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Coding problems in the theory ol computing machines,.
by H.J.A. Duparc.

§ 1. Coding.
N

In the computing machines we are to consider in this theory every
decimal digit x of a number a will be gaven in code. The digit x will be
identified with a set of n numbers X4.e..s%, Wwhich we shall call the coor-
dinates of the digit x. We write x = (x,,....X,).

We‘shall always take every x = 1 or O, so that every digit x mightbe

represented by the running or not running of a current through everyone
of n conductors; the theory can, however, be extended to the case in which
X can have more different values.

A simple example is known, where n = 4 and the 4 coordinates corres-
pond with the representation of the number x in the binary system, i.e.

0 = (0,0,0,0); 1 = (0.0,0,1); 2 = (0,0,1,0); ...; 9 = (1,0,0,1). This,
however, is by no means the only way in which the ten digits 0,1,...,9

can be coded by means of quadruples of. coordinates, for there exist 16
such quadruples,and the number of ways in which we can select 10 of them
to correspond with our digits, 0,1,...,9 is equal to jg%. The choice we
did when adopting the binary representation possesses the property that
for every x we have x = 8x1 + 4x2 + 2x3 + X). The coefficients 8,4,2,1
which occur in this formula are called the weights of the coordinates in
our represertation. In é 5 we shall further concern this notion of weight:,

We further remark that the choice n = 4 is not compulsory. If for
instance n = 5 we have more freedom in fixing a codation for we have to
make a choice out of %%% possibilities and in general fcr every nx 4 »

. Qn!

choice out of ( = ‘) possibilities. If n< 4 no cod2iion exists becousa
(2.-10)!

there are only 2" different n-ples of coordinates; which number 1is insuf-

ficient to indicate the 10 digits 0,1,...,9, since for r < 4 we have FREA

Suppose a codation has been chosen with n > 4. & runter writsen in

the decimal system in the form xyz... will be written *n oode if anv of
its digits is written in code. If the number possecsizes n duoeimal dioito.
it possesses mn coolrdinates KgseoosXos VaseesTps oo fauht ol which nal

a value O or 1. If Toi instance we take n = 4 and adoml coordinataels core
responding to the biunyvy way of writing each digit, ono Las
31" = (05094515. 0,13010); 64 = (09151903 0543030)°

Obviously the number of coordinates is larger than in the case the origi-
nal number 1s entirely written in the binary system; the difference of the
numbers of coordinates is due to the fact firstly that not necessarily the



smallest possible choice will be made for n and secondly that 10 is no in-
tegral power of 2,

2. Operations with coded numbers.
J

If a way of coding is fixed, we want to find what operations on the
coordinates of two numbers a and b have to be performed so as to obtain
the coordinates of the sum, the difference, the product, ... of a and b.

We first have to restrict ourselves to the case O0< a £9; 0 b £ 9.
The sum S = a + b in this case only contains one or two digits, which we
want to find from a and b. The number s of the units in S with 0 £ s £ 9
possesses n coordinates s, each of which 1s a function of the 2n coordi-
nates of a and b. One has

Y

s, = sv(aq,...,an; b1""’bn) (V=1,...,n).
In the same way we see that the first digit t (which is called the "carry")
of S is given by its coordinates:

ty, =ty (aq,...ban; bq,...,bn) (V=1,...,n).
As soon as the codation is fixed, so are the functions s, and ty of 2n
integer variables, each of which is equal to O or 1. A single obvious
property of these functions may be mentioned here. From a + b = b + &,
one immediatly finds for Y= 1,...,n

sy (aq,...,an, qu--->bn) = s\,(bq,...,bn, aq,...,an),

te (2. .08, b,‘,...,bn) =t (bgs..0ub; a,],...,an).

If addition formula are obtained for the sum a + b with O£ a & 9;

O &b g 9 one finds immediately the way in which numbers a and b with more
than one decimal digit must be added. For instance v = Xy + zu, where X
and y are the digits of the integer 10x 4 y,and'z, u of 10z + u, 1is deter-

mined by 3n coordinates VgseeasVys vn+1,'.',v2n; V2n+1""’v3n with
Vonsv T Sy (¥u5 %%J
Vagy = 5y (t/u (3%»; u/g); i“ (x4 s 54(;))
vy = Sy(fuhyb fd):fpgyfgkﬂi&ﬁ5 i@4fuﬂ 3“0));
here V¥V = 1,2,...,n and f/L is an abbreviation for Xpsee-3%,5 8O are
s Lo

%'“Iﬁ X/A/'f, /y/‘// s yu’», Z/a_: fﬂ/; f[(’/', S//{, ia‘/, t((
Simllar processes give us for two numbers a and b with 0 &£ a £ 9; 0& b £ ©
the multiplication formulae

P, =P, (84,0585 by,..sb)) (v =

1
ql/=q)/-(a/1"“§an; b,‘joao;bn) ( \“1=1,.-.,n)

for the product 10 p + q = ab, and as soon as the functions p, and q,
which furnish us with the multiplication of integers & 9 are found, one
is able to construct the coordinates of products in which the positive
integer factors may be arbitrary. The formula for q, give us the carry,



which in the ca<se o multiplication may reprezent all integer values
0.1....,8, but not the value 9.

