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This article gives a sketch of the solution of a problem of 
long standing; whose importance was indicated by Petrowsky in his 
well-known "Lectures on Partial Differential Equations" at a time 

when it was still unsolved. The problem is that of the uniqueness 
of solutions of the Cauchy problem ( "initial value problem 11 ) in 

partial differential equations; uniqueness being sought in some 

class of continuously differentiable functions) not just in the 
class of analytic functions; uniqueness in this restricted class 

can be trivially established. A solution was given recently 

(A.P. Calderon, American Journal of Mathematics, 1958) relying 
on singular integral operators in several variables. The real aim 

of the present article is to indicate what these singular integral 
operators (s.i. ops) are, and how they help in handling partial 

differential equations, at least from a theoretical point of view. 

Singular integral operators are discussed first, followed by a 

sketch of the context of the Cauchy problem, and finally a sketch 

of the proof of uniqueness. Because of the scope of this under­

taking.,, the most that can be acieved is to mal<e the results seem 
credible - many details will be left out. 

1. Background of singular integral operators in several 

variables, and relevant theorems. 

S.i. ops in several variables arose primarily in potential 
theory, and this provides a good introduction. Let X=(x1 , ... ,xk) 

and y be points in Ek., x-y=(x 1 -y1 , ... ), I xl 2=[.xj2 , and 
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2 2 A =L. d /ax j • Assume tempera rily that k > 2, and define 
Pf(x)=cJ f(y) jx-yl 2-kdy, where the constant c is chosen so 

E 
, le . 2 k 
that -~Pf=-Pllf=f. Then dPf/dxj=cff(y)dlx-yl - /dxjdy=(2-k)c. 
fr(y)(xj-yj)lx-yj -kdy; the singularity at y=x is still integraple, 

and the process is easily justified if f is a reasonably good 

function. A second differentiation, however, leads to a non­
integrable singularity, one like \ x-yl -le, so that differentiating 

under the integral does not even make sense formally. Adopting 

the viewpoint of the theory of distributions, however, leads one 

to 
1) d2Pf/ dX dX = -(J /lc)f(x)+lim J1 I r f(y) 

m n mn t ~O x-y >i::. 

~2 jx-yl 2-k /~xm~xndy = Rmnf (x), 

at least if f is continuously differentiable and vanishes outside 

a compact set. The operator R is a typical example of a s.i.op. 
mn - , 2 · 2-k; 2 

It is easy to see how ( 1) leads to A Pf=-f., since L c, l:xt-y\ ~x j 

=0. If we set f=- Ag., we get Pf=g, and a2g/oxmdxn 

= Rmn (-o)g. Thus d 2 /dxmaxn is represented by a s.i.op. times 
the canonical second order operator - D.. (The minus is used to 

make the operator positive: f(-.6.f)"f~O.) 

In order to obtain such a representation for operators of 

arbitrary order., it is easiest to consider the situation with 

f in L2 , and use Fourier transforms. Let f (x) _J f (x) = 
=..[_ e-ix-yf(y)dy. For 11 ------> 11 in this context rea~ "transform(s) into 11 • 

1 '' 1~ Then it is well known that ~f/~x ----+ix f(x), and 
2 A m m 

consequently -~ f(x)----+ lxl f(x). Since -P.O.= the identity, we 

have Pf(x)----¾ Jx1-2r(x), and R f(x)= d 2Pf/dx dX ~(ixm)(ixn)lx~f(x); mn m n 
i.e. the s.i.op. ~n corresponds to multiplication of the Fourier 

transform by (ix )(ix )\x\-2 • Comparing this, namely that 
m n 2 2-k -2A 

-(Jmn/k)f(x)-1-lim cff(y) d jx-yJ /Jxm axndy--;;(ixm)(ixn)\x\ f(x), 
~ith ... the formula for the transform of a convolution j f(y)g(x-y)dy~ 
f(x)g(x), it is clear that in some sense the kernel 

H(z)=-(d n/l-c)J(z)-1-c;l1 z/ 2-k;az az has the Fourier transform 
A m 2 m n 
H(z)=(iz )(iz )jz[-. Here J (z) is the Dirac 11 delta function 11 • m n ft 

