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Uniqueness in the Cauchy Problem

Introduction,.

This article gives a sketch of the solution of a problem of
long standing, whose importance was indicated by Petrowsky in his
well-known "Lectures on Partial Differential Equations" at a time
when it was still unsolved. The problem is that of the uniqueness
of solutions of the Cauchy problem ("initial value problem") in
partial differential equations, uniqueness being sought in some

class of continuously differentiable functions, not just in the
class of analytic functions; uniqueness in this restricted class
can be trivially established. A solution was given recently

(A.P. Calderon, American Journal of Mathematics, 1958) relying

on singular integral operators in several variables. The real aim
of the present article is to indicate what these singular integral
operators (s.i. ops) are, and how they help in handling partial
differential cquations, at least from a theoretical point of view.
Singular integral operators are discussed first, followed by a
sketch of the context of the Cauchy problem, and finally a sketch
of the proof of uniqueness. Because of the scope of this under-
taking, the most that can be acileved 1s to make the results seem
credible - many details will be left out.

1. Background of singular integral operators in several

variables, and relevant theorems,

S.i. ops in several variables arose primarily in potential
theory, and this provides a good introduction. Let x=(x1,...,xk)
. 2 2
and y be points in B, x-y=(x,-¥,,...), | x| =Z:xj , and



Do

A=) gz/bx 2. Assume temporarily that k> 2, and define
Pf(x)ncJ” f(y) Ix-y(z'kdy, where the constant ¢ is chosen so

k
that - A Pf=_P Af= £. Ther 3 Pr/ox = [ 1 )S(X—ylz—k/éxjdy=(2—k)c-

ff(y (x -3 Y x-y] = K3y; the 51ngular1ty at y=x is still integraple,
and the prooess is easily justified if £ is a reasonably good
function. A second differentiation, however, leads to a non-
integrable singularity, one like \xuyl’k, so that differentiating
under the integral does not even make sense formally. Adopting

the viewpoint of the theory of distributions, however, leads one
to

2 :
1) 3°pf/ ox 3% = —(émn/lc)f(x)+€lino le~Yl>€ £(y)
gix-yig”k/éxm?xndy = Rmnf(x),

at least if £ is continuously differentiable and vanishes outside
a compact set. The operator Rmn is a typical example of a s.i.op.
It is easy to see how (1) leads to APf=-f, since Z:éelﬂ~y12'k/6xj2
=0. If we set f=- Ag, we get Pf=g, and >°g /0% dx_
=R . (-&)g. Thus ae/axmaxn is represented by a s.i,op. times
the canonical second order operator -A . (The minus is used to
make the operator positive: [(-Af)F>0.)

In order to obtain such a representation for operators of
arbitrary order, it is easiest to consider the situation with
f in L2, and use Fourier transforms. Let f(x)-£f(x) =
~i ix'yf(y)dy For " " in this context read "transform(s) into"

b Then it is well known that éfVSX —rix f(x), and
consequently -Af(x) — lx[ F(x). Since —PL:~ the identity, we
have Pf(x) -)§x1'2 f(x), and Rmnf( X)= BEPf/axmbxn-+(ixm)(ixn)|xf2f@J
i.e. the s.i.op. R corresponds to multiplication of the Fourler
transform by (ixm)( );x) 2. Comparing this, namely that
_(;mn/k)f(x)+lim cJﬂf ]x yt {/Qxhlaxndy-na(ixm)(ixn)‘x\ f(x),
with the formula for the transform of a convolution J’f(y)g(x—y)dyﬁ%
f(x)g(x), it is clear that in some sense the kernel
H(z)= (é /k)é( )+ca lzt2 1{/Bz az has the Fourier transform

ﬁ( )= (lZ )( )]zl . Here A'(z) 1s the Dirac '"delta function"
This transform can in fact be obtained as H(z)_—(é /k) +

lim 4 € T2 y(y)dy.
€—0 "€y k€
Observe that this transform is a) homogeneous of degree O,

-2

and is b) obtained on |z | = 1 by replacing S/QXm by iz , i.e. on
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2 times the characteristic form of