53. Properties ~f functions mod 2.
<

The number of possible iunctions T(x y) wrich may only assume the
values O or 1 {or x =0 or 1and y = 0 or 1 i3 lamited. In fact there
2xi3t but 16 such functions wiich we investigate now. I the scheme

vy X1 0o 1

-mwd”“wlmz;“_7gw.
1 e d

means £(0.0) = a; £(0,1) =c; £(1.0) = b; £(1,1) = d, one finds the follo-
wing 8 possible formulae

X X . X X NX \
_?__}_:.L_,O._-l_ '.Y\:T 0 _1 Nl °_1 N‘ o 1 J o_1

0 {6 05 0 10 05 O X o 1 0 \ 0 0; O \ 1 0

170 0 1 {0 1 1 1o o 1 170 1 lo o
X X
™o 00 ji\\l 0 A

0 ’ 0 0 0 \ 0 1 1

111 1 1 1 o0 0

and the 8 cther formulae which are derived from the above formulae by ad-
ding 1 (mod 2) to each of the values f(x,y). These 16 formulae may be writ-
ten in the form

f(x.y) = 0; fo(x.y) = xy; f(x.y) = xy+x; fy(x.y) = xy+y;

£5(x.y) = xy+x+4y; fg(x y) = v; f.(x.y)

il
f

x; fglx,y) = x+y;
fg(x;y) = 1; fqo(x,y) = Xy+1; fﬂq(xiy) = XY+X+1; fqz(x,y) = XY+y+1;
f13(x,y) = Xy+X+y+1; f14(x,y) = y+1; f15(x,y) = X+1; fag = X+y+1.
Further we remark that each of these formulae can be written in the form
f(x,y) = Co + CqX + Co¥ + CaXy,

where the coefficients cy are equal to O or 1.
This result which immediately can be verified from our 16 formulae
may also be proved by making Cos €45 Cos c3 to satis’y fo the four relictiyw.
£(0,0) = a; £(1,0) = b; £(0,1) = c¢; {(1,1) = 4.
We then obtain four linear non homogeneous equatiors for CO’ cq, e Ch,

Cos Oy
where the determinant of the coefficients

1 0 0 O

1 1 0 O = 1

1 0 1 O

11 01 1)

is different from zero, whence it llows that these ejustions can o2 onlial,
Consider now the more general case in which functions iixq,.\,_x,‘



occur, where both any of the variables Xgsooes Xy and the function itself
only take the vdlue 0O or 1.

The nvmber of different functions, which number was equal to 16 fov
n =2, 1s now 22 , 8ince every X, may assume two values; so there are 2
sets (xq,...ixn),and 1(x1)...,x
those sets,

n) may be equal to O or 1 for everyone of
We now prove the fundamental

Theorem. Every function F(xq,...,xn), which together with each of the argu-

nents Xqs . sX, maY assume only the value O or 1 and which for any arbitra-

ry set (xq,...,xn) takes a prescribed value (which is either O or 1), can

be written in the form

('}) f(x )"'JX):ZC X X ...X B

Here the sum i3 extended over all k¥ = 0,1,...,n and, once k is chosen, over
a1l possible choices of k of the n variables XgsoeosXo
The theorem is proved if we show that coefficients ¢ can be found

so as to satisfy (1) and the conditions imposed on f(x1,...,xn). The num-
ber of coefficients ¢ is equal to (O)+(1)+ e +(2) = 2" and these 2"
coefficients must satisfy any linear equation obtained by putting
£(x XgsonosX ) equal to the value it must assume for a given set (xq,...,xn).
The number of the so obtained equations i3 at most equal to 2™, If this
number is less than 27 we impose on f the extra condition to be equal to
a number b for anyone of the sets (x XgseenlX ) for which previously no pres—
cribed value of f had been given. So in every case we obtain exactly o
linear equations in the 2% unknown coefficients c¢. If this system can be
solved so can the original set. We chow that the extended system possesses
exactly 1 solution. The original set then possesses at least one solution.
Consider first the relation £(0,0,...,0) = b_, from which we infer
¢, = b . Next consider any of the equations £(1,0,...,0) = Dy e
£(0,0,...,0,1) = b, from which the values of any of the coefficients
Cqs---5C, CaN be found So we ccntinue; in general having considered all
f(xq,...,xn), where g of the n variables X,,...,x  are equal to 1 (from

wnich the values of all coefficients cy 5 are found), we proceed to
1-*vg
consider any f(xq,...,x ) where g+1 of the variables are equal to 1. From

such a relation which is linear in all cy with § < q+1 and which
/‘

contains only one such coefficient with { q+1, this coeoefficient

c, v is found. This proves the theorem,
1" g+
We remark that the prool of the theorem in fact consisted of nothing

but showing that the determinant |4 S| of the coefficients d in our system

of 2" linear equations is different from zero. The unknown cy ) were
1%
ordered in such a way that drs = 1 for r = 8 and drs =0 for r > s, hence

lagl =1 #o.



The fundamental thecrem may be generalised as follows. Consider
functions f(xq,..e,xn) of n variables which together with the function
itself, may only assume the values 0,1,...,p-1 (here p denotes a prime

)

number). Every such function (which assumes for any given set (X1"“’Xn

an admissible prescribed value) may be written in the form

PN, )) ),‘»
o S 1 n
F(XaseeeX ) =2 C Xa .. X
( 1’ n) “ Mo Vg 1 n
where the sum is extended over all sets (¥ ,...,v ) with O §'3%>§§

é~p“1 (§>= 1,...,n).
The proof runs in a similar way; one can show that the coefficients
¢ can be found from a set of pn linear equations. The coefficients c¢ and
the equations can be ordered in such a way that the determinant kD(n
of the system is the compound determinant of order p " in which the 'Blement”

in the vﬁh row sﬁh column is equal to r° Dén"q) with

r, " g, ]
r =‘44_—Tr s = &—E;Tg . Herefrom one finds using the theorem of van der
4

p{®) = ((p-1)11)® (ofee)yP

= (p-1)!! (van der Monde)
p(n) _ np"
/] 1 l
Dy’ = ((p-1)11)
Here a" denotes the product 1!2!...a!