This transform can in fact be obtained as H(z)=-(J /k) + 
-iy .z mn 

l im j _ 1 e H ( y ) d y • 
€-W £<1Yl<t 

Observe that this transform 

and is b) obtained on \z} = 1 by 

is a) homogeneous of degree O, 

replacing ~/~x by iz, i.e. on m m 
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}zl=1 it coincides with i 2 times the characteristic form of 

·~P /ax dX • m n 

These transforms suggest how to extend such a representation 

to differential operators of any order. Define an operator /1. by 

/lf(x)-}]xjf(x); thus/1 2=-b. .We define R by R f(x)-4ix lX\-1f(x) .. m m m 
The same operator could be obtained in analogy with the previous 

Rnm by R f=C I lim f f(y)ajx-y , 1 -k/dx dyJ and is thus a 
, m G---jn Ix vl>f 1-k m 

s . i. op. ( To see wny -chi:'; kerne 1 c I jX-YI yields a square root of 

the potential operator J consult e.g. Riesz: '1L I Integralc de 

Riem;::i rrn-Liouville 11 in Ac ta Ma th., '1949) . For representing dif-

ferentiation we have d f/dx == R /lf J and djf/dx ... clx = 
. . m m m1 mJ 

Rm ... H /l Jr = H/J Jr. We lrnow already that R and R = R R 
,1 :i:n. . m nm m n 

are s.i.JopsJ so it is not surprising that R ... R io in general m1 m. 
such an operator. In fact we have: J 

Theor2m 1. There is a one-one correspondence between the 

functions (f(z) with 1f(11z)= 'f(z) for 7'\>0., lf€.Cco in }zj )1; 

andf Lf=O; and the functions if(z) with r.p(7\z)=A-klf(z) for 

7'> 0; 2 1=1 If in c00 in/ zj? '1; andf f (z) = O;; 13iven by 
() 1 , 1( --iz.y ( )dlzl == 1 1n,T1 · d r· d f f .lf z 2 = . i~~:_!_(S<l:rl < ,1/6',,_ c: 'f y y. 1 r is e ine or 

in L by 1f .,._-( x) --1 y(x)f(x), then 

f(y) y;(x-y)dy. 

There is a similar correspondence if we drop the condition 

of zero aver2ge. If~ is homogeneous of degree zero, i.e. 
/\ " 'f(-,.,.z)= 'f(z) for- 7\) O, let y,(z)=a+h(zL where h has zero average 

A A 
on j z ! '"~'\, n,,n ~ .. f h ,f--h., one finds that ff t-af + 

1 • :1. • m • f 1,, I r h ( x - y ) f ( y ) d y . 
£ ~o ,A-Y >c 

ThR significance of the mean value zero is easy to see: by 

virtue of this; r/'. Iv I _,; ;I h(x-y)dy=O; so 1/Je can write, for 
J I:;. < 1 ''" - y <.. 2 

d :Lf f 0 ,~,::-·. ~ --'-':., :. :. f\.,1,G t :Lons in L J , 
I 

/ 
l.i.mfix-yl>G h(x-y)f(y)d.y =fix-yl > 1 h(x-y)f(y)dy 

-ifix _ y I < '1 h ( x -y ) [ f ( y ) - f ( x ) ] d y • 

'I'he use of' Four-ier transforms yields immediately that; if 
-'lo 

/s+h )2: € >O; then the operator H clefined by Hf(x)=af(x) + 
1. i .m ·fix-y/ > 6 f ( y )h ( x-y) dy has a bounded inve rsc, whose norm is 
in fact <. 1; G. • 
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The operators considered so far might be called pure con­

volution s.i.ops. It is easy to see that their application in 

partial differential equations is restricted to equations with 

constant coefficients. However, an operator like 
2 2 2 x1 d f/dx 1 +x2a f/~x 1ox2 can be represented by 

(x1R11+x2R12J /12f(x) = k~1x1 /J2f(x) 

+ l.i.m. cf /l2f(y)[x1c?/ax,/+x2il/dX1dx2]lx-yj 2-~dy~ 
lx-yl >f 

This leads us to the notlon: a Ceo singular integral operiator is any 
n 

of the form 

(2) Hf(x) = a(x) f'(x) + l.i.mf1 I € h(x,x-y)f(y)dy, 
( ~o] ix-y > 

wherie a is in en, h(x,7iz)= A-kh(x~z) for 7'> O., and in lzl > 1 

h is in C with :.•espect to x and C CD with riespect to z, and n 
( h(x,z) = 0 . 

