2e BOERHAAVESTRAAT 49

- amsterdam-o.

Supplement to report ZW 1959-010, Solution of the Laplace inversion problem for a special function
by
A.H.M. Levelt

In report $Z W$ 1959-010 the problem was how to find a function $h(t)$, such that the given function

$$
\begin{equation*}
f(p)=\int_{0}^{\infty} \frac{e^{-2} \sqrt{x^{2}+a^{2} p^{2}} J_{0}(p x) x d x}{c \sqrt{x^{2}+a^{2} p^{2}+d \sqrt{x^{2}+b^{2} p^{2}}}} \tag{1}
\end{equation*}
$$

is the Laplace transform

$$
\begin{equation*}
P(p)=p \int_{0}^{\infty} e^{-p t} h(t) d t \tag{2}
\end{equation*}
$$

of $h(t)$. In this report a different method for solving this problem will be given.

We again assume that p, z, a, b, c, d are positive constants and that $a \neq 0$. We also put $\sqrt{p^{2}+z^{2}}=R$. Substituting $y=p-1 \sqrt{x^{2}+a^{2} p^{2}}$, we deduce from (1)

$$
\begin{equation*}
r(p)=p \int_{a}^{\infty} \frac{e^{-x y p} j_{0}\left(p o \sqrt{y^{2}-a^{2}}\right) y d y}{a y+a y^{2}+b^{2}-a^{2}} . \tag{3}
\end{equation*}
$$

By the well-known formula

$$
\begin{equation*}
J_{0}(x)=\frac{1}{\pi} \int_{-1}^{1} \frac{1 \times s}{\sqrt{1-s^{2}}} d s, \tag{4}
\end{equation*}
$$

we then have

$$
\begin{equation*}
f(p)=p \int_{a}^{\infty} \frac{e^{-z y p} y d y}{c y+d \sqrt{y^{2}+b^{2}-a^{2}}} \frac{1}{\pi} \int_{-1}^{1} \frac{e^{i s p p \sqrt{y^{2}-a^{2}}}}{\sqrt{1-s^{2}}} d s . \tag{5}
\end{equation*}
$$

Replacing s by the new variable t

$$
\begin{equation*}
t=z y-i \rho s \sqrt{y^{2}-a^{2}}, \tag{6}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
f(p)=\int_{a}^{\infty} d y \int_{L} \varphi(y, t) d t, \tag{7}
\end{equation*}
$$

where $\varphi(y, t)$ is defined by

$$
\begin{equation*}
\varphi(y, t)=\frac{p}{\pi i} \frac{y e^{-p t}}{\sqrt{p^{2}\left(y^{2}-a^{2}\right)+(z y-t)^{2}\left(c y+d \sqrt{\left.y^{2}+b^{2}-a^{2}\right)}\right.} ~ . ~ . ~} \tag{8}
\end{equation*}
$$

The t-integration contour in
(7) is a linesegment I connecting $z y$-ip $\sqrt{y^{2}-a^{2}}$ and $z y+i p \sqrt{y^{2}-a^{2}}$ (fie. 1). If y varies from a to ∞, the points zy-ip $\sqrt{\mathrm{y}^{2}-\mathrm{a}^{2}}$ and zytip $\sqrt{y^{2}-a^{2}}$ describe a branch H of a hyperbola in the complex t-plane. If y is fixed, the function
fig. 1 The t-plane

$$
\frac{e^{-p t}}{\sqrt{p^{2}\left(y^{2}-a^{2}\right)+(z y-t)^{2}}}
$$

of t has no singularities in the region G to the right of H, and is $O\left(e^{-p t}\right)$ if $t \rightarrow \infty$. We therefore have

$$
\begin{equation*}
\int_{I} \varphi(y, t) d t=\int_{I} \varphi(y, t) d t+\int_{I I} \varphi(y, t) d t, \tag{9}
\end{equation*}
$$

where the sign of $\sqrt{\rho^{2}\left(y^{2}-a^{2}\right)+(z y-t)^{2}}$ has to be chosen in such a way that the square root is asymptotically equal to t if $t \rightarrow \infty, t \in G$. The contours I and II are parts of H as is shown in fig.1, and have parametric representations

$$
\begin{align*}
& \text { I : } t=t_{1}(u)=z u+i \rho \sqrt{u^{2}-a^{2}}, \quad u \geqslant a ; \\
& \text { II : } t=t_{2}(v)=z v-i \rho \sqrt{v^{2}-a^{2}}, \quad v \geqslant a . \tag{10}
\end{align*}
$$

