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inversion problem for a special Tunction
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In report ZW 1959-010 the problem was how to find a function

h(t), such that the given function
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of h(t). In this report a differant method Tfor solving this
problem will be given,

We again assume that p,z,a, b,c,d are positive constants and
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Renlacing & by the new variable t
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we obtain
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where ¢(y,t) 1s defined by
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j Vzyriply-a? (7) is a linesegment L connect-
% f;/' ing zy-ipV yg—az and zy+ipV yaﬁg
% // ~ L (fig.1). If y varies from a to
] wx%;' zaé”“Zy“ _ ™, the points zy-ip} y°-a° and
P o zy+ip yL—a2 describe a branch

H of a hyperbola in the complex
t-plane. If y is fixed, the

function
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of ¥ has no singularities in the region G to the right of H,

and 1is O(e'pt) if t-—»co. We therefore have
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where the sign of V;E(y2—82)+(zy—t)2 has to be chosen in such
a way that the sguare root is asymptotically ecual to t if

t > @, teG. The contours T and II are parts of H as is shown
in fig.1, and have parametric representations
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From (7), (9) and (10) we deduce
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The integrations can be interchanged,
following way.
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If £, I we have
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as 1s Jjustified in the
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We also have

(13)

From (12) and (13) it follows that
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So there is a constant C (independent of y) with

v(y) ¢ C

we have
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As oy+d\/y2+b2—a2; db> 0 if y=

o

f y(y)dy < co.

a

a, and since a#0, p> O,

2.3/

z > O,

The integral over II can be handled with in the same way.
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fig.2 The

t-plane

If u ranges from a to oo,
tq(u) describes a contour ¥,
which is the part of H above
If

the corresponding value

the real axis (fig.2).
te»@w
of u will be given by
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From now on we cut the t-plane along the real axls from -aR to
aR, taking Vt2-22R°
from a to w, tg(v) describes a contour W,, the part of H under

positive if ©> aR. Similarly, if v ranges

the real axis, and now
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(15) v(t) = LEE ét -2 8 (teu,).
R
Hence (11) can be written
u(t) v (t)
(16) f(p) = - \f} ot | o (v,6)ay + [ dt] p(y,t)ay.
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From now on vy will also assume complex values, Let Gq be the

region bounded by W, and the part of the positive real axis
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from az to co . Let

(17) e(t) = | o(y,0)ay,
W(t)

first be defined as follows for te Gq.

G,1 is conformally mapped onto a region G|
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y=u(t) ((14)). G% is also bounded by the positive real axis,

and a hyperbolic arc, which 1s the image of the part of the

of the y-plane by

real axis t»>aR (fig.3).
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e following way.
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fig.3 The y-plane SO T :[ -Vac-b=, Va“-b=].

In both cases the scguare root 1s positive for large positive
values of y, W(t) is a simple curve in the y~plane., Starting
in a, W(t) encircles u(t) in positive direction, ending in a
again without leaving G, Evidently, 1f € is fixed in G

the root u(t) of ,2(y2-a®)+(zy-t)2=0 is in Gq’,

only
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On W(t) we define the function V}g(y2~82)+(zy—t)2 by
analytic continuation, taking the value t-za at the starting-
point y=a of W(t). If W(t) satisfies the above conditions,
the integral on the right of (17) is independent of W(t), and
g(t) is uniquely defined on G,. One can easily prove that

g(t) is analytic on G,. In fact, g(t) can be analytically

e

continued to the boundary of G the point t=Ra being excluded,
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If ¢ is fixed and t#Ra, the co;formal mapping y=u(t) can be
extended across the cut (-aR,aR), and the roots of
pe(y2—82)+(zy-t)2=o are separated. If u(t) is on the boundary
of G%, we can take a contour W(t), which leaves G% only in a
small neighbourhood of u(t), but for the rest satisfies the
above conditions. In case II it may occur that u(t)e T;

1Y) y2+b2_a2 then has to be continued analytically along W(t)

across the cut T,

Finally we need an estimate of |g(t)| if te G, and t—oo. It
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is not difficult to see that there exists a constant k> 0 so

that
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We can deform W(t) into the line-segment
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Then, (17), (18) and (19),
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it |t| is sufficiently large (1 is independent of ).

If u(t) is on the real axis and » a

u(t)
g(t) =2 [ ( ¢ (y,t)dy,
a

which integral occurs in (16). This can be proved by deforming
W(t) into the interval [a,u(t)] . We therefore have
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(2) [ at [ g(v.e)at = 5 [ g(e)at.
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Now, by (20) and since g(t) is analytic in G, we can replace
W, on the right of (21) by the contour v, of fig.2.
Hence
u(t)
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The second term on the right of (16) can be transformed in

exactly the same way. Hence
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Adding the contours in the y-plane, we eilther obtain
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fig.4 The y-plane

fig.5

The j—plane

a contour C, (fig.4) if az <t <aR, or a contour C, (fig.5)
if t»>aR. From (23) it is clear, that the function

(2%)  n(c) J 7 3y ,
2 i Cy (cy+dV/y +b° V} +(zy t)2

where i=1 if az <t <aR, i=2 i1f t > aR, satisfies (2). (Both
roots in the denominator of the integral are > 0O if y=a). A
further discussion of the function h(t) can be found in § 5 of
report ZW 1959-010, and need not be repeated here.