.J1z 1=1 
In applications to d j_ffe:C"entia 1 operators., the C 00 :!,s automa-

tically satisfied, and thA en refers to the differentiability of 

the coefficients of the equation. 

The action of H ca1; no lone;er be: described completely by a 

Fourier transform, but t~1e::-e j_3 a partial substitute which has come 

to be called t~e symbol: the ~ymbol of tho operator Hin (2) is 

G"(H) = a(x) + h(x,z), wher3 ti(x,z) = limf. 1e-iy.zh(x,y)dy is 

the Fourier trarn:if'orm of h(x,z) with respf/t!Y 1t~-z. 

Theorem 2. Every C~ function F(x,z) with F(xJ°7'1z)=F(x,z) for 

7' > O, is the symbol ')f 2 1mic:ue Ceo operator H: F=G"'(H). If NH is n 
the sup for I zl 0=1 of o U;.) anc1 i'-;o derivatives of order 2k with 

respect to z, 'chc:;n !IHI! S Ck NH; Ck ~-G independent of H. 

(The choice of the derivati7es of order 2k is to give an 

estimate' of the r·ate of converr;::;11Ce of the spherical harmonic 

series for h.) 

On the bar:,,i.s of ~i1~.2 theorem we define a special product 

between s. i. ops by 6'" (H1 ° H2 ) = t?"(H1 ) O"""(H2 ). The point of this is, 

on the one hand, that H1 ° H2 = H2<>H1 , while H1 o H2 i • a fairly good 

approximation to H1H2 , that 1s H2 followed by H1 • The sense in which 

this holds is part of 

Theorem 3. Let H1 nnd E2 be C~c, s.i.ops. Then H1;1-/lH1 and 

(H1 (\ H2 -H,1H2 ) /1 a re bounded operators on L 2 

The point here is that /i is a canonical first order differential 

operator, and unbn11n'"1 ~rl: bt<t the difference between the unbounded 
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operator-s H1/l and/\ H1 is bounded; v,ihile H1 o H2-H 1H2 is more 

than bounded, it is such a good operator that it removes the 

the unboundedness of . Such an operator can e ca e smoo ing, /I b 11 d 11 th_, 11 

and will often be denoted by S: thus HG = Ho G + S. 

In order to describe the Cauchy problem, the following sym­

bolism is convenient. For x=(x ~ •.. .,,x1 ) a point in k+1 space and 
0 { 

0<=(0<0 , .•• )e<l ) a k+1 tuple of non-negative integers, set 
• { QI. t>l-0 °'!{ / ()\ /. ) Ol.1 

jo<{==cxo+ .•• +P{k' x = XO ••• xk , (d dX) = (a ~x1 ••• 

\o<I 0(.1 °'k 
=d /dx1 •.• ;)xk. 

A linear partial differential equation of order N can then be 

written Lu= u~l~=:N a°'(x)(ei/dx) 0
\ = f(x). '.Vhe characteristic 

form of Lis by definition 1TN a (x)z0\ i.e. the highest order cx.T=I 0( 

derivative symbols in Lare replaced by new variables z=(z 0 , ••• ,zk). 
In connection with s.i.ops we have 

Theorem 4. A differential operator L=l~=N ao<(x) (d/ax)Oi, 

with aor. in CN, can be represented as L=H( i A ) N, where H is the 

c~0 s.i.op. whose symbol coincides on jz\=1 with the characteristic 

form of L. 

Theorems 1 to 4 give the facts for s.i.ops. that are used in 

the uniqueness theorem. 

2. The Cauchy problem:, and a brief history of the uniqueness 

question. 

Now the Cauchy problem for a linear equation can be easily 

stated. Given 

i) an equation jc<tiN alX(x)(d/clx)0\1(x)=f(x) 

ii) a surface L: cr(x) - O 

iii) initial conditions: U and all its derivatives of order 

<:N are specifled on L; 
given this, find U. 