Since D # O (mod p) (for pis prime) the generalisation of the fundamen-
= 1 (confer the above result).

Monde'

hence by D( )

tal theorem is proved. One has Dén

b 4. Operators.
3

We now consider systems of n functions fv(xqg...,xn) (Vv=1,...,n)
of n variables, where again each of the functions as well as each of the
variables may be equal only to O or 1. From the fundamental theorem in the
preceding chapter we infer the fundamental theorem on systems of functions,
which says:

There exists always at least one system (fﬂ""’fn) of n functions

of n variables x )

qoeeesXys which takes arbitrary prescribed values (yq,... yq,

for any set (x ..,xn). All these functions f, are of the type (1) from %

5.
For by tge fundamental theorem on functions a function f, exists
which assumes an arbitrary prescribed value y, for every set (xq,..‘,xn)
(V=1,...,n), which proves the theorem.
Let us denote the equations y, = f, (qu"*"Xn) (v =1,...,n)
shortly by y = Fx, where the operator F is determined by the functions
f1 ,...,fn. Since for every » there exists only a finite number (namely

n
e ) of functions fv(xq,..,,xn), the total number of different operators

n
F is finite and equal to 22 = (2M)2



If another set of functions g»(yq,...,yn) are given, such that the
opeaator G which is defined by the gy belongs to the class of operators
under consideration, one has z, = gv(yq,..‘,yn), hence
Zyp = gv(yq(xq,.,.,xn) coes ¥y (x 1""’Xn) = hy(xqg...,xn); where the func-
tions hv again define an opevator H of the considered type. We write

z = Gy = GFx = Hx; H = GF.
Due to the associative law for the crdinary operations one obtains

for every three operators F F, and F

1° "2 3
(F,‘FE)F3 = Fq(FeFB).
Further there exists an operator E with Ex = x. For take eu(xq,...,xn) = Xy

(v=1,...,n), then E = (eq,,.,}en). The property E¥ = E for alle positive
integers r is obvious. One has for every operator F the property FE = EF =
= F. Since our class of operators is finite the sequence

F, F°, F°,
cannot contain for every F an infinite number of different operators. Let
r be the smallest integer with F' = F° (r > s). Call r-s = v. Then pSte _
= Fs+a+nv for all integers a and n 2 0. If r13> r, then putting ry-s =

= qQV+Tr, (0 & fg < v ), one has .
r, r r : r _
p 1o pdVEsiTe _ g QF(q-1)vFr _F 2F(q-1)st - F EF(q 2)?~Fr _
r T r r
_p 2pla-2)vps | _ piepvps | piegr | peps | 73
where r3 = r2 + s v +8 =r. Hencerfor all integer r1,> r an integer

r
PB { r can be found such that F 1o F 3

M

Herefrom follows that also s possesses a minimum property i.e. no
8, 8 exits with F >4 =F 1y for if such a S, would exist, one had because

of the minimallty of r ce rtalnly ry> T hence an 1nteger r, would exist
with r3 < rand F T2F 3, so that we would have F ®1 = F 3 with r3<: r
contrary to hypothesis. m
If anminteger m exists with F 1'= E we can find in the sequence
F, F2,...,F 1 the first operator m which is equal to E. Its exponent m will
be called the period of F, which obviously must be a divisor of m,. In ...
this case the operator F possesses an inverse operator F”q with F‘qF =
- Fr = E, for p-1 = 7 satisfies. If conversely F possesses an inverse
operator F'q the operator F possesses an exponent for the above consisered
numbers r and s with r > s and F' = F°® exist in any wayg . Herefrom follows
(F—q)SFr = (F°1)SFS = E, hence FY’= E, where v =r - s is the period of ¥,

If s = O we call the element F cyclic; if s > O we call it periodic.
Every element of our set of operators is periodic, not every element 1is
cyclic.

That not all opefators do possess an inverse, isshown by taking the
operator defined by the functions fv(xq,...,xn):g 0 (¥= 1,...,n), which
we call the nulloperator Z. This operator possesses no inverse operator.

Moreover one has for all operators F the relation ZF = Z, but FZ = Z holds



only if in every [, (xqb(.k,xn) the constant term 1is equal to zero.

One has obviously 7" = 7 for all integer m > 0., The element Z is
therefore not cyclic.
Theorem. If F possesses the property F x # Fx' for all two sets x and x'
which are different, F possesses an inverse operator.
- Proof. Consider all different sets x = (xq,...,xn) and the corresponding
values vy = Fx = (yq,...,yn) of Fx. Since all the sets y are different,
by the fundamental theorem on operators we know the existence of an oper-
ator G which for a set y has the precribed corresponding value x. This
operator G satisfies y = Fx = FGy, hence FG = E, and also GFx = Gy = X,
hence GF = E. ‘

In general if F possesses an inverse operdor F
putting y = Fx, ey = F"qy = X and FF’qy = Fx = y for all y.

Our operators work on a finite number N of elements and transform

1 one has for all x,

this set in a certain way in itself.

As soon as the N transformed elements are all different our operator
belongs to the symmetric group ﬁ‘N..

If, however, the N transformed elements may coincide our operators
do not form a group since no inverse operator exists,

Consider a case where M(< N) of the transformed elements are all
different and the other N-M elements coincide in one or other way with
these M elements. Let this transformation be performed by an operator A.

If the originals of the M elements are but a permutation of these
elements the operator A be replaced by an operator A' which works on the M
elements in the same way as A, while the transforms of the other N-M
elements are arbitrary but all different and also different from the M
elements under consideration. The operator A' then belongs to the symme-

o .
tric group and in many cases one can consider A' instead of A,

M
In general, given any operator A we first investigate which elements

(M)

x(q),...,x(M) are transformed into M different elements x'(1>>...,x'.

the sct of which does not nccessary colneclde with the set"(i‘c(q),...,x(M ).