};l=1 it coincides with i
3 /exmaxn

These transforms suggest how to extend such a representation
to differential operators of any order. Define an operator /! by
A0(x) —1x1 8 (x); thus./12=—¢3 .We define R_ by Rmf(x)—aixm]XI_q?@J,
The same operator could be obtained in analogy with the previous |
Ron by R f=c’ 11m (y)S|X—y(1—k/medy, and is thus a
s.i.op. (To sed wgy‘%ﬁglkernel c! ;x-ytﬂ"k yields a square root of
the potential operator, consult e.g. Riesz: "L'Integralc de
Riemann-Liouville" in Acta Math., 1949). For representing dif-
ferentiation we have Esf/ax = R Af, and QJf/Sxmq...éxmv =

J - J _ d
R, - /” f = HAC. Ve know already that R and R = "R R

arg s.i. Jops so 1t 1s not surprising that Rm ...Rm is in general
such an operator. In fact we have: 1 J
Theorem 1. There i1s a one-one correspondence between the
functions (70(2) with tzﬂ(’/\z)z @(z) for >0, wece® in jz) v,
(p=0; and the functions w(z) with W(hz):lJ{W(z) for
'A><D}Zl: W in ¢ in jz]) 1, and‘f ¥ (z) = 0; given by
p(z) = i ({ o] < /C -iz.y w(y)d§. =1 1£ ¥ is derined for £

in LT by §F ,..._)270 ), then

e (x) = . “,,OJ]x~yl>E £(y) g (x-y)dy.

There is a similar correspondence if we drop the condition
of zero average., If q is homogeneous of degree zevo, i.e.
g&nz): y%z) for ?\)AO let ¢ (z a+h( ), where R has zero average
on {z] =1, Thon if he¢-h, one finds that 7H?e_af +
: ....._;ofix gy PU=YIE()ay.

The significance of the mean value zero is easy to see: by

virtue of this, th Lyl 21 h(x-y)dy=0, so we can write, for
JS. 2

differorclanls functions in L s/

/
L e PEIEWIAY =1y o5 4 b(x-y)E(y)dy

%X-y! € h(X“B’)[f(y)-f(X)]dy.

The use of Fourier transforms yields immediately that, if
]a+ﬁ |> €>0, then the operator H defined by Hf(x)=af(x) +
1.1 m‘fv vy € f(y)h(x-y)dy has a bounded inverse, whose norm is
in fact = 1/€&
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The operators considered so far might be called pure con-
volution s.i.ops. It i1s easy to see that their application in
partial differential equations is restricted to equations with
constant coefficients. However, an operator like
Xq Bef/éx 2+x232f/ax axo can be represented by

2 < e
[qu11+x Rqé]/4 (x) = & xq,ﬂ f(x)
+ 1l.i.m, ¢ ,42f(y) X 32/3x 2% Eg/ax 9%, Ix-y}2'kdy.

_ 1 1 2 1772 ‘
Jx-yl > €

This leads us to the notion: a C;O singular integral operator is any

of the form

(2) HE(x) = a(x) f(x) + 1.1 m.ﬂx > h(x,x-y)f(y)dy,

kémao
hix,z) for A>0, and in {z|>»1

h is in Cn with respect to x and c® with respect to z, and

N[ h(x,z) = 0.
|z }="1

In applications to differential operators, the c® is automa-
Ttlcally satisfied, and the Cn refers to the differentiability of
the coefficients of the cquation.

where a is in C_, h(x,rz)=

The action of M can no longer be described completely by a
Fouriler transform, but there is a partial substitute which has come
to be called the symbol: the symbol of the operator H in (2) is
&(H) = a(x) + ﬁ(x z), whers nix,z) = 11ﬂt[ 1e“iy’zh(x,y)dy is
the Fourier transform of hlx,z) with rcsoecéy‘<£ z.
2. Bvery Cgo function T(x,z) with F(x,2z)=F(x,z) for
A >0, is the symbol of o unicue C° operator H: F=g(H). If Ny is

n
.; and 1% derivatives of order 2k w1th

Theorem

the sup for |zi=1 of ¢ (&
respect to z, Lhon NH{ < C,. N5 C, is independent of H.