L is called non-characteristic if this problem can 

be reduced to the following standard form in new variables 

(t,y 1 , ... ;Yk): 

i) c u/~tn+ 
N-1 
L L an {J (t.?y)("d/~t)n(d/dy)'1 U 
O l (3, I +n ~ N ' 

+ F(t:;y) = 0 ··. ( = ( 1 , ..• :, k)), 
N N ' N ' ' 
ZAj(t,y) a -Ju/dt -J+F='Q/ w '.•1 AJ. a differential 
J=1 \ 

\ 
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operator in they variables of order j. 

ii) Sis t=O 
l, i· 1· ) -:-.. nu/":\. t n is f , d f 1 d ., 9 speci ie or n=O,', ... ,N-1, an t=O. 

The uniqueness of solutions of CR in the class of analytic 
functions is easy to see. For suppose all the data in CR are 

analytic; then all the derivatives of U on L can be calculated 
inductively from (iii), (i), and repeated differentiation of these 
equations. On the other hand, if the original equation cannot be 
salved for dNU/~tN in this way, it is easy to believe that 

·lu/otN might not be determined. 

Thus the question of uniqueness is posed for data given on a 
non-characteristic surface by the given data. 

It is easy to get the criterion for reducibil1ty of C to CR. 
Suppose, to this end, that new coordinates (t,y) are introduced so 

that S becomes t=O. Then condition CR (iii) can be derived im­
mediately from C (iii), and the only problem is to show that the 
coefficient of dNU/dtN in the new version of C (i) does not 

vanish. This coef fie ient is je1.~N a°' ( x) (tit)°' ;; where 
t==('ot/ax 0 , ••• , c3t/dxk);, and thus depends only on the normal to 

t=O, i.e. the normal to [.. Thus the condition for reducibility is 

Ofc,1.F=N ae((x) ('7(T)o<-.. Since reducibility depends only on the normal 
to the surfaceJ it is easy to see that the for·m to which C is 
reduced need not give the data on t=O, but could just as well give 

them on t= I y 12 , for instance. We 11 will J in the proof, suppose the 

data to be given on such a paraboloid. 
Definition. A direction given by z=(z 0 , ••• ,zk)~O is characteris­

tic for (c,i) if and only if )cx~N a°'(x)ze1.=0.i i.e. if z is a zero 
of the characteristic form for '(c,i). A surface L,is characteristic 

at x if and only if its normal at x is characteristic. 

In the case of second order equations, the characteristics are 

given by the zeroes of quadratic forms, givinr; rise to the terms 

elliptic, hyperbolic., and parabolic. 
The question of uniqueness i~ complicat~d by the distinction 

between multiple and distinct characteristics. Consider the 

characteristic form of (CR;;i), i.~. 
) N N-1 L. ( ) n 

3 A + nk l@l+n~N an,@ t,y "7\ z 

N N N . 
= 7- + L 7\ -JP .(t,y;z), where p.,, is the 

1 J J 
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characteristic form of the Aj appearing in (CRJi). If for each 
z:,60 this has N distinct zeroes :;\ 1 , ... , 11 NJ then one could say 
that (CR,i) has distinct characteristics with respect to the 
coordinate system (t,y). In this concept of distinctness, the 
components of z are real, but the ~'s may be complex. When the 
roots ~j are all real, they yield N distinct character1stic 
directions in the plane through (t,y) containing the directions 
(1,0, ... ,o) and (o,z1, ... ,zk). We say that (C,i) has distinct 
characterist;cs if and only if for each coordinate system (t,y) 
in which the equation has the form (CR,i), the roots 7'. 1 , ... ,AN 

a re distinct. 
The result we wish to prove can now be stated. 

Uniqueness theorem (Calderon). 
Let L(u)=f be a linear partial differential equation of 

order Nin k+1 variables, with coefficients of the highest order 
terms real and in c2 , and the others measurable and bounded. 
If the characteristics of Lare non-multiple, then the Cauchy 
problem for L with data given on a non-characteristic manifold has 
at most one solution of class CN ( unless k=2 and N > 3) • The same 
is true for non-linear equationsJ but uniqueness is in Cn+2 . 

To set this in context, we list some previo~s results on the 
same topic. 