Always A can be replaced by an operator A' with the property that

x(M+1) (N) are transformed such that x'(q),...,x’(N) are a permutation

M)

l‘.,x

of x(qj,...,x(N), while x(q),...,x(
As soon as the sets (x(q),...,x(N)) and (x(q),...,x'(M) have the pro-

perty that 10 dements of the first set are transformed by A into the same

10 eleménts in an arbitrary permutation, then A is usefull to be an addi-

retain their transforms.

tion or multiplication operator, or: As soon as A works on 10 elements in
the same way as an opergor of ’XHO, then A is a usefull operator.

We have reason to divide the operators A in usefull and not usefull
operators. Every usefull operator corresponds with a set of M(= 10) ele-
ments which are permutated by A. Once a usefull operator is chosen, this
set is fixed. The product of two usefull operators A1 and A2 is not neces-
sarily wusefull, for the corresponding sets of Mq and M2 elements (which

are permutated by A4 resp. Ag), need not contain an intersection of M(: 10)



elements. If any set S of M(é;ﬂo) elements is permutated by an operator A,
we call A a- S-usefull operafor. It is obvious that the product of two
S-usefull operators is an S-usefull operator and further that all S-use-
full operators A can be replaced by S-usefull operators A' (in the same way
as above A was replaced by A'), which form a group.

We finally are only interested in the way in which the set S is
transformed by the S-usefull operators.

For instance if n = 4, so that every integer 0,1,...,9 possesses 4
coordinates, which are O or 1, then N = 16 and we are only interested in
S-usefull operators A which permutate at least the 10 elements 0,1,...,9,
while the other 6 quadruples are transformed in a way we are not interes-
ted in, but which may be changed so as to make A equal to an operator A'
of ]bﬁ6
Theorem. In our system of operators there exist cycllc operators with
every period m £ N,

For let m be arbitrary < N. Take m arbitrary different sets
(xq,...,x ) which we denote by x(q) (2),...,x(m).

By the fundamental theorem on operators an operator exist which
transforms‘x(q) into x(g), x(e) into x(3),..., x(m'q) (m) and final-
(m) into x(ﬂ) and which lcaves all other N-m sc¢ts (xq,..;,xn) invarl-
ant. Obviolls this operator has the period m.

The number of different cyeclic operators with period m found in this
way from x(q) x(2), m)

into x
ly X

.,x( is equal to f(m), hence the total number of
cyclic operators with period m by choosiﬁg in any way m from the N possiblec

sets (xq,...,x

o) is therefore equal tozz; %(m)( Ny . Moreover for any d| m

one finds ?’(d)(m) operators with period d hence in total we find already
N N

N Ny XN N-1
2 2 ¢@()=, m()=N2
= FUn) = g M
different cyclic operators.

Also a cyclic operator can be found which transforms a set x(q) into
x(z) (2) into x(B)..., x(m - 1) into x(mg, (@) into x(q); further

(m +ﬂ) (m,+2) (m,+m,) {m +1) (M, +...+m, ,+1)
X 1 into x 1 seeesX 172 into x 1 3 eeasX 1 k'; into
(m1+...+mk_1+2) (m1+...+mk) (m1+...+mk_q+1) —

X e esX into x . Her-e:%_w m, = N
=]
taking my = m3 = ... =M= 1 we obtain the original transformation for

m, = m.
There exist
N!
o s m, -
different such partitions of the number N which furnish us with
2P

m °
ZﬂhkN k

m'im




different operators of period M, where M is the least common multiple of

mq,...,mk.

éb. Welghts,

Once the numbers x = 0,1,...,7 are coded we remark that the coordi-
nates (xq,...)xn) of their code satisfy a relation

1 X = Xo546¢..X% = c
(1) g(x, Xp) =8 FBuX, b ... g X+ Byp¥qXp tee-tBgg N4XpXgt. ..

where the righthand side contains at most 10 terms, for this righthand
side has to be equal to x for the set (xqi...,xn) i.e. has to assume 2
prescribed value for any of the given occuring systems (xq,...,xn), from
which fact the fundamental theorem on functions learns us the existence of
10 coefficients g so as to satisfy (1). The coefficients g are called the
welghts of the representation of x by its coordinates (xq,...,xn).

If the coordinates (31,...,x4) of x correspond with the number x
wrltten in the binary system as x1x2x3xu one obviously has

X = 8x1 + 4x2 + 2x3 Xy

For a number x % 10 where each of the decimal places itselfl is writ-
ten in the binary notation, say x = x1x2x3x4, x5x6x7x8 were X < 100, one

has :
X = 80x1 + 40x2 + 2Ox3 +10x), + 8x5 + 4x6 + 2x7 + Xg.

If such a number were entirely written in the binary system, only
7 coordinates would be sufficient and one would have

X = 64x1 +32x, + 'l6x3 + 8x4 + 4x5 + 2xg + X

The cecding of every decimal digit separately is inefficient in so

- much one is concerned to reduce the number of necessary coordinates, which
is due to the fact already mentioned in é 1, that 10 is much nearer to the
highest power of 2 which is less than 10 than to the next power of 2.

