stichting

 MATHEMATISCH CENTRUM

 MATHEMATISCH CENTRUM}

2e BOERHAAVESTRAAT 49
AMSTERDAM

$$
\text { ZW } 1953-012
$$

On the differential operators of first order in tensor calculus

J.A. Schouten

1953

On the differential operators of first order in tensor calculus.
by

J.A.Schouten

The most important property of any calculus dealing with geonetric objects is that it contains one or more differential operatois ledding from some well defined geometric object to other well defined reometric objects. Ricci calculus had from the beginning such an opera.. tor, the covariant dufferentiation. The Christoffel symbol $\left\{\begin{array}{c}\kappa \\ \mu \lambda\end{array}\right\}$ was al ready introduced in $186: 1$) and this symbol constituted as Ricci said in 1501^{2}), the "material jnstrument" necessary to build his method, Sut we owe to Ricci the idea ${ }^{3}$) to use this instrument for the construct.. ion of an invariant differential operator that can be applied to every tensor field and leads to the covariant derivative of the field

Later on Levi Civita and the present author found andependent.. ly about 35 years ago that the covariant differential could be interpreted geometrically in terms of a new kind of parallelism, and though this iciea had a great influence on the development of modern different.al geometry, it was by no means so important as Ricci's. invention of cova.. riant dufferentiation

Now invariant differential operators were not entirely unknown at the time Riccj published his new calculus from vector analysis we know the operation rotation and diversence that could easily be gene.. ralized for multivectors (= alternating quantities), in n dimensions:
a) Rot: $\left.(p+1) \partial_{[\mu} w_{\lambda_{1}} \ldots . \lambda_{p}\right] ; \quad w=p$-vector
1)

But there $2 s$ a big difference between these operators and co.. variant differentiation:

1) Christoffel, E.B.: Uber die Transformation des homogenen Differentual. ausdrucke zweiten Grades, Crelle's Journal 70, 46-70; gesammelte Eibh I, D. 352-377.
a) Ricci, G. and Levi Civita, T : Méthodes de calcul différentiel absolu et leurs applications, Math Ann 54; 125-201. Reprint; collection de monographies $\in t c$ no. 5, Blanchard, Paris.
2) Ricci, G.: Sulle derivazione covariante ad una forma quadratica dif'ferenziale, Rend. Acc. Linc. (4) 3, 15-18, (1887).
a) $\quad \nabla_{\mu} v^{k}=\partial_{\mu} v^{k}+\Gamma_{\mu \lambda}^{k} v^{\lambda}$;
3)

b) $\quad \nabla_{\mu} w_{\lambda}=\partial_{\mu} w_{\lambda}-\Gamma_{\mu \lambda}^{x} w_{\kappa}$;

$$
\Gamma_{\mu \lambda}^{k} \stackrel{\text { def }}{=}\left\{\begin{array}{c}
k \\
\kappa
\end{array}\right\}=\frac{1}{2} g^{k e}\left(\partial_{\mu} g_{\lambda e}+\partial_{\lambda} g_{\mu e}-\partial_{\mu} g_{\mu \lambda}\right) .
$$

Rot and Div exist in "empty" space, that means, we need only the flelon operated on and nothing more. But covariant differentiation needs (in its first version) besides a field as v^{k} or w_{λ} another field $g_{\lambda k}$ from which the $\left\{\begin{array}{c}\kappa \\ \mu\end{array}\right\}$ can be derived. In fact the covariant derivative of a freid, for instance v^{k}, may be considered as a differential concomitant of the wo fields v^{κ} and $g_{\lambda \kappa}$. But this implies that covariant differentia.. tion can be interpreted in two ways, first as an operator depending on $g_{\lambda \kappa}$ and working on v^{k} and secondly as an operator depending on v^{k} and working on $9_{\lambda \kappa}$.

In this way a differential concomitant of two quantities gives use to two differential operators and from this we see that askin for more differential concomitants and asking for more differential operators is essentially the same problem.

In 1931^{4}) Slebodzinski found a new differential operator do. pending on contravariant vectorfield v^{k} and appliable to all kinds of quantities (and geometric objects as was found later)
a) $\quad \underset{v}{\mathbb{E}} u^{k}=v^{\mu} \partial_{\mu} u^{k}-u^{\mu} \partial_{\mu} v^{k}$;
3)
b) $\underset{v}{\underset{Z}{2}} w_{\lambda}=v^{\mu} \partial_{\mu} w_{\lambda}+w_{\mu} \partial_{\lambda} v^{\mu}$.