Cauchy-Kowalewski: analytic equation, data, and surface, 
equation not assumed linear, but surface non-characteristic for 
the given data; then a unique analytic solution exists. 

Holmgren (1901): linear analytic equations; then solutions 
are unique in CN. 

Hadamard: the corresponding theorem for non-linear equations 
can be reduced to the case of a linear equation with smooth but 
not analytic coefficients. 

Carleman (1939): Calderon's theorem for the special case of 
,1 

two independent variables. 
Myshkis ( 1947), Plis ( 1954), de Giorgi ( 1955): examples 

showing lack of uniqueness with multiple characteristics. 
Hartman and Wintner (1955), E. Heinz (1955), Aronszajn (1956): 

established Calderon's theorem for the case of elliptic equations; 
and similar results for hyperbolic equations are well-known in 
numerous papers and texts, e.g. Petrowsky. 
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3. Outline of the uniqueness proof. 
In the present sketch all coefficients of Lare assumed 

continuous. By considering the difference U between two proposed 
solutions of the Cauchy problem atid introducing an appropriate 
change of independent variables, the problem can be posed as 
follows. 

Suppose a function u in CN is given and 
i) Lu = ~Nu/dtN + t. A. ·duN-j /dtN-j + B(u) = O, 

j=1 J 

where Aj = ld-.~j acx.(tJx)(a/'ilx)°", the a0t. arc in c2 , and B(u) 
involves derivates of order <N, with continuous coefficients., 
and 

ii) u and all its derivatives of order ...:::::N vanish on t=\x1 2 • 

Then u vanishes identically for fxj 2 :St:::.h, for some h> O. 
From the given data, it follows that ths Nth derivatives of U 

vanish on t=lxl 2 , so we can assume u is zero fort ~lx\ 2 • Thus the 
coefficients of the A, may be modified at will there. We assume 

J 
that this is done in such a way that they remain c2 , and that their 
oscillations in O ~t ~h (for all x) can be made arbitrarily small 
by making h small. We could, e.g. give them the values in 

t ~1x1 2 - J that they have for t=x=O, and interpolate in a c 2 way 

along the lines x=constant. 
Now the A. can be represented as A.=H.(t)(i~)j, where/\ 

J J J 2 k 2 2 
operates only on the x coordinates ( thus -./l = ~ e.1 /ax j ) , and 
for each fixed "C H . ( t) is a C 200 s. i. op. of the form 

J . 

[H.(t)f](t,x)=a(t,x)f(t,x)+ 1.1.m.f f(t,y)h(tJx,x-y)dy. 
J lx-yl>E. 

Here h(t.11x,z) is c2 in t and x _and c 00 in z, for I z I> 1. 

Considering aN-ju/dtN-J as a function in 1 2 on the hyper-

plane t=constant, with 11u112 =j -!U(t,x)l 2 dx, we can write (i) as 
E 

N N N j N _k J . 
ti u/at +L_H.(i/\) 0 -Ju/at -J = -B(u). 

1 J 

Written in this form the equation looks like an ordinary differential 
equation int, and it can be reduced to a first order system in much 
the same way. Let v/t) = (iA)N-j~j- 1u/~tj-1 , and v= (v1 , ••• ,vN]· 
Then we have the system 

av 1/~t - 1 Av 2 = o 
',. dV 2/ot-i f\ V 3 = 0 
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2 ° N 2 We thinh: of Vin an L space:! with }lvlt =L.llv.u. 

(0 -I o •••.. O) 
Intr>oducingi1e(t) == O O -I O .. O and 

O ........• ,0-I 
HN •.•. , . , ••.• H1 

1 J 

w(t) = [0,0 1 ••• ,-B(u)], the equation becomes 

l~) -av/at +cle(t)i/\v = w(t), 

wherein H is a bounded operator on :i . 
The algebraic side of the proof consists in reducing (4) as nearly 

as possible to a diagonal form. The method consists in diagonalizing 

the (matrix) symbol of the operator'£ exactly; this yields an 

approximate diagonalization of ;le itself. By er (d't,) we mean 

( 
~ -1 0 . • . 0 ) 

0 -'1 • Since H .. (i/\)j ==A, we have 
IT( HN) •.• , • • • • o-( H 1 ) , J J 

cr(Hj) = pj(t,x,z)/zl-J = the characteristic form of A. on \z1=1. 
To diagonalize 0-(~ we look for the eigenvalues of -~X}, i.e. 

