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On almost primes

' H.J.A. Duparc '

Several authors [7][2] proved the existence of an infinite number
of composite m for which oM = 4 (mod m). These numbers m are sometime
called almost primes.

In this note it will be proved that if a i1s an arbitrary given

integer > 1 there exist infinitely many composite m with
(1) 2™ = 4 (mod m).

Such numbers m will be called almost primes. In the case a=2 a
table of all such almost primes <:1O8 has been given by Poulet {37 .

Three proofs of thig assertion will be given. The first runs
similar to that of Sierpinski who proved that M=2"-1 is almost prime
i m 1s so0o; the secongnis a generalization of Jarden's method who used
numbers of the form 2 + 1. Moreover a third proof is given which is
snorter than either of the two others.

Theorem 1, For every integer a>1 there exists an almost prime m.
Moreover to m the supplementary condition (a-1,m)=1 may be imposed.

Proof, For a=2 the number m=341 satisfies,.

2a
Let further a be an odd prime. Then one may take m= ?~1
In fact obviously m is composite. Further a=-1
2a-2 -
2-§—~:3-= N < T N R R a-1=0 (mod 2),
a -1
hence
2a _2
r 2 "'0 (4 i - 2( -
E(aa—ﬂ)l a7, 2a [ A28~ moq, a<foq|a" 1.4
=S
a~-1
and consequently
me a™=T_,
Moreover any prime divisor p of a-1 satisfies
28 9] o] 9]
m= 2 2~1 = a7+ a8 +1=1 4.+ 1 + 1=a=1 (mod p),
a -1 )

hence ptm and (a-1,m)=1. 5
Finally consider the case a is composite. Then obviously m= %:%1
is also composite and further

a
aia -3

— ] a m-"1
=T = m-~1, hence m'a —1]8 - =1

Moreover as before any prime divisor p of a-1 satisfies
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a® -1 a-1
= S5 = tooot @ +1=1 +,...4 1+ 1 =2a=1 (mod p),

hence pkm and (a=1,m)=1,

Theorem 2, For every integer a> 1 there exist infinitely many a-
almost primes,

Proof. Let m be a composite number satisfying (1) and (a-1,m)=1.
The
n a1

M= M(m)= -

is also composite, satisfies also (1) and (a-1,M)=1.
The first assertion is obvious.
Further one has

mfam—1~1‘am—as(awﬂ)(M*ﬂ)s

hence mlM—ﬂ in virtue of (a-1,m)=1. Then Mlam—ﬂkam'q_ﬂ,

The last assertion follows from the fact that every prime factor
p of a-1 satisfies pf m, hence

M=a™T4 .+ a s 4=1 4.4 1 + 1 = m£0 (mod p).

Now for a given a>1 first introduce the number m,=m of the pre-
ceding theorem, Then by the above argument every member of the sequence
MMy defined by

My a= M(m, ) (h=0,1,...)

ig an almost prime.
Remark,  IF m, POSBESECS 8 different prime factors, then My will have
at least s+1. Conseguently there exist infinitely many almost primes
with at least s different prime factors.

Now the sccond proof of the existence of infinitely many almost
primes will be given. '

Thecorem 3, Consider the sequence of integers

! h-1
uh=(ad ,1)/(38 -1)(h=1,2,...). Then for,positive integersnand m
satisfying nem<al ™| one has u_u o g,
o= k /‘ hhm ak_‘ ak—'/} ah uk*/‘ i
Proof. If h=a"~  one has 2 \5 -3 luk—ﬂ. Hence uh?a ~q)a i
Conscquently
u,_ -1 u_ -1 u =1 u -
n n m m
unia -1, um\a -1 Uniﬂ -1, umla -1,
which leads to
u u_ -1 u_u_ -1
nm nm
(2) wu,|a -1, u_|a -1,

Further (un,um)zﬂ. In fact let p be an arbitrary prime factor of U, -



m-

Then psaa -1 since m-12n, Now

m-1 mn--1

a a- a

U = a ( 1)4-...+a +1 zr:’l+...+1+1=a#0 (mod p).
Thus p%’um and (un,um)zﬂ. o
Then (2) yields unum}a P _q and infinitely many almost primes
u v, are found.
n,-1

Remark. For n,<ny ce et A T 1 one rinds in a similar way from
i e i falt b

(2) that the number u v, ...u  is an  almost prime. Hence there
172 s
exist infinitely many almost primes with at least s different prime
factors,
Finally a third proof will be given. first in 1ts most simple

version, then in a little more complicated generalized form,

2p

[} -

Theorem 4. ILet p be a prime not dividing a“-1. Then m= §§__;l
a =1

18 an almost prime,.

Proof, First it is proved that m-1 is even. In fact if a 1s even,
obviously m is odd and fthen m-71 even., If however a is odd one has
Dy D
m = o<’ “+..,+ag+1§aﬂ+...+1+1=p;aﬂ (mod 2).

qu 2 aEp_aQ

. . 2
-a~, hence pl—s—— = m-=1 in virtue of p* a~-1.

Further p’np—ai \
a“-1

Conseguently Qplm—ﬂ. Then

. a5 e . . .
Finally m= ~ is composite, which proves the theorem.

Remark. In the case p=2 the rnumber m ig 2lso almost prime provided
o)
017+1 be composite.
. .2 , . . 2
In fact since 24 +°=1 the number a is even, hence 4|a“=m-1

2 14

m == a7+l ){1'-1!anv'qu

1

This theorem gilves again the exi;tonce of infinitely many almost

0
. n ove
the form m= 5»1 where p runs through the

-
a1

~

nrimes., Here they are of

infinite set of all »rimes.

The =2bove mentioned generalization of theorem 4 is the following:
. . P . k
If an integer k satisfies the relation (k,a -1

)=1, then for every
k—ﬂ), k)akp—ak

KD _
the number m=

prime number p with p% k(a is almost

-1

orime. (The special case k=2 is the above treated more a simple
theorem), ko_k

In fact one has ki“ ~—— = m=1 and further using Fermat's theoren
plakp~a , hence p]m—1 a -1

since p%’akuﬂ. Consequently kp‘m—ﬂ and
mlakp~ﬂIam"1—1. Moreover obviously m 1s composite.

Applications, The case k=3 requires that B,FaB—ﬂ, i.e. a?éﬂ (mod 3).




-l

Then 1if p752, p:#B, pJ’aB-ﬂ one has a3pa33;;a-a=0 (mod 3), and al%p
a-t-

conditions of the theorem being satisfied one concludes that m=
18 an almost prime, a”-1
The case k=4 requires 84—1 to be odd, hence a even, Then for every

odd prime, p with’p a4—1 one has aupssaa(mod 4) and the theorem gives

T oy A __B p"’l 2 o o
that m= mfﬂjq is almost prime.

The case k=5 requires 5%'a5~1, i.e. a1 (mod 5). Further p#5,
g)}—ab-ﬂ. Moreover 5135p—a5 will hold for all a if p=1 (mod 4), whereas
in the case p=3 (mod %) one has to take a=0, 2 or 3 (mod 5). Under
a-t-1

ar-1 6 6
As a last example consider the case k=6, Then 24/8 -1, 3%’8 -1
giV@S‘Géa. Further one hag to take p# 2, p5£3, p%fa6-1. Since then
D

- 2 OP .
hsa6pwa the number m= 2”6"1 is almost prime.
-1

these conditions m=

is almost prime.
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