The difference between the necesgsarybinary coordinctes and the numbze
of coordinates used in the decimal-binary-coding increases with the number
X. There are, however, advantages which Justify the use of the decimal-tri-
nary coding.

d6. Addition of coded numbers.
v

We consider again the sum operator A which gives us the coordinatec
of the sum of two numbers x and y from the coordinates of these numbers

—~

o
]

-

-

e
o]

~—

§ SV = S“ (xq:‘--;xni yq:--':yn)
ty =t (X 0x5 ¥quee0uy)

Let us first consider the functions s, . Calling the operators



- 10 -

(51""’Sn) = S one has
X +y = 8(x,y).

Once an arbitrary way of coding of the integers 0;1,...,9 is given
the fundamental theorem learns us the existence of an operator S which
for every of the 100 possibilities (xq,...,xn; yq,...,yn) gives us the
n coordinates SpseeesSy of s =x + y.

Let us for a moment fix y = 1. Then one obtains the addition of 1,
9 One has x + 1 = A
write X + y = A_X. We have A_ = Ay,

v o y 1
The operators A,1 = EyAq,...;Aq form a group with

which we denote by A X. Moreover, in general we shall

/‘

AﬁAi = Ag, where t = r + s (mod 10,

which 1s isomorphic with the addition group of the integers (mod 10).
This group is determined by the choice of A,, but may also be determined
by any other of the ¢ (10)numbers Ay with (A, 10)=1, for instance by A;.

We further remark that the transformation x' = f(x) gives
A'x = + y! = + f(y) - = AL b'd
L =X FY =X (y) £(v)
and putting By = A§ one gets
Bx =A X,
v £(y)
Hence the transformation X' = f(x) induces a transformation of oper..-
tor B.. = A , Wh = A'.
T By = Bp(y). where By = Ay

As soon as the operator A1 with AJO

one of the integers 0,1,...,9 is assumed, the codation of all other nine
integers follows by applying Aq sufficiently often to the given integer.

We see that the codation of the ten integers determines the operator
A,l and inversely the codation of one integer determines, if A1 is given,
the codation of the others.

The same holds if in this argument A1 is replaced by A3, A7 or AS.

As soon as eilther A1 and the coding of one int=ger or the coding of
all ten integers 0,1,...,9 is given, the general addition frrmulae arc
fixed. \

Conversely, if the general addition formulae are fixed, the cod gz

-

of O follows from the equation x = x + xX. The general addition formu.ic

-~

= E is given ard a codatior ci

may not be given arbitrarily for one has for instance
S(...8(8(s8(x,y)y)>y),¥)...),y) = x for all x and y where 10 operators 5 %
applied.

Once the integers 0,1,...,9 are coded, the operator T{x,y) determincc
by the n functions tq(x,y),...,tn(xjy) is fixed. Obviously T{¥,y) 238Uuizs
only two sets of values, namely those corresponding to the integer O and
to the integer 1.

Any operator T which assumes for nine given sets (xq,...gxn) a samn~
value (zq,...,zn) occuring among these nine sets and for the tenth sct



# (245...,2,) occuring among the nine given sets, may be taken as T(x,1).
As soon as T(x,1) is given, the coding of 0,1 and 9 is fixed, for
one has (zq,...,2,) = 0 (Yqs0vy) = 95 (ugs..05u ) = 1. Hence by T(x,1)
and the coding of 2,3,...,8 the coding of all integers 0,1,...,9 18 fixed.
The degree of the operator S in XqsesesXpys Vyse..,¥, depends on tue
degree k of the operator A,. Putting y = 1 the operator S beccmes equal tc

Aq, hence S is of a degree;i k in the coordinates xq,...,xn and 80 is S in
the coordinates qs eV,

¢
a—

—éZJ Milfiplication of coded numbers

Many properties of the prececding paragraph do still hecld, if on=
replaces the addition hy multiplication.

The encrel multiplication operator M is the operator, whichk, piven
any two integers of the set 0;1,...,9, gives us two new Integers corrod-
ponding to the decimal representation of their product. In o 2 we wrote
for Og_-' X, Y5050 £ 9 }

Py =0y (XX Vs ‘
¢y = Gy (KgseeX 5 Vgaeeuy) T,
» T *n’ Y12 ’Yn
where Xy = 10a + p.

Taking y fixed we obtain multiplication formulae for Myx, where W
is the operator which transforms for a given y the nmumter x into the -
ber p, which is equal to xy(mod 10).

Evidently one has NL1 = E; Mo = 2.

Besides cach M has a period which divides g(?@) = L, for for ev.wy

¥y one has y1+';\10) = y{mod 10) hence Myf(10)+qx = Xy AR xy{med 307,

7

hence M ¢(10)+1 = M_, hence for the smallest r with M§ = E one must hsave

[ (10).

v & Of{mod 2}) . L
If §'y $ O{mod 5); ; one has for instance My = M6.

As in éfﬁ one proves that given a codation of the intecers 0,1,...
general multiplication formulae p and q can be found, vhich are entirsz and
rational both in the coordinates x and y. About ths decgres of these Formu-
lae analoguous theorems exist to those proved in § 6.

e

58. Choice of coding.
N

We now have to make our choice in which way the integers 0,1....,9
shall be coded. We choose such a coding that the machines arc as sinpls oz
possible, In this connection it be remarked that the apparatus nccessary

to compute the sum mod 2 of two integers (each of which is equal tc C ~v

1)  is much more complicated than the one necessary for their product ol o,

This 1s due to the fact that the formula 1 + 1 = O(mod 2) involves rather
a complicated apparatus, while this is not the case with the formulae



0 +0=0; 0+1=1+0=1, which are true also if the reduction mod 2
is not performed,.