the r•oots of det [111+ er~)]= 

N N-1 ( ) -1 ( ) -N J\ + 7\ p1 t,x.1z l zj + ... +pN t,x,z I z I , which 

is seen to be the characteristic form of L, for IZl=1. Since the 

characteristics of L are assumed clistinct, the roots 71 .. are all 
J 

distinct, and there is a diagonalizing matrix N such that 

NU'(Je)N- 1 =D,. a diagonal matrix whose diagonal entries arie the 

roots 11 1 , ... , AN. An important question is whether N can be made 

a continuous function of' t 2 x, and z for 0-::.t:::h and /zl='1. 
Topological difficulties in achieving this account for the ex­

ceptional case of three independent variables - in this case the 

set jzl > 1 is the outside of a circle in the plane, and it is often 

impossible to extend functions that are locally defined to all of 

this doubly connected region. \ve will ta lee for granted that the 

diagonalizing matrix N(t,x,z) can be made a continuous function of 

t,x:,Z in the non-exceptional cases, where the space I z I >1 is simply 

connected. Let N0 (z) = N(O,O,z). Then by considering Fourier 

transforms, as in Theorem 1, it is easy to see that the operator 
....., -1 

77,, with symbol N has an inverse which we denote by , (J , and whose 
0 0 -1 0 

symbol we ·enote by N 
. 0 

Now for O ~ t ::.h the entries in N(tJx,z)., and their derivatives 

of order 2k with respect to z, differ by an arbitrarily small 
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amount from those in N0 (z). Hence, by Theorem 2, the operator 

n with symbol N differs in norm from~ by very little, and is 

invertible. 

To see to what extent t2 diagonalizes ( 4), consider 

5) n(ov/ot) +n"JtJ..l\v ='ll.w, 

and the expression we should approximate by diagonalizing the 

left side, 

~ mv ) /at + 9J i /\ 12v, 

where ~(i)=D. We have 

~(nv)/i:tt = "n&v/ ~t + ( ~n/at)v, 

where dN/ 0 t is the operator with symbol ;m(t,x,z)/~H, thus 

a cf operator. Further., ~i l\n =Ci)11,i A+ i'D( An-r/.J\) 
~ 

= (~on)i/\+iiA+/3 
'-f'- _,J 

= en °ile) 1 /\ + 13 1 

="Yl£i/\ t 'Jr i /\+ fj I 

~ 

=~i/\+/3''., 

where ';f denotes a smoothing and /3 a bounded operator on oC • 
This rests on Theorem 3, extended to matrices of s.i.ops. Thus 

(5) becomes 

(6) anv/at +~1/\nv = 

n.civ/at + ('an/cit)v +11.o'li/\v +53"v 

= nw t .3 II I n V J 

where ~I 1 r = ( t) n/dt + a II )n-1 is bounded. 

Now it is time for concrete estimates. The desired con­

cl us ion ( u=O for O ::. t i h) is based on the following two 

estimates, whose proof will not be considered. 

Lemma 1. Let u(t,x) be in c1 int and x, and let u and its first 

derivatives be in 12 (X) for each fixed t in O 1 t ~ h. Let P(t) 

and Q(t) be s.i.ops. such that v-(P)=F1 (t,x,z) and ~(Q) = F2 (t,x,z) 

are real, and in cf in jzj ~ 1. (i.e. c2 in t and x and c00 in 

z). Assume P(t) has a 2-sided inverse for each t, or is zero 

for each t; and let 9in(t) = (t+1/n)-n. If u(O)=O, and 

h J (/> 2 Hdu/;:}t t (P+iQ) /\u ll 2dt 
0 n 

h 
~ C I (/) 2 ll u 1i2 d t 

0 n 
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for some c and arbitrarily large n, then u(t)=O in a neighbour­

hood O it S. cl of t=O. 
1rhe role of ¢n here can be loosely described as that of a 

J-function at the origin. If it were normalized so thatj_h ¢n=/I, 
0 then we would have (/) 11 ( O) ~ oo , ¢n ( t) -tO for t > O. 