(The chorce of the derivatizes of order 2k is to glve an
estimate of the rate of convergence of the spherical harmonic
series for h.)

On the bhasis of tnisg theorem we define a special product
between s.i.ops by 5‘6{10 Hy) = 6(Hﬁ} J{HQ). The point of this is,
on the one hand, that Hﬂo H2 = H20H1, while qu H2 is a fairly good
approximaticn to HqHQ’ that 1is H2 followed by Hq. The sense in which
this holds is part of

Theorem 3. Let H
(qu H2

The p01nt here is that /f is a canonical first order differential
operator, and unhnuniad: but the difference between the unbounded

. L 00 )
4 and I2 be 62 s.i.ops. Then Hqﬂ ~/1H1 and

-H H ),ﬂ are bounded operators on L
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operators H1/I and A H,1 is bounded; while H,e Hy-H H, is more
than bounded, it is such a good operator that 1t removes the
the unboundedness of A . Such an operator can be called "smoothing",
and will often be denoted by S: thus HG = He G + S.
In order to describe the Cauchy problem, the following sym-

bolism is convenient. For x=(x "Xk) a point in k+1 space and

O,-a
o=(_ ,...,%x_) @ k+1 tuple of non-negative integers, set
lxl=ot e ootety, x° = x Pooax (3/3x) = (a/axq) e..

o

Lot | g % k
=3 /ax,| RPpRD ST

A linear partial differential equation of order N can then be
. o - s
written Lu = Uélg}f:N am(x)(a/ax) u = f(x). The characteristic

form of L 1is by definition (x)z“, i.e. the highest order

a
et =N "«
derivative symbols in L are replaced by new variables z=(zo,...,zk).
In connection with s.i.ops we have
Theorem 4., A differential operator L=} - N a“(x)(é/ax)“,
AN

, where H is the

with a_ in C., can be represented as L=H(1i
C§O s.i.op. whose symbol coincides on |z|=1 with the characteristic
form of L.

Theorems 1 to 4 give the facts for s.i.ops. that are used in

the uniqueness theorem.

2. The Cauchy problem, and a brief history of the uniqueness

question,
Now the Cauchy problem for a linear equation can be easily
stated. Given

i) an equation IN%%PJamﬂx)(a/éx)mu(x)zf(x)

ii) a surface j : ¢ (x) = O

iii) initial conditions: U and all its derivatives of order
<N are specified on } ;
given this, find U.
z: is called non-characteristic if this problem can

be reduced to the following standard form in new variables

(C,ns50ees9)0
3 /l J k N_/‘

1) 2 uAtT 1 3 s, @(e.y) (/)% (3/8y) ¢ U

O |pl+ngN
+ F(tJY) =0 . ( = ( A k))’
N N, & N-j Ne-j o)
or 3 U/at + ;Aj(t,y)a U/3t7TI4F=Q, w 'n A a differential
J= N\

N\,

N
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operator in the y variables of order j.
ii) S is t=0
1ii1) "U/at"™ is specified for n=0,7,...,N-1, and t=0.

The unigueness of solutions of CR in the class of analytic
functions is easy to see. For suppose all the data in CR are
analytic; then all the derivatives of U on 2: can be calculated
inductively from (iii), (i), and repeated differentiation of these
equations. On the other hand, if the original equation cannot be
solved for 2 U/at) in this way, it is easy to believe that
éNU/atN might not be determined.

Thus the question of uniqueness is posed for data given on a
non-characteristic surface by the given data.

It is easy to get the criterion for reducibility of C to CR.
Suppose, to this end, that new coordinates (t,y) are introduced so
that S becomes t=0. Then condition CR (iii) can be derived im-
mediately from C (1ii), and the only problem is to show that the
coefficient of 'aNU/gtN in the new version of C (i) does not
vanish, This coefficient is 1T am(x)(vt)OR , where
~t=(3t/éxo,...,3t/axk), and thus depends only on the normal to
t=0, 1i.e. the normal to Z: . Thus the condition for reducibility is
Oﬁi%iN ad(x)(vwr)d‘ Since reducibility depends only on the normal
to the surface, it is easy to see that the form to which C is
reduced need not give the data on t=0, but could just as well give
them on t=\yl2, for instance. We“will, in the proof, suppose the
data to be given on such a paraboloid.