If we try to confine oursclves as much as possible to perform only
such simpler operations ( by which we mean operations which do not require
the complicated apparatus to calculate 1 + 1= O(mod 2)), then for instance
a sum ab + (b+1), once all three numbers a, b and b+1 are coded, is also
in a rather simple way to get. If only the numbers a and b are given this
expression is more difficult to get, since the operation necessary to ob-
tain b+1 from b is rather complicated. Once this last operation is admit-
ted the sum a+b can be got from a and b by using twice this operation,
since one has a+b= a(b+1) + b(a+1) (mod 2).

Further it be remarked that in general a product is the more compli-
cated the more its number of factors increases, and that products of two
factors are considerably more simpie.to get than those of 3 or more fac-
tors. On the other hand the formula (xh+1)(xk+1)+1 is as simply to be re-

alised as the formula x x, . Writing X = X+1 one has (xh+1)(xk+1)+1=

= X, ik.
We now proceed to investigate a formula say for Aq, which from the
practical point of view is as simple as possible.

Once the number n of coordinates is fixed by far the simplest
operator A,1 would be the operator for which the coordinates of x'= X+
(mod 10) are merely a permutation of those of x. Since such an operator
has a period which divides n! and since A1 possesses the period 10, one
must obviously have nz 5, although as we remarked a codation with n=4
would theoretically apart from the permutation condition already Dbe
sufficient. The condition 10| n! , however, is necessary but not suffi-
cient, since the symmetric group 'X”n contains only elements of which

qseeeoly with
n,|+...+nk = n. Herefrom follows that n cannot be equal to 5, neither to

the period is a least common multiple of any set n

6, so that the first possibility for a representation of all integers
0,1,...,9 by n coordinates, such that addition formulae are but permuta-
tions of coordinates occurs for n=7. This case, for which the formulae
will be given intenext paregraph, has a simple additior ba% by no means
a simple multiplication thecrem. So there is sufficient reason to drop
the comdition that our operators are but permutators.

Since every operator consists of a set of polynomials in the
coordinates instead of allowing but one term to occur in those polynomials
we now allow them to possess more terms.

In view of the difficulty of performing the addition 1+1 and
multiplications with more than two factors .our polynomials may contain
but one linear term and only such a number of gquadratic Tterms that one is
sure that not two of them are at the same time equal to 1. In <%11
we shall investigate systematically all possibilities for n=4, which
satisfy these conditions.



- 13 -
%9. A way of coding for n=7.

In the simplest case where the symmetrical group possesses elements
of order 10, i.e. the case n=7, we only have to take for A1 any operator
of order 10, and make an arbitrary choice for the coordinates of one of
the integers 0,1,...,9, say those of gzero. We take for instance O=
=(0 00010 1); let A, be given by the formulae

(x}1=f1(x)=x5 (o =§0000401;
1=(1000010
xp = X, 2=(0100001)
3=(0010010)
Xé = *o Then one gets { 4 =§O 00100 1;
5=(0000110
xﬁ=x3 6 =(100000 1)
7=(0100010)
x4 = X 8=(0010001)
\9:(0004010).
xé = x7
Lx% = X6

The general addition formulae which give us the coordinates of the
sum s of two integers x and y (all mod 10) are of the form

Sy =2y 5Ty

i,J
One gets
(sq = X4 Y5 + Xp Wy + X3 y3 Xy Y, + X5 Vg
Bp = Xy ¥g + Xp Vg + X3 Yy Xy Y3+ X5 Ty
83 = Xy Vo + Xy ¥yt X3 Yg + Ky Yy + X5 Vg

ﬁs4=x1y3+X2y2+x3y,‘+xuy5+x5y4
85 =X,V + X5 y3 + x3 Yo + Xy y1 + X5 Y5
S6= X6y7+x7y6

ks-? - X6 y6 + X7 y7.




Since only one of the first five coordinates differs from zero, all sums

for s

1,..

.,85 are simple and this is

Xg or x7 is equal to 1.

Our general product formulae p =

In this

+

-+

+

-+

-+

-+

+

+

-+

P = %4 99

p2 =

P3 = X4 ¥3

Py =
b5
Pg =
;=

case the

1 s are

Xy now become

+ X5 ¥y t Xy Yo t Xy Yy

+ X2 yq + X3 yH + Xq y3

+ Xy Yyt X5 ¥4

+

Xy Yo

+ Xg y2 + X3 y3 + X4 y1

addition and

*o* 79397
XyXa¥o¥g
*5%6Y3Y7
X% 7Y3V7
XoXgIo¥g
X3%X 79536
XXV
x4x6y3y7
x5x7y1y6
X5X7y2y6