From (7), (9) and (10) we deduce

$$
f(p)=\int_{a}^{\infty} d y \int_{I} \varphi(y, t) d t+\int_{a}^{\infty} d y \int_{I I} \varphi(y, t) d t=
$$

$$
\begin{align*}
& \int_{a}^{\infty} d y \int_{\infty}^{y} \varphi\left(y, t_{1}(u)\right) t_{1}^{\prime}(u) d u+\int_{a}^{\infty} d y \int_{y}^{\infty} \varphi\left(u, t_{2}(v)\right) t_{2}^{\prime}(v) d v= \tag{11}\\
= & -\int_{a}^{\infty} t_{1}^{\prime}(u) d u \int_{a}^{u} \varphi\left(y, t_{1}(u)\right) d y+\int_{a}^{\infty} t_{2}^{\prime}(v) d v \int_{a}^{v} \varphi\left(y, t_{2}(v)\right) d y .
\end{align*}
$$

The integrations can be interchanged, as is justified in the following way. If $t_{1} \in I$ we have
(12) $\left|\rho^{2}\left(y^{2}-a^{2}\right)+\left(z y-t_{1}\right)^{2}\right|=\left|t_{1}-\left(z y+i \rho \sqrt{y^{2}-a^{2}}\right)\right|\left|t-\left(z y-i \rho \sqrt{y^{2}-a^{2}}\right)\right| \geqslant$ $|z u-z y| \mid 2 \rho \sqrt{y^{2}-a^{2}}$.

We also have
(13) $\quad\left|t_{1}^{\prime}(u)\right|=\left|z+\frac{i \rho u}{\sqrt{u^{2}-a^{2}}}\right| \leqslant z+\frac{\rho y}{\sqrt{y^{2}-a^{2}}}$.

From (12) and (13) it follows that

$$
\begin{gathered}
\psi(y)=\int_{y}^{\infty}\left|\varphi\left(y, t_{1}(u)\right)\right| t_{1}^{\prime}(u)\left|d u \leqslant\left|\frac{p}{\pi} \frac{y}{c y+d \sqrt{y^{2}+b^{2}-a^{2}}}\right| \frac{1}{\sqrt{2 \rho z \sqrt{y^{2}-a^{2}}}} \cdot\right. \\
\cdot\left(z+\frac{\rho y}{\sqrt{y^{2}-a^{2}}}\right) \int_{y}^{\infty} \frac{e^{-p z u}}{\sqrt{u-y}} d u .
\end{gathered}
$$

So there is a constant C (independent of y) with

$$
\psi(y) \leqslant c \frac{y^{2} e^{-p z y}}{\left(c y+d \sqrt{y^{2}+b^{2}-a^{2}}\right)\left(y^{2}-a^{2}\right)^{3 / 4}}
$$

As $c y+d \sqrt{y^{2}+b^{2}-a^{2}} \geqslant d b>0$ if $y \geqslant a$, and since $a \neq 0, p>0, z>0$, we have

$$
\int_{a}^{\infty} \psi(y) d y<\infty
$$

The integral over II can be handled with in the same way.

If u ranges from a to ∞, $t_{1}(u)$ describes a contour W_{1}, which is the part of H above the real axis (fig.2). If $t \in W_{1}$, the corresponding value of u will be given by

$$
\begin{equation*}
u(t)=\frac{t z-i \rho \sqrt{t^{2}-a^{2} R^{2}}}{R^{2}} \tag{14}
\end{equation*}
$$

From now on we cut the t-plane along the real axis from $-a R$ to $a R$, taking $\sqrt{t^{2}-a^{2} R^{2}}$ positive if $t>a R$. Similarly, if v ranges from a to $\infty, t_{2}(v)$ describes a contour W_{2}, the part of H under the real axis, and now

$$
\begin{equation*}
v(t)=\frac{t z+i \rho \sqrt{t^{2}-a^{2} R^{2}}}{R^{2}} \quad\left(t \in W_{2}\right) \tag{15}
\end{equation*}
$$

Hence (11) can be written

$$
\begin{equation*}
f(p)=-\int_{W_{1}} d t \int_{a}^{u(t)} \varphi(y, t) d y+\int_{W_{2}} d t \int_{a}^{v(t)} \varphi(y, t) d y \tag{16}
\end{equation*}
$$

From now on y will also assume complex values. Let G_{1} be the region bounded by W_{1} and the part of the positive real axis Irom az to ∞. Let

$$
\begin{equation*}
g(t)=\int_{W(t)} \varphi(y, t) d y, \tag{17}
\end{equation*}
$$

first be defined as follows for $t \in G_{1}$.
G_{1} is conformally mapped onto a region G_{1}^{1} of the $y-p l a n e$ by $y=u(t)((14)) \cdot G_{1}^{\prime}$ is also bounded by the positive real axis, and a hyperbolic arc, which is the image of the part of the real axis $t>a R(f i g .3)$.
$\sqrt{y^{2}+b^{2}-a^{2}}$ is defined in the following way.
I. If $a<b$, we cut the $y-p l a n e$ along the interval $S:\left[-i \sqrt{b^{2}-a^{2}}, i \sqrt{b^{2}-a^{2}}\right]$
on the imaginary axis.
II. If $a>b$, the real axis is cut along the interval
fig. 3 The y-plane $T:\left[-\sqrt{a^{2}-b^{2}}, \sqrt{a^{2}-b^{2}}\right]$.
In both cases the square root is positive for large positive values of $y . W(t)$ is a simple curve in the $y-p l a n e$. Starting in $a, W(t)$ encircles $u(t)$ in positive direction, ending in a again without leaving G_{1}^{1}. Evidently, if t is fixed in G_{1}, only the root $u(t)$ of $\rho^{2}\left(y^{2}-a^{2}\right)+(z y-t)^{2}=0$ is in G_{1}^{\prime}.