Definition. A direction given by z=(zo,...,zk)¢0 is characteris-
tic for (c,i) if and only if ‘gféN ad(x)za=o, i.e. if z is a zero
of the characteristic form for (C,i), A surface Z:is characteristic
at x if and only if its normal at x is characteristic.

In the case of second order eguations, the characteristics are
gilven by the zeroces of quadratic forms, giving rise to the terms

elliptic, hyperbolic, and parabolic.
The question of uniqueness is complicatud by the distinction
between multiple and distinct characteristics. Consider the

characteristic form of (CR,i), i.é.

N
3) A + n:z_;‘ }Bl%:‘-N al’],(j (t537) 7\1’12

v N
= +)_ A Jpj(t,y;z), where p, is the
/“
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characteristic form of the Aj appearing in (CR,i). If for each
z#0 this has N distinct zeroes Aqs.e.s Ay, then one could say
that (CR,1) has distinct characteristics with respect to the
coordinate system (t,y). In this concept of distinctness, the
components of z are real, but the =a's may be complex. When the
roots A, are all real, they yield N distinct characteristic
directions in the plane through (t,y) containing the directions
(1,0,...,0) and (O,zq,...,zk). We say that (C,1) has distinct
characteristics if and only if for each coordinate system (t,y)
in which the equation has the form (CR,i), the roots A ey

are distinct,.

The result we wish to prove can now be stated.

Uniqueness theorem (Calderon).

Let L{(u)=f be a linear partial differential equation of
order N in k+1 variables, with coefficients of the highest order
terms real and in 02, and the others measurable and bounded.
If the characteristics of L are non-multiple, then the Cauchy
problem for L with data given on a non-characteristic manifold has
at most one solution of class CN (unless k=2 and N>3). The same
is true for non-linear equations, but unligueness is in C

n+2°
To set this in context, we list some previogs results on the

same topic.

Cauchy-Kowalewski: analytic equation, data, and surface,
equation not assumed linear, but surface non-characteristic for
the given data; then a unlque analytic solution exists.

Holmgren (1901): linear analytic equations; then solutions
are unique in CN.

Hadamard: the corresponding theorem for non-linear equations
can be reduced to the case of a linear equation with smooth but
not analytic coefficients.

Carleman (1939): Caldgron’s theorem for the special case of
two independent variables:

Myshkis (1947), Plis (1954), deGilorgi (1955): examples
showing lack of uniqueness with multiple characteristics.,

Hartman and Wintner (1955), E. Heinz (1955), Aronszajn (1956):
established Calderon's theorem for the case of elliptic equations;
and similar results for hyperbolic equations are well-known in
numerous papers and texts, e.g. Petrowsky.
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3. Outline of the uniqueness proof.

In the present sketch all coefficients of L are assumed
continuous. By considering the difference U between two proposed
solutions of the Cauchy problem and introducing an appropriate
change of independent variables, the problem can be posed as
follows.

Suppose a function u in C, is given and

1) Tu = »u/atY & % A.’auN'j/étN"j + B(u) = 0,
J=1

where A }dgl ) (3/3x) , the a, arc in C,, and B(u)
1nvolves derlvates of order =N, with continuous coefficlents;
and
1i) u and all its derivatives of order N vanish on t=}%x|
Then u vanishes l1ldentically for !x]2£1sﬁkh for some h> 0.
From the given data, it follows that the Nth derivatives of U
vanish on t=]x}2, 50 we can assume u 1s zero for t <]X)2. Thus the
coefficients of the Aj may be modified at will there. We assume
that this is done in such a way that they remain CE’ and that their
oscillations in O £t £€h (for all x) can be made arbitrarily small
by making h small. We could, e.g. give them the values in
t slxxz— 3 that they have for t=x=0, and interpolate in a C, way
along the lines x=constant. i
Now the Aj can be represented as Aszj(t)(%ﬁ)J, whgre A
operates only on the x coordinates (thus -A“=5 3 /‘axj ), and
for each fixed T H,(t) is a 2’ s.i. op. of the form
{Hj(t)f](t, x)=a(t,x)f(t,x)+ 1.1. m}_X[ yi £(t,y)n(t,%,x-y)dy.
Here h(t,x,z) is C, in t and x and ¢® in z, for jz)>1.
Considering ) aN"ju/atN"j as a function in L° on the hyper-
plane t=constant, with NUN2 i[ »[U(t,x)lg dx, we can write (i) as
N LI
aNu/atN +;Hj(i/\)‘j B\N”Ju/atN“J = -B(u).