Lem.ma 2~ Let u(t;x) be in c1 in t and x, and u and its first 

derivatives in L2 (X) for each t. Then 

jh ¢n;?. l\du/e1tl\ 2~n2 (1+h)- 2Jh (/)11
2 !)u)! 2 dt. 

0 0 

It is clear that the conclusion of Lemma '1 is of the right 
r') 

SOt't. To apply it to (6), one wust first estimatellwlJC. = 
4°lBu j 2 dx in terms of ll vi/ = L]lvl 2dx. We have 

; 1{ 1 
' j 1 

Bu= L AJ, 1/\ 0 u/0 t 1 with A .1 a c00 operator, and hence 
l+j<N J o 

l\Bull 2 ~ c L lli/(Aju)/at 1H 2 • Since 
l+j<N 

(hr1,0 .0 2,, hrf-.r> 0 
Jo \l'ncllul!'-dt ::;('l+h) n-c.1 'f'nc_!ldu/c>tll'-dt, VJe get 

0 

(h (pn 2 lJBu 1/~dt $,c r: Jh (/) 2 IJ 2>1( /\ ju)/~tl II 2dt 
-6 l+j<N o 11 

~ct ) Jh ¢ 211"<) N-j-1( /\ ju)/~tN-j-/1" ~:?dt 
l+j•d'l" o n 

N h rii 2 0 h rA ') 2 
~c 1 L..f I.fin llvJ. 11 c:.dt = cj_ 't'nc..llv/1-dt. 

1 0 0 

Since n-1 is bounded 1 we have also 
h 0 0 h 0 ,, 

1 ¢ '-!lwH'"' ~ c 'j ¢ '- irnv ll "-cJt. F'rom (6) we get n , n 
0 0 

( 7) lh ~ 2 II cinv /cl t + q)i /\ nv ll 2d t 
o n . 

h 2 0 0 

! C 11 1 ¢ n - (l! w II"~+ II n V II C. ) d t 
0 

h '1.. ') 2 
~c 111 f Pr/ \Inv !I dt. 

0 

Indicate the N components of nv by [v/1; ... ;VN] . 1rhen there is 
an index j such that 

(8) lh ¢n2 !Iv jH 2dt !- J t jh ¢n 2 ti vmU 2= 
o m=1 o 

'1 jh fl.. 2 . 2 
N lf'n ftnv Jj dt, 

0 

for infinitely many n. 
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Noting that 0 ( 01 · O) 
= 0 • 'DN 

is diagonal, and considering the 

j th components, we get 

') h 'J 2 
+ D i/\V. I\ c.dt <1 1 ,._ \ld'nv/;)t+q}i/\'l'l,v !l dt 

J J - o n 

l\'.':.v II 2dt ~NC r11 fh ¢ 21/V. \I 2dt; 
, o n J 

for intinitely r.,·-::.1y n, in view of ( 7) and ( 8) . il1his is quite close 

to the fnr':r1 of 1,:;,,m.::i 1. To checl{ the eequirements for P 1nd Q, note 

that ~(Dj) = ~j~t,x,z) is one of the characteristic roots of L. 
Since the coefficients of highest order terms of Lare real, the 

complc:: "71.. ccm:: 1.n CO)ljugate pair's. Since they never coincide, 
J 

the =1. 1·:12,3:' .. nary pcn ... t of 8 complex A. (t,x,z) can vanish for no (t.,x,z). 
J 

'rhus the ::·sa l pG r<:; of cr( iD . ) either vanishes :\..dentically, or 
J 

vanishes never. From this we can derive that the Pin iD.=P+iQ has 
J 

the pro~Y:J:"·tier-:1 roqu:i .. red in Lemma 2. The necessary invertibility 

foJ.J.0'1-:s ,'.B "~he :1 crc:r·tibility of ,,.,./2, did. Thus V ,==0 for O .S. t ~ 6, and 
J 

by (7) 'i1v:.:,Oj c.nc1 Jo u=O.) for O -~ t ~ d. 
This concludes t~e proof for a single equation. For a system, 

the tcro~.ogic1l details (construction of ~j) are more difficult; 

and lead to other exceptional cases. The feeling is that these 

rcstrictia~~ are in~sLenti81, while the distinctness of characteris-