On $W(t)$ we define the function $\sqrt{\rho^{2}\left(y^{2}-a^{2}\right)+(z y-t)^{2}}$ by analytic continuation, taking the value t-za at the startingpoint $y=a$ of $W(t)$. If $W(t)$ satisfies the above conditions, the integral on the right of (17) is independent of $W(t)$, and $g(t)$ is uniquely defined on G_{1}. One can easily prove that $g(t)$ is analytic on G_{1}. In fact, $g(t)$ can be analytically continued to the boundary of G_{1}, the point $t=R a$ being excluded. If t is fixed and $t \neq R a$, the conformal mapping $y=u(t)$ can be extended across the cut (-aR,aR), and the roots of $p^{2}\left(y^{2}-a^{2}\right)+(z y-t)^{2}=0$ are separated. If $u(t)$ is on the boundary of G_{1}^{\prime}, we can take a contour $W(t)$, which leaves G_{1}^{\prime} only in a small neighbourhood of $u(t)$, but for the rest satisfies the above conditions. In case II it may occur that $u(t) \in \mathbb{T}$; $\sqrt{y^{2}+b^{2}-a^{2}}$ then has to be continued analytically along $W(t)$ across the cut T.

Finally we need an estimate of $|g(t)|$ if $t \in G_{1}$ and $t \rightarrow \infty$. It is not difficult to see that there exists a constant $k>0$ so that

$$
\begin{equation*}
\left|\frac{y}{c y+d \sqrt{y^{2}+b^{2}-a^{2}}}\right| \leqslant k \quad\left(y \in G_{1}^{1}\right) . \tag{18}
\end{equation*}
$$

We can deform $W(t)$ into the line-segment

$$
\begin{equation*}
y=a+(u(t)-a) s \quad(0 \leqslant s \leqslant 1) . \tag{19}
\end{equation*}
$$

Then, (17). (18) and (19),
(20) $|g(t)| \leqslant \frac{2 p k}{\pi} e^{-p R e t} \int_{0}^{1} \frac{|u(t)-a| d s}{\sqrt{|a-u(t)||1-s|\left|a(1-s)+u(t)(1+s)-\frac{2 t z}{R^{2}}\right|}} \leqslant$

$$
\leqslant \frac{2 p I}{\pi} e^{-p R e t} \sqrt{\frac{2|t|}{R}+a},
$$

if $|t|$ is sufficiently large (1 is independent of t). If $u(t)$ is on the real axis and $>a$

$$
g(t)=2 \int_{a}^{u(t)} \varphi(y, t) d y
$$

which integral occurs in (16). This can be proved by derorming $W(t)$ into the interval $[a, u(t)]$. We therefore have
(21) $\int_{W_{1}} d t \int_{a}^{u(t)} \varphi(y, t) d t=\frac{1}{2} \int_{W_{1}} g(t) d t$.

Now, by (20) and since $g(t)$ is analytic in G_{1} we can replace W_{1} on the right of (21) by the contour V_{1} of $f i g .2$. Hence
(22) $\int_{W_{1}} d t \int_{a}^{u(t)} \varphi(y, t) d t=\int_{V_{1}} d t \int_{a}^{u(t)} \varphi(y, t) d t$.

The second term on the right of (16) can be transformed in exactly the same way. Hence
(23) $f(p)=-\frac{1}{2} \int_{V_{1}} d t \int_{a}^{u(t)} \varphi(y, t) d y+\frac{1}{2} \int_{V_{2}} d t \int_{a}^{v(t)} \varphi(y, t) d y$.

Adding the contours in the y-plane, we either obtain

a contour $C_{1}(f i g .4)$ if $a z<t<a R$, or a contour C_{2} (fig.5) if $t>a R$. From (23) it is clear, that the function

$$
\begin{equation*}
h(t)=\frac{1}{2 \pi i} \int_{C_{i}} \frac{y d y}{\left(c y+d \sqrt{\left.y^{2}+b^{2}-a^{2}\right)} \sqrt{\rho^{2}\left(y^{2}-a^{2}\right)+(z y-t)^{2}}\right.}, \tag{24}
\end{equation*}
$$

where $i=1$ if $a z<t<a R$, $i=2$ if $t>a R$, satisfies (2). (Both roots in the denominator of the integral are >0 if $y=a$). A further discussion of the function $h(t)$ can be found in $\delta 5$ of report $Z W$ 1959-010, and need not be repeated here.

