact relative to fl,-, as ususal, provided that every 
subfamily f#' of !I/'·, for which /?' u { S} has the finite intersection property, has a non 
empty intersection in S. So, to any fl/" corresponds a family of compact sets e !F 
in X, e.!JI, , where e is called the compactness operator. 

The elements of fl e !JI," = (2 2 !F are called square-compact subsets of X, e :F . 
• 

. A subset S of X is apparently square-compact, if every subcollection Q ff ' of (l !F 
• 

for which (! !!J,' ' u {S} has the finite intersection property, has a non empty inter-
section in S. We call 122 a the square-compactness operator. 

We have the f ollow1ng connectio11s between these operators. 

Observe that 1 is a reformulation of Alexander's Lemma! 

• 

ea = ue = a· ' 
62 = £!,• ,r-2 = q c., V • 

For the proof of the propositions 2 and 3 we need a lemma . 

Lemma. Let C be a subset of X and an element of e ~· ; let E be a subset of X 
and an element of e2 !JJ,' • Then C n E is an element of e2 ff n e :,,· . 

Proof. a Let CC' be a sub-collection of Q !JI,' such that <c' u {C n E} has the 
finite intersection property. Then <ti' u { C} u { E} has the finite intersection property 

• 
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further written f.i.p .. But since ~, u { C} c: e !?: and Ee (}2 !ii" we have (l~'. n · 
fi C n E =t= 0 which proves that C n E e e2 ffe . 

b Choose F' c: :1,: such that ff' u { C n E} has the finite intersection property. 
Then the collection ff" = { F n C F e F'} has also the finite intersection pr~perty 
inE. 

It is obvious that the elements of /#-- '' are compact relative to !J/,·, because each 
element is an intersection of a subbasic closed set and a compact set. Hence §'' is . 
a subcollection of e !F with the finite intersection property in E and consequently. 

' . 
( nF'' n E is non empty. From this we obtain {)$(-' n C n E =t= 0, thus C ri E ·· e · 
ee:F. . 

Propositio11 (2). The collection e2 !#' 
arbitrary intersections. 

= u 91' is closed under finite unions and 

Proof. The fact that e2 !# is closed under finite unions is a consequence of the 
. __ , ' 

definition of e2 fF . Now we will prove that e2 $(- is closed under arbitrary inter-
sections. 

Consider a collection C' c e2 SF such that ns' = E 0 =t= 0, the case that ns' = 
= 0 is trivial . 

We must prove that every collection CC', such that~, u {E0 } has the f.i.p., has 
a non empty intersection in E 0 • · 

Pick and fix a member E 1 · e 4 1 and consider the collection <fl'' = { C n E · C E ct'; 
Ee 8'}. . . 

From the Lemma it follows that the members of <fi'' are members of e !lF . By·· 
assumption ~,, u {E1 } has the f.i.p. and hence (le;&''' n E 1 =i=: 0; but this intersection 
equals n<tC' fl Eo and this. proves that Eo nttf' E (2 2 ~ . . 

Proposition (3). e2 $,' = (24 [Iii • 
' 

Proof. We:firstprovethate(~ c e 3 /11". LetCbeanelementof g(~· and let I' 

be a subcollection of e2 !#" such that tf' u { C} has the f.i.p. 
- . . --

Pi ck and fix some E0 EC' and consider <c = {C n E Ee 8'}. 
,...., 

• 

From the Lemma it follows that each member of re is a member of e f#," and 
- . ,. . 

clearly <t&' u {E0 } has the f.i.p. 
' J 

Similarly we ca1!- find that g2 !II' c: g4 /J/," • . 

On the other hand e2
( !# is defined as being the collection of compact sets · 

From e( fl/i'' c: e3 ~ it follows that g 2 /#' => e4 ( 9/i ). 

Hence g 2(9P e4
(~ ). 

.... 
,' 

ea = a says that for every :!I'- the family e2 :!Ji' forms a minus topology on X. · 
' 

·,,. 
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• 

· The second part of 3 tells us in particular that the (! operator is ''of finite order'' 
and the relations 2 and 3 determine the structure of the semigroup {e, a}; e is an 
identity, and a is an idempotent. 

Let us discuss now a few special cases of importance. 
I. (! = e holds exactly for those topological spaces in which the compact sets 

coincide with the closed sets. The results above become trivial. 
II. e2 = e. In this case (! and e form a group of order 2 with e as the identity. 

This case has been studied in 1 . Spaces supplied with such a minus topology are 
called antispaces. These are exactly those spaces in which the square-compact subsets 
coincide with the closed subsets. The locally compact Hausdorff spaces and the 

• 

metrizable spaces are e.g. antispaces. 
If X, <§ is an antispace with a minus topology, then also X, e <§ is an antispace 

with a minus topology. X, <§ and X, Q <.i determine themselves mutually. 
In particular, if X, <§ is the real line R, then X, (l ·~ is an antispace and t~e 

corresponding topology gives us a compact non-Hausdorff T1 space, denoted by QR, 

and a large part of mathematics could be based onto eR instead of R, since e2 R R~ 
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