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In report ZW 1959-010 the problem was how to find a function 

h(t), such that the given function 

( 1 ) (p>O), 

is the Laplace transform 

(2) f(p) /
CD -·Jt 

- r, e I. 
t'~ h(t)dt 

of h( t). In this r'eport a d::LCfera:0;n-c methocJ foe solving this 

problem will be given. 

1/Je again assume that f,z~a,b,cJcJ ctr'': pos1.tive -:::onstants and __ _ 

that afb, We also put V e2+z 2::::R st1 ting y=p- 1 ( x 2+a 2pc:, 

we deduce from (1) 

( 3) 

By the well-known formula 

( 4) 
1 

J (x) = ;1- J 
0 ,C _ 1 

we then have 

( 5) 
OD 

f 
-Z 1y'D 

e · y dy 

C 

1 

-1 r 
TI' 

-1 

Replacing s by ne\J\1 varL:ible t 

( 6) t :c: zy -· i I' s Jy 2---a2~ 



1 
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we obtain 
Q) 

(7) f(p) = j dy j cp(y.,t)dt., 
a L 

where cp(y,t) is defined by 

(8) = ..E.- Ye-pt 

rri V:2~a2)+(zy-t)2(cy+d ✓ y2+b2-a2) . 

1/_,/T The t-integration contour in 
·• z.y+tft/21-a.2 (7) is a linesegment L connect-

.·/ ' ing zy-if J y2 -a 2 and zy+ip / y'Z-a2 

I 

.. ···- .... ····--- - ···•o·~J. ~. 
/ I ·, 

/ ·:, L ( fig .1) . If y varies from a. to 

-- t · m ., the points z y - i f ✓ y 2 - a 2 and 
z,;x.i zy zy+if V y 2-a 2 describe a branch //. l 

/ 

/ 

fig.1 Th$ 

' ' Hof a hyperbola in the complex 

1I ' 

, · ,:~-,~.y-i.pJ/-a.2 t-plane. If y is fixed., the 

function 

t-plane -pt 
e 

oft has no singularities in the region G to the right of H., 

and is O(e-pt) if t---?"m. We therefore have 

(9) f <;P(y.,t)dt = / cp(y.,t)dt + j cr(y,t)dt, 

L I II 

where the sign of Vt 2 (y 2-a 2 )+(zy-t) 2 has to be chosen in such 

a way that the square root is asymptotically equal tot if 

t ~OJ, t Eo G. The contours I and II are parts of H as is shown 

in fig.1, and have parametric representations 

(10) 
I t=t 1 (u) = zu+if /u2-a2., u~a; 

II Vt a. 

From (7), (9) and (10) we deduce 

f ( P ) = r d y j qi ( y ., t ) d t + Joo d y j <f ( y ., t ) d t = 
a I a II 

Joo dy Jy OJ oo 
(11) y,(y,t 1 (u))t~(u)du + J dy j Cf(u,t2 (v))t~(v)dv= 

a m a y 

00 U 00 V 

= -f t~(u)du J cp(y.,t 1 (u))dy + f t~(v)dv / sP(y,t 2 (v))dy. 
a a a a 
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The integrations can be interchanged, as is justified in the 

following way. If t 1 E I. we have 

(12) / _p2(y2-a2)+(zy-t1)2j = ! t1-(zy+if /y2-a2)\\ t-(zy-ifjY2-a2)!?:

! zu-zy\ I 2p /y2 -a 2 I . 

We also have 

( 13) 

From (12) and (13) it follows that 

y(y) == Y/0 )<p(y,t 1 (u)) lt~(u)ldu~1~---::Y===.1--;::==1== 
cy+d\ y2+b2-a2 /2fz ✓y2-~2 

co 

1 
y 

e-pzu 
--- du. 

Vu-Y 

So there is a constant C (independent of y) with 

As cy+d/y 2+b2-a 2 ~db>0 if y~aJ and since a/0, p>O, z>OJ 

vve have 
co 

f yt(y)dy<co. 
a 

The integral over II can be handled with in the same way. 

I 
fig 2 Thei t-plane 

i 
I 

6 1 

If u ranges from a to co, 

t 1 (u) describes a contour w1 J 

which is the part of H above 

the real axis (fig.2). If 

t E: \J,1, the corresponding value 

of u will be given by 



( 1 ~-) u(t) = 

_4_ 

/2 2 2 tz-in Vt' -a R 

R2 

From now on we cut the t-plane along the real axis from -aR to 
I r, ') r 

aR, taldng \ t":-a'--Rc:' positive if t > aR. Similar>ly; if v ranges 

from a to CD, t 2 (v) describes a contour J the part of H under 
the real axis, and now 

t , /t2 2R2 
( ,.,,r:;) ·v(t) = z+if ~ -a (' 1 , ) 1 _,, - . , c t I' ✓ 2 • 

DL 
H 

Hence (11) can be written 

(16) J dt Ju(t) 
f(p) = -

vi 1 a 

J v(t) 
~(y,t)dy + dt j ~(y,t)dy. 

w 
2 a 

From now on y will also assume complex values, Let G1 be the 

region bounded by w1 and the part of the positive real axis 

fr om a z to oo . Let 

(17) g(t) = J cp(y,t)dy, 
H(t) 

first be definecl as follows foe t Co G1 • 

G1 is conformally mapped onto a region G~ of they-plane by 

y=u(t) ((14)). G~ is also bounded by the positive real axis, 

and a hyperbolic ar>c, which 

real axis t :> aR (fig.J). 

s' 

/ Cl,Z 1. 