X%gV37g

.X2X7y4y7

XoX7Y oV
x3x6y4y7

Xy Xq¥3Yg

also true for 8¢ and 87 since €fther

multiplication formulae for the carry t,,

XoX7Yy Vg
xy*r¥3¥y
*5%X6Y1Y6
*a* 776
x2x6y3y7
*3x7I477

Xu*X6¥33¢

*y*eiyve -

*5reVed7
*5¥7V3¥7
X4Xedn Iy
X2X7y5y6
X2X7Y3y6
x3x6y5y6

x4x7y4y7

X3XgVo¥g
XXV 3g
qu7y4y7
XoXgI33g
XoXeV e
x3x7y2y6

XyXeVu e

*5%7Y356
x5x7y4y6
X1*6Y5Y6
TorYaY7
*3%6Y5Y7
*3%69977

X4X7y5y6

*3%6Y397
x5x6y5y6
x1x7y5y6
XoXeIyIq
*3%7Vedr
*3h79397

*1*6556

X3Xg¥y Vgt
XeXgY 4yt
X1x7yqyi
Xo*6Y55¢
x3%773T5.
Xy XYY

X X6V 1Y 7

*5% 79556
*1%*eY19¢
X *eI2Y6
*oX 7597
x3x6y2y7
¥ 45¢

X5XegY V6

+



+ x5x6y2y7 t XgXg¥3Yg + XgXgVuT¥y + XqXo¥e¥q + KXoV Vg + XqXo¥pVg +
+ x1x7y3y6 + x2x6y5y7 t XXeY Vg * XpXgYoly + x3x7y5y7 + X3X7y1Y6 +
t XY XYV,
Q4= x2x7y5y6+x2x7y1y7+x2x7y2y6+x2x7y3y7+x2x7yﬂy6+x3x6y4y7+x3x6y5y6 +
+ KXY 4Vt XY XYy T PR X g oYt RV oY X o X Y oY 4K Xy Y oY 4Ky XV oYy +
R XYV K G Y3 Vg HR 4K Y3 Vgt R XY Vg +K) XV oY g +X 5Ky Y 3V -
Ap= X3XgY oVt RaXe YoVt RaXg Yy Vg +R) XY o Vo +X )y KT (Y 4K XY oV g +Re X0 VgV +
+ XoXEY3Y et R yY 3Vt Ey XY 3 Vg +Re XYy Y+, 4 X Y T o 4 X X gV T R X V) Vs +
+ x4x6y3y7 9
q3 = x4x7y3y7 + x3x7y&y7 + x5x6y2y6 + XoXgY5Yg T XXV 4V + X3X7Y3Y7
= XXV 3T 73Xy VeV g AR YoV g ¥R X g (Yt R Ry YT g+ Xy X gV gVt X6V Vg
U5= XAXgVYrtRRgV oY ot RoX oY oV 7+ R X0V 3 Vg R X gV T+ X XgY oY 4R XY gV +
¥ XXV Yt K Y oY R K Y T+ Xy XV 4T 4R XV oY «
A= x1x6y5y7+xgx6y4y6+x2x7y2y7+x2x7y3y6+X2X7yqy7+X3X6YBY6+X3X6Y2y6 +
t XKV gVt R Xy Y Vgt X YoV X o X g Yo Vgt R XY oY+ X)X Y oV g HX XYY
t XpXgYaVg KXYV toX gy Vgt R Xg Y Vgt Xy XYY g 4 X X T Y Xy XY g +
t XXV Yo R X gy Vgt XY oV g ¥Ry XYY 4K XV oY g ) Ko Vg Wi Xg V) ¥y +
¥ R K YLK oK gV T R X Ve g+ X Xg Ve Vg 4R XY 4 Y 4K g KV T o
A7= KXoV sYgtRoXg¥ gV X oXY oY g+ oKV g Yy XX V) Vg + X3 Xg V) Y o+ X4 X5V 5V +
t XXy oY PR 4KV oYt XX oY Y H Ry XY oY+ Xy XY oY o+ X T ¥ P X gV 3 Vg +
t X3XgY ATy HRYXYYT R XYY 4K XY, Yot Re X eV Vo 4 XX e T oV g 12X Yy Vg +
t X XYVt R XY Y A g XY T X X oY) Y 4R g X Ve Vg + X X s Ve Y 4 XY 4Ty +
t KRV gVt R X Y)Yt XoY o Vg + X XgYa Y7
%10. A coding for n=5,

The 7 coordinates as they were introduced in the preceding paragraph-
are not independent., One has x1+...+x5=1 3 x6+x7=1. Hence all formulae



in the other 5 coordinates, If

may be simplified by expressing XS and x7 .

then Xg is called x5, we obtain

/0= (0000 0)
1=(1000 1)
2=(01000)
3=(00101)
J4=(00010)
5=(0000 1)
&=(10010)
7=(0100 1)
8=(00110)
L9 = (000 11)

and the general sumformulae for s = x+y become

[}

1 = qu + ngu + x3y3 + Xuyz + X y1

(&)}

= X ¥4 + Xyt Xa¥y + XYy + X Y,

)]

2
3 = X1y2 + x2y1 + X3y + xayu + X y3
S)'l- = X,‘y3 + x2y2 + x3y,] + Xu_y + X y)+

55‘: .x5+y5

where X = X, + Xy ¥ X3 ¥ X 5 ¥ =-&1 + ¥y t ¥yt §Z—.
Qur product fornmulae become:

p1 = x1y1 + x2y3 + x3y2 + quu

o
no
Il

Xﬂ‘ye + X,ay,] 1 X3yu + X4y3
p3 = X1y3 + x?yq + X3y1 + Xuyz

pu = quq + x2y2 + x3y3 + x4y1

x1 x2 x3 Xy a
Y1 1o X xg 0 - 0 -
PRRE o Y5+%55 *5Ys x5
4= V3 |Vs X5 +XsT %535 Vs X5
vy |0 %595 %5 *535 0
1 0 ?;}5 X5 0 0

where the right hand side denotes the sum i%g;ﬂ aijxiyj(With X5=y5=1) in

which the coefficients aij are found from the scheme, for instance a13=y5.
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Finally

t2 = t3

X, X x3 Xy 1
V4| X535 Xg X555 X575 %595
X XV 0
V3| *595 Xg¥g 0 %535
Vy | X595 XY X555 X595 0
1 x5y5 x5y5 0 0 0
X, x2 x3 Xy 1
4l O X555 X5 X5V5 0
Vo | %575 %575 %575 *575 °
v v = =
3 5 *5Y5 X5tV %5 595
Yy | *595 *5¥s Vs © *595
1 0 0 x5y5 x5y5 0
x1 x2 x3 x4 1
Yq | *5Y5 X5Ys %5¥5 X5 +x5Ys *5Ys5
Y2 | *575 *595 ° *5V5 *55
V3 | %575 0 X535 X547 X5¥s
Yy {T5txs¥s X5V X5+ys X555 Xg
T x5 X535 *x5¥5 V5 X595
x1 X5 XB XM 1
Vq | *s7s ! *575 ° %575
Vo | 1 0 XsY, *5Y5 X5
Y3 |*5¥5 X5V 0 1 X5V
RES Vs *5Y5 ° 0
one obtains for the addition carry
= t)_‘_ = O
x,l x2 x3 x4 1
¥4 1 0 1 i5+y5 x5
vp| O X5 +Ys X5+Ys5 X5 4V 0
y3| 1 X5+7s5 X5+75 X545 Xg
Yy | X575 X5+ X5+Ys X5+ 0
1 Vg 0 Vs 0 0



é11. The coding with n=4.