Written in this form the equation looks like an ordinary differential
equation in t, and it can be reduced to a first order system in much
the same way. Let vj(t) = (i/\ﬂLﬂjaj'qu/atj"q, and v= Evﬂ,...,vﬁ].
Then we have the system

v, /3t - :L/\v2 =0
sz/at-i/\v3 =0

HN:’L/\V,]+... + (BVN/atﬁ-H,li\/\vn) = -B(u).
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2 > & 2
We think of v in an L space of with ||V|I© = Z:nvju )
/}

O “I O.....O

0 0 -I 0..0

Introducing d(t) = and

w(t) = [OJO,...,—B(u)}, the equation becomes
LYy sv/at +&(t)iNAv = w(t),

wherein H 1s a bounded operator on <.

The algebraic side of the proof consists in reducing (4) as nearly
as possible to a diagonal form. The mefthod consists in diagonalizing
the (matrix) symbol of the operator  exactly; this yields an

approximate diagonalization of & itself. By o (H) we mean
o -1 0 ... O

0 -1 . Since H_(1A\)J = A, we have
U(HN)........ g(Hq) . J J
¢(Hj) = *pJ,(t,X,z){z]"J = the characteristic form of A, on {z|=1.
To dlagonalize 0 () we look for the eigenvalues of -o{#), i.e.
the roots of det [AI+ T(@#)] =

n s 7\N’/'p,i(t,x,z)]z]"1+...+pN(t,X’Z)]Z]_N, which

is seen to be the characteristic form of L, for |z)]=1. Since the
characteristics of L are assumed distinct, the roots mj are all
distinct, and there 1s a diagonalizing matrix N such that
No(#)¥~ =D, a diagonal matrix whose diagonal entries are the
roots 21,..0,'AN. An important question is whether N can be made
a continuous function of t,x, and z for 0€t£h and |z|=1.
Topological difficulties in achieving this account for the ex-
ceptional case of three independent variables - in this case the
set }jz} > 1 1s the outside of a circle in the plane, and it is often
impossible to extend functions that are locally defined to all of
this doubly connected region. We will talie for granted that the
diagonalizing matrix N(%t,x,z) can be made a continuous function of
t,X,z in the non-exceptional cases, wherc the space jz|>1 is simply
connected. Let N_(z) = N(0,0,z). Then by considering Fourler
transforms, as in Theorem 1, 1t is easy to see that the operator
M, with symbol N has ag inverse which we denote by'ﬁ%'q, and whose
symbol we ‘“enote by NO .

Now for O<t%h the entries in N(%t,x,z), and their derivatives
of order 2k with respect to z, differ by an arbitrarily small
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amount from those in No(z). Hence, by Theorem 2, the operator
M with symbol N differs in norm from.?% by very little, and is
invertible.

To see to what extent M diagonalizes (4), consider
5) N(ev/at) +RHLNAv =Nw,

and the expression we should approximate by diagonalizing the
left side,
d(Nv)/pt + iy,

where ¢ (9)=D. e have
2Mv) /3t =Mav/ 3t + (3N/at)v,

where 3N/ 3t is the operator with symbol 3N(t,x,z)/2t, thus
a ¢° operator. Further, i AN =DNi A+ 1D AN-MA)
A Ve

1
(Ron)i N+ Fint B
oy’
Mo)i N+ B3
=NELA+ L i\ B
———
=n#i N+ B",

where J denotes a smoothing and /8 a bounded operator onel .
This rests on Theorem 3, extended to matrices of s.i.ops. Thus
(5) becomes

(6) aNv/a3t +ViN\nv =
Nav/at + (3N/3t)v +N#LNAv + B'v
=Nw + B Nnv,

where B''' = (3N/3t +B" )7’271 is bounded.