T //Q ff \ 

/ \ 

/ 
\ 

// 
I ~' 
I ·-,.~ 

fig,3 ThJ y-plane '-....<_~ 

is the image of the part of the 

/ 2 . 2 2 , \ y +b -a lS defined in the 

follovdng ,,iay. 

I. If a < b, we cut the y-plane 

along the interval 
,.., r .. , / 1 2 2 • , /,.......b..,,,..2 --------:,:2 7 
,'J : L -~L V ,J -a , i v -a __ 

on the imaginary axis. 

II. If a> b, the real ax.is is 

cut along the interval 

T : [ -/a 2 -b 2 , ✓ a 2 -b2 ]. 
In both cases the square root is positive for lar>ge positive 

values of y, W(t) is a simple curve in they-plane. Starting 

in a, W(t) encircles u(t) in positive directionJ ending in a 

again without leaving G~. Evidently, if tis fixed in G1 , only 

the root u(t) of r 2 (y 2-a 2 )+(zy-t)2=0 is in G~. 
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On W(t) we define the function /f 2 (y 2 -a 2 )+(zy-t) 2 by 

analytic continuation, taking the value t-za at the starting

point y=a of W(t). If W(t) satisfies the above conditions, 

the integral on the right of (17) is independent of W(t), and 

g(t) is uniquely defined on G1 . One can easily prove that 

g(t) is analytic on G1 . In fact, g(t) can be analytically 

continued to the boundary of G1 , the point t=Ra being excluded. 

If tis fixed and t/Ra, the conformal mapping y=u(t) can be 
extended across the cut (-aR,aR), and the roots of 

p2 (y 2-a 2 )+(zy-t) 2=0 are separated. If u(t) is on the boundary 

of G~, we can take a contour W(t), which leaves G~ only in a 
small neighbourhooi of u(t), but for the rest satisfies the 
above conditions. In case II it may occur that u(t) s T; 
Jy 2+b2-a 2 then has to be continued analytically along W(t) 

across the cut T. 

Finally v1e need an estimate of !g(t)\ if tsG1 and t--:roo, It 
is not difficult to see that there exists a constant k > O so 

that 

( 18) y 

. / 2 2 2 cy+dVy +b -a 

We can deform W(t) into the line-segment 

(19) y =a+ (u(t) - a)s 

Then, ('17)., (18) and (19), 

(20) 
'1 

jg(t)\~: 2~k e-p:let J lu(t)-alds ~ 

, 0 Jia-u(t)j\ 1-sl\ a(1-s)+u(t)(1+s)-~I 

2pl -pHet 1/ 2 l t l + ~--e \-- a; 
TC . R 

if It\ is sufficiently large (1 is independent oft). 

If u(t) is on the real axis and > a 

u(t) 
g(t) = 2 f 1(y,t)dy, 

a 

which integral occurs in (16). This can be proved by deforming 

W(t) into the interval [a,u(t)J . therefore have 



T 
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( 21) J .. dt fu(t) f q,(y,t)dt == ½. 
w1 a w1 

g(t)dt. 

Now, by (20) and since g(t) is analytic in G1 we can replace 

w1 on the right of (21) by the contour v1 of fig,2. 
Hence 

(22) f u( t) 
dt J cp(y,t)dt =f 

V'T1 a V1 

u(t) 
dt f ~(y,t)dt, 

a 

The second term on the right of (16) can be transformed in 
exactly the same way, Hence 

J u(t) v(t) 
(23) f(p) :=;: -½ dt f cp(yJt)dy + ½ f dt J <;P(Y,t)dy. 

v1 a v2 a 

Adding the contours in they-plane, we either obtain 

s 

fig. 4 'rhe, y-.. pla ne f .5 They-plane 

a contour c 1 (fig.4) if az < t < aR, or a contour c2 (fig.5) 
j_f t > aR. Fr•om (23) it is clear, that the function 

(24) h( t) 1 J y dy 
= 2rr.:i ✓ 2 2 2 / 2 2 2 2 , 

C. (cy+d y-+b -a ) f (y -a )+(zy-t) 
l 

where i=1 if az < t < aR, i=2 if t > aR, satisfies (2). (Both 
roots in the denominator of the integ ra 1 a re > 0 j_f y=a) . A 

further discussion of the function h(t) can be found in§ 5 of 

report ZW 1959-010, and need not be repeated here, 