Also in this case the "material instrument" occurred already in publications of Lie but the interpretation as a differential operat that could be applied to all quantities was new. Van Dantzig ${ }^{5}$) called the new operator the Lie derivation. It was interpreted geometrically and applied to various problems of deformation by Van Kampen and the present author ${ }^{6}$) and it is now in generally use especially by english and japanese authors. Of course also this operator can be interpreted in two ways and there is a connexion between it and the covariant diffe. rentiation
4) Slebodzinski, W.: Sur les équations de Hamilton, Bull. Acad. Roy. de Belgique (5) 17, 864.-870.
5) Van Dantzig, D.: Zur allgemeinen projektiven Differentialgeometrie II, Proc. Kon. Ak. Amst. 35 (1932), 535--542.
6) Schouten, J.A. und Van Kampen, E.R.: Beiträge zur Theorie der Deformation, Warsz. Prac. Mat. Fiz. 41 (1933), 1-19.
4)

$$
\underset{v}{\sim} g_{\mu \lambda}=2 \nabla_{(\mu} v_{\lambda)} .
$$

In 1940^{7}) the present author: succeeded in generalizing Lie's operator by forming a differential concomitant of two arbitrary contravariant quantities:

$$
\left.\sum_{i}^{c \ldots, a}\right\} p^{\left\{\kappa_{1} \ldots \kappa_{i}|\mu| \kappa_{i+1} \cdots \kappa_{a}\right.} \partial_{\mu} Q^{\left.\kappa_{a+1} \cdots \kappa_{a+b+1}\right\}}-
$$

5)

$$
\left.-\sum_{j}^{0, \ldots, b}\right\}^{a b+a+b+j} Q^{\left\{k_{1} \cdots k_{j}|\lambda| \kappa_{j+1} \cdots k_{b}\right.} \partial_{\lambda} p^{\left.\kappa_{b+1} \cdots k_{a+b+1}\right\}},
$$

Where $\}=()+[]$ and \mathcal{f} is the operator of an arbitrary odd permuta.. tron of the $a+b$ indices in $\}$. For instance $\quad\{\{\kappa \lambda \mu\}=\{\lambda \kappa \mu\}$ and $f^{2}\{\kappa \lambda \mu\}=\{\kappa \lambda \mu\}$.

This concomitant could be derived as follows. Let Λ be a so called collecting index standing for any number of upper and lower in... dices and let O_{λ} be some differential operator whose working on the General quantities P and Q (indices suppressed) is known. Then we may try to find the working of O_{Λ} on the product $P Q$ by using the rule of Leaonitr
5)

$$
O_{\Lambda}(P Q)=\left(0_{\Lambda} P\right) Q+P O_{\Lambda} Q .
$$

But now it is by no means sure that the right hand side really can be expressed in terms of the product $P Q$ and its derivatives. Here is an example. We know the Lie derivative of a tensor $p^{k \lambda}$
7)

$$
\underset{v}{\mathscr{E}} p^{k \lambda}=v^{\mu} \partial_{\mu} p^{k \lambda}-p^{\mu \lambda \lambda} \partial_{\mu} v^{k}-p^{k \mu} \partial_{\mu} v^{\lambda}
$$

and we may look upon - ${\underset{v}{v}}^{\ldots \lambda}$ also as the result of an operator O^{k} working on v^{λ} :
3)

$$
O^{k} v^{\lambda}=p^{k \mu} \partial_{\mu} v^{\lambda}+p^{\mu \lambda} \partial_{\mu} v^{k}-v^{\mu} \partial_{\mu} p^{k \lambda}
$$

Now we try to use the rule of Leibnitz for the product $u^{\lambda_{1} \lambda_{2}}=v^{\lambda_{1}} w^{\lambda_{2}}$. That leads to
-)

$$
\begin{aligned}
O^{\kappa} u^{\lambda_{1} \lambda_{2}}= & \left(O^{\kappa} v^{\lambda_{1}}\right) w^{\lambda_{2}}+v^{\lambda_{1}} O^{k} w^{\lambda_{2}}= \\
= & p^{k \mu} \partial_{\mu} u^{\lambda_{1} \lambda_{2}}-u^{\mu \lambda_{2}} \partial_{\mu} p^{k \lambda_{1}}-u^{\lambda_{1} \mu} \partial_{\mu} p^{k \lambda_{2}}+ \\
& +p^{\mu \lambda_{1}} \partial_{\mu} u^{k \lambda_{2}}-p^{\mu \lambda_{1}} v^{k} \partial_{\mu} w^{\lambda_{2}}+p^{\mu \lambda_{2}} v^{\lambda_{1}} \partial_{\mu} w^{\kappa} .
\end{aligned}
$$

7) Schouten, J.A.: Ube: Differentaakomitanten zweier kontravarianter Grössen, Proc. Ko Ned. Akad. Amet. 43 (1940), 449-452.