Now it is time for concrete estimates. The desired con-
clusion (u=0 for 0%t ¢h) is based on the following two
estimates, whose proof will not be considered,

Lemma 1. Let u(t,x) be in Cq in t and x, and let u and its first
derivatives be in L° (X) for each fixed t in 0%t <h. Let P(%)
and Q(t) be s.i.ops. such that v(P):Fq(t,sz) and o (Q) = Fg(t,x,z)

00

are real, and in C5 in |z| =z 1. (i.e. C, in t and x and C_, in

z). Assume P(t) has a 2-sided inverse for each t, or is zero
for each t; and let @ (%) = (t+1/n)™". If u(0)=0, and

h
JC; ¢n2 lau/at + (P+iQ)Au |l %at

h
Sc'g @ 2 Jlulfat



.

for some ¢ and arbitrarily large n, then u(t)=0 in a neighbour-
hood 02t ¢ d of t=0.

The role of ¢ here can be loosely described as that of a
d-function at the origin. If it were normalized so thatV{ gé
then we would have @ _(0)— o, ¢ _(t)—0 for t >0.

Lemma 2. Let u(t,x) be in C, in t and x, and u and its first
derivatives in L2(X) for each t. Then

h
f B,% /st P2 nf(1m) 72 [ % nul®

o)
It is clear that the conclusion of Lemma 1 is of the right
sort. To apply it to (6), one ﬁust first estimatel]w“2 =
o )
_élBulL dx in terms of “V“2 =:z:ﬁv1‘dx. We have
k

Bu= J_ A, /\J alu/atl with A, a ¢® operator, and hence
14jeN 97 J o
IBuli®ge  2_ I35 (AJu)/atly 2. since
1+j<N
n 2
fo Cﬁ lullcat £ (1+n) ‘cf (]5 l3u/atlj<dt, we get

h

'g ¢n I]Bulf_dtﬁc 2: ‘é ®n “al(/\ju)/gtl“ 24t

f ? 3 IV A T s eN-I-T ) 29

l+J<N
N h o o r h >
sc';g B vl at = e!f @ “lvi®a

Since')‘l,_/l is bounded we have also

j @ _Zwp® <cj B % v ) “at. From (6) we get
(7) f Q5 Hanv/At + DiANY ) © “at
<c"j 0,5 (1w 1mv ) at
cont [ 8,2 1o ?

Indicate the N components of Av by [Vq,...ij] . Then there is
an index J such that

h h )
(&) [ 6,7 vy dt>§z j B2 U, 2=-§£ 8.2 Imv ) 2,

for infinitely many n.
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Noting that - . is diagonal, and considering the
0 °D
N

jth components, we get

f B,° Nav . /ot + D AN || Bt ﬁjh §_° |onv/>64@1 A || Bat
c'”j @7 v Pat <Nc“'f 3.° vl Zat,

Tor insinitely nnay n, in view of (7) and (8). This is quite close
to the form of Lemma 1. To check the requirements for P and @, note
that U(D ) = A ’L %x,z) is one of the characteristic roots of L.
Since th@ copfiL01en 5 of highest order terms of L are real, the

compler A come 1n conjugate pairs. Since they never coincide,

the ﬂmcu~gary part cof a complex A _(t,x,z) can vanish for no (t,x,z).
Thus the real part of r(iDJ) either vanishes identically, or
vanishes never. IProm this we can derive that the P in iDj=P+iQ has
the propertics required in Lemma 2. The necessary invertibility
follows &g “the invertibility of 7 did. Thus VJ=O for 0%t ¢4, and
by (7)72v=0, and 30 u=0, for 0 ¢t < d.

Thig cconcludes the proof for a single equation, For a system,

the tepologzcal details (construction of A.) are more difficult,
and lead To othecr exceptional cases. The feeling is that these
restrictiony are in2scential, while the distinctness of characteris-
tics 1s ennenvial,