We want to investigate the case n=4 a 1little closer. As we remarked
before we confine ourselves to the case the transformations are at most
of a degree 2 in the variables. First let us suppose the coding 1s taken
in such a manner that at most two of the coordinates are different from
zero. Then only the following formulae can occur for the polynomial
operator qu

Xi H Xi + Xj}(k H Xi + XJXk + Xle H Xi + ijk + Xk}(l + X]_XJ..

ii ij HE S ij ; %E% Xy Xy

Let us first take the case where every integer =z O and'§;9 possesses
exactly 1 or 2 coordinates which differ from zero, Then since there are
4 integers for which X} ( v fixed) differs from zero, we consider the
number of possibilities (xq Xy sXg ,xq) for which anyone of the 7
above expressions can be equal to 1. Since we showed already that :
(x% KL ,xé ,x&) cannot be a permutation of (quxg:x3’x4) one sees that
for at least one V one x!, 1is a non-linear expression in the x ,of one
of the six possible above mentioned forms. Let us consider these six
forms successively.

10. xi+Xij’ This expression is equal to 1 either if xi=1; xjxk=0
which gives 4 possibilities, one of xi=0; xjxk=1, which is possible
only in the case Xj=xk=1' Hence for 5 occurring integers x one has

Xx'=1, contrary to %he condition that this should happen for exactly
four integers x.

o) . .
27, Xy X)X X This expression is #0 if:
xk=O; xj, Xq arbitrary, which gives rise to 3 cases.

xi=1; xk=1; xj=x1=0,which is 1 case.

xi=xj; Xk=05xkxlé1,which similarly involves the case xk=x1=1.

Altogether our expression is #0 in 6 # 4 cases.

37. xi+xjxk+xkxl+xlxj.

The cases in which this expression is #0 are
X =1; X 50Xy Xy arbitrary O or 1 (but only one of them =1), which
gives the 4 cases.

xkx1=xlxj=xi=o; xjxk=1; hence xj=xk=1; xi=xl=0.
Similarly the cases; xk=x1=1 and x1=xj=1.

Altogether we get T7(#4) cases.

40. §;§3° This expression is equalt 1 if either X, or xj or both
are =0, which gives 3+3+1=7{# 4) cases.
O =w s ¥ = =
57, Xixj+xkxl’ Thils expresslon is equal to 1 if elther Xixj“xkxl“o

hence  x,;=1; xj=O; X, , arbitrary (3 cases)
>
x;=0; xj=1; X, 1 arbitrary (3 cases)



- - - 19 -
or: xixj=1; xkx1=1, hence kax1=1; x,=x,=0,

17y
Altogether we get 8(# 4) cases.

The sum may only in 4 cases be equal to one, Since at most one term
cen be equal to one, and since any such term =1 gives one pessibility
for x, our sum must contain exactly U4 terms; such a sum will be denoted

So the only possibilities are:
X)) =Xy X} =§:; xix'j
end at least one of the 4 variables x} must satisfy the second relation.
If exactly one of the variables x!, 1s quadratic in the %/L , we have

X! = x

a i

6a *p = Xy
| -

XC = Xk

xé =S:h X, Xg.
We remark that either the term Xixj’ or the term xjxk or the term XyXy
occurs in E::A’ hence there exists an integer x for which three of the
coordinates of x' would be equal to one, which is impossible.

If two of the variables say xé and xé are non-linear, we have

>

= X

a =%
xg = xj
& Xy =2y XXy
xé =Z::4 xpxq .

For X,=x,=1 both X' and x! may but contain terms #1, hence x.,x, does not
i™J C o d 17

occur in 2::4 andZimu, hence three terms of22:£ occur in ys while the
fourth terms are different. A term ijk may only make one of the two
variables_fé end x! # 0, hence any term xjxk does occur in only one of
the sumsjl_u and ES:Z} This holds for the 4 terms X Xy, XXy X

»
50 2 y &nd Z‘~u may contain together only 6+6-4-2 (namely XX
which 1is impossible,

gxk,xjxl,
=6 terms,

6c A transformation

/x

( a = %1
‘ xg =§EE; X X
xé =§;“4 xpxq
’ _<:_*¥
X3 T <-4 xrxs

_.__*t___).*
gives for x;=1; x;=1 only at most one term i“-§-4?2——uui——u which may be
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equal to 1, hence in the three sums which contain 12 terms, the 3 terms
Xixj are twice missing. Also any fTerm ijk cannot occur in three of the
sums, since then they all would be equal to 1. So from the 18 possible
terms, 7 do not occur, which is impossible,

6d A transformation where each X' is transformed by a sumjijg XX
does not occur, for any term xix. must miss in at least two of the sums;

J
so they do contain together at most

4x6 - 2x6 =12 #£ 16 terms.

So not any transformation of the simple kind is possible for the
operator A1 in the cace we code all integers with 4 coordinates of which
either exactly 1 or exactly 2 differ from zero.