The first four terms are expressed in terms of $p^{k \mu}, u^{\lambda_{1} \lambda_{2}}$ and their derivatives but there are two disagreen terms that do not contain u $\lambda_{1} \lambda_{2}$. but only its factors. These disacreeng terms can be eliminated y faking $O\left\{k_{1} u^{\left.\lambda_{1} \lambda_{2}\right\}}\right.$ in tead of $O^{\kappa_{1}} u^{\lambda_{1} \lambda_{2}}$ and this lcads to the formula (: i) Ior: $a=b=1$.

In 191°) E Noether gave a general process for a given sym. metric covariant tensor of valence >2 that leads to a complete set of differential concomitants but these concomitants do not depend on the coowdinates ξ^{x} only, as ordinary tenso:s do, but also on the differen. tials $d \xi^{k}, d^{2} \xi^{\kappa}, \ldots$ as is usual in the geonetrics of. Finsler and Kawaguchi. But the results of E.Noether made at highly improbable that next to the covariant derıvative and the lie derivative other ordinary dif... ferential concomitants could be found.

So it was very astonishing that Najenhuis found in 1551 ${ }^{\circ}$) a new concomitant of two nixed quantities of valence two h_{λ}^{k} and l_{λ}^{k} :
10)

$$
O_{[\mu} e_{\lambda]}^{k} \stackrel{\text { def }}{=} h_{\left[\mu^{2}\right.}{ }^{h} \partial_{|e|}{ }_{\lambda}^{\dot{\lambda}_{\lambda]}^{k}}-e_{e}^{k} \partial_{[\mu} h_{\lambda]}^{e}
$$

$$
+l_{[\mu} \cdot \dot{\mu}^{h} \partial_{e} h_{\lambda]}{ }^{k}-h_{e}{ }^{k} \partial_{[\mu} l_{i]}{ }^{e} .
$$

Mr. Tonoll ${ }^{10}$) had considered the necessary and sufficient conditions fon the principal directions of a symmetric tensor in V_{3} to be V_{2}-nor. mal. He succeeded in finding conditions that did no longer contain the principal direcions (as did all conditions formulated before) but only the tensor itself and its covariant derivatives. In dealing with this matter we found another more practical form of these conditions that could De ©eneralized immediately for $n>3^{11}$). Induced by this work Mr. Nijenhuis investigated the more general (non-metric) problem whether all pairs of eigendirections of a tensorfield $h_{i}{ }^{k}$ could be X_{2}-building. This led him.immediately to the new concomitant. In fact for $h=f$ and all eigenvalues different from each other this concomitant is zero if and only $1 \hat{f}$ the eigendjrections have this special property.

The concomitant of Nijenhuis though entirely new, is so simple that there certainly must be more concomitants. Let us again try to use
8) Noether, E.: Invarianten belicbigen Differentialausdrucke, Göt. Nachr. 1918, 1-8.
) Nijenhuis, A.: X_{n-1}-forming sets of eigenvectors, Kon. Ned. Akad. Amst. 54 (1951) 200-212.
10) Tonolo, A.: Sopra una classe di deformazioni finite, Ann. Mat. Pura Appl. 4, 29 (1945), 2C-53.
11) Schouten, J.A. Sui les tenseurs de V_{n} aux directions principales V_{n-1}-normales, Coll. de géom. diff. Louvain 1951, 67-70.
the rule of Leibnitz and let us start with the negative Lie-derivative of $h_{i}{ }^{k}$ looked upon as an operation workug on v^{k} :
11)

$$
O_{\lambda} v^{k}=-{\underset{v}{e}}_{E_{\lambda}}^{h_{\lambda}^{k}}=h_{\lambda}{ }^{\mu} \partial_{\mu} v^{k}-h_{\mu}{ }^{k} \partial_{\lambda} v^{\mu}-v^{\mu} \partial_{\mu} h_{\lambda}{ }^{k} .
$$

Then we try to wite $\left(O_{\lambda} v^{k_{1}}\right) w^{k_{2}}+v^{k_{1}} O_{\lambda} w^{k_{2}}$ in a form containing only $u^{x_{1} k_{2}}=v^{k_{1}} w^{k_{2}}$ and ies derivatives. This sives six terms written down in the first column four of them heve the form desired but the last two are disagreeing

$$
\begin{aligned}
& +h_{\dot{\lambda}}^{\mu} \partial_{\mu} u^{k_{1} k_{2}}+h_{\dot{\lambda}}^{\mu} \Gamma_{\mu e_{1}}^{k_{1}} u^{k k_{2}}+h_{\lambda^{\mu}}^{\mu} \Gamma_{\mu}^{k_{2}} u^{k_{1} e} \\
& -u^{\mu k_{2}} \partial_{\mu} h_{\dot{\lambda}}^{k_{1}}-h_{i}^{e} \Gamma_{\mu \rho}^{k_{1}} u^{\mu k_{2}}+h_{\sigma}^{\cdot k_{1}} \Gamma_{\mu \lambda}^{\sigma} u^{\mu k_{2}} \\
& -u^{k_{1} \mu} \partial_{\mu} h_{\lambda}{ }^{k_{2}} \quad-h_{\dot{\lambda}}^{e} \Gamma_{\mu e}^{k_{2}} u^{k_{1} \mu} \quad+h_{\sigma} \cdot{ }^{k_{2}} \Gamma_{\mu \lambda}^{\sigma} u^{k_{1} \mu}
\end{aligned}
$$

12)

$$
\begin{array}{ll}
-h_{\mu}{ }^{k_{2}} \partial_{\lambda} u^{k_{1} \mu} \quad-h_{\mu}^{k_{2}} \Gamma_{\lambda e}^{k_{1}} u^{g \mu} \quad-h_{\dot{\mu}} \dot{k}_{2} \Gamma_{\lambda_{e}}^{\mu} u^{k_{1} e} \\
-w^{k_{2}} h_{\mu^{k_{1}}}^{\alpha_{\lambda}} v^{\mu} & -h_{\mu} \dot{\mu}_{1} \Gamma_{\lambda_{e}}^{\mu} u^{\ell k_{2}} \\
+w^{\mu} h_{\mu}^{k_{2}} \partial_{\lambda} v^{k_{1}} & +h_{\mu} \dot{\mu}_{2}^{k_{2}} \Gamma_{\lambda e}^{k_{1}} u^{g \mu}
\end{array}
$$

In order to get rid of them we write in the second column the defect, that is the term that should be added in order to obtain the covariant derivatsve with respect to some arbitrary symmetric connexion $\Gamma_{\mu \lambda}^{\kappa}$ instead of the ordinary cerivative. Every defect contains $u^{k_{1} k_{2}}$ and the sum of all defects muit be zero. Now we try to substitute the two dis. agreeing terms by a non-disagreeing term wath the same defect. Let us take $u^{\rho k_{2}} \partial_{\lambda} h_{e}{ }^{k_{1}}$. Then the defect is

$$
h_{\mu}{ }^{E_{2}} \Gamma_{\lambda e}^{k_{1}} u^{\mu k_{2}}-\delta_{\mu} \cdot k_{1} \Gamma_{\lambda_{\rho}}^{\mu} u^{e k_{2}}
$$

hence the substitutjon is succesfull in

$$
h_{\mu}^{h^{h}} u^{\mu \sigma}=h_{\mu}^{\sigma} u^{\mu e} .
$$

But that means that two tensors $k_{i}{ }^{k}$ and $u^{k_{1} k_{2}}$ have the differential co mitant

$$
h_{\lambda}{ }^{\mu} \partial_{\mu} u^{k_{1} k_{2}}-u^{\mu k_{2}} \partial_{\mu} h_{\lambda} \dot{\lambda}_{1}-u^{k_{1} \mu} \partial_{\mu} h_{\lambda}^{k_{2}}-
$$

15)

$$
-h_{\mu} \dot{k}_{2} \partial_{\lambda} u^{k_{1} \mu}+u^{e^{k_{2}}} \partial_{\lambda} h_{e^{k_{1}}}
$$

provided that the condution (14) is satisfied. We give two uther examples:

$$
-\mathcal{L}_{[\lambda}{ }^{[\nu|h|} \partial_{\mu]} h_{\dot{h}}^{\cdot k]} ; \text { for } \mathcal{L}_{\lambda}^{(k \lambda)}=0 ; \mathcal{L}_{\lambda}^{h(\nu} h_{e}^{(k)}=0
$$

and
1)
that can be derived in an analogous way. In all these cases some algebrajc condition arises and the result is obtained by substituting the disacreeine terms by another term. It $3 s$ not yet proved that such a substitution is always possible and there not yet a general rule to find out the term to be introduced.

So the first problem is to find a general rule for the construction of all difforential comitants of two or more tensorfields or tensordensityfields. But there is a still more general problem. Given any set of geometric objects it may be asked whether these objects have differential concomitants that are themselves geometric objects (not necossary quantities) with a given manner of transformation.

