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§ 1 Introduction 

2 By a map (on the two-sphere S) we shall understand a 

covering of the two-sphere by means of a finite number of 

closed sets (called countries), such that 
(i) each country is the closure of a region (=open connected 

set), 

(ij) the boundary of each country is the union of a finite 

number of jordan-curves (=curve, homeomorphic to a circle), 

(iij) the intersection of two countries is contained in the 

intersection of their respective boundaries. 

Two different countries are neighbours (are adjacent) if 

their intersection contains a jordan-arc. 

The order of a country is the number of its neighbours. 

The order of a map is the maximum of the orders of its 

countries. 

Colouring a map with a given number of colours is: to 

assign a colour to each country in such a way, that any two 

neighbours obtain different colours. 

The four colour problem consists in proving or disproving 

the four colour conjecture which states that four colours are 

sufficient to colour any map. 

A regular map is one in which not more than three countries 

have a non-empty intersection. It can easily be seen, that the 

four colour problem has a positive or negative answer, if this 

is the case for regular maps. 

The four colour problem still stays unsolved in spite of 

many attemps to solve it, during more than seventy years. 

Are there special classes of maps for which the answer is 

known to be in the affirmative? Franklin ([5]) (see also 

Errera [4]) tells us what is known on this until 1940. Apart 

from a few trivial cases (see [5]) he mentions the cases (i) 

and (ij) below, to which we add (iij): 
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'I'he n:,1r:ber cf 

Reg\..l.lar• maps in whicr, evf!ry country, wl\~h the 

of at most one, has order- ::1:6 (Winn, [~13]). 
MapS- of o:rcier 

exception 

Kempe ((7]) gave a wrong proof of the four colour conjecture, 
but the methods be developed enabled Heawood ([6]) to prove 
that five colours suffice to colour any map. 

Also, the result (iij) follcwa easily from Kempe•s method. 
However, we have not found it explicitly in the literature 

until Dirac ([ 3], Th. '14) in which a slightly more general 
result 1s proved. 

(iij), and Dirac 1 s result too, is contained 1n oui-' lemma (§ l+) 

(after translation from the graph language to the map language; 

see§ 2). This lemma serves us mainly in order to prove the 
main result of this paper, namely a fourth case in which the 
four colour conjecture holds, in fact strengthening (iij) to 
(iv) maps of order~ 5. 
The proof is carried out in§ 4. 

We have not been able to find a proof for maps of order .i; 6. 
This case becomes in any case much more complicated (if the 

result is correct at all). Neither seems there to be an obvious 
way to prove (iv) from (1j), or conversily. 

During our work we have not obtained the impression that 
the four colour conjecture is necessarily correct. 

In§ 3 we recall a few propositions which may be known to 
the insiders, but which we have not seen in the literature. 
These emphasize the fact, that apart from a few trivialities 

the solution to the four colour conjecture wholly depends on 

Euler 1 s characteristic -2 for the sphere. Indeed, changing to 

graph language, necessary and sufficient conditions are known 
for a graph to be a planar one (Kuratowski, [9]; Mac Lane,(10]). 

However, since in the four colour conjecture one can restrict 

oneself to triangular graphs (defined in§ 2) (or even 
triangular graphs without three-cycles), a criterion for these 
graphs to be a planar graph is very simple; see§ 3. 
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§ 2 Definitions 

In this paper a graph G will be a pair (V,E), in which V 

is a set, and Ea family of non~ordered pairs of distinct 

elements of V; the elements of V are called vertices of G, the 

members of E are called edges of G. Moreover, until the 

contrary is explicitly stated, we assume that G is a finite 

graph i.e. that Vis a finite set. (For a general definition 

of a 1'graph 11 see [1], [8] or [12].) Vertices are denoted by 

p,q,r, ... , and edges by (p,q) etc., in which plq and (p,q)=(q,p). 

Two vertices p and q are neighbours in G, if (p,q) is an 
edge of G. 

A subgraph G1 =(V 1 ,E') of a graph G=(V,E) is a graph for 
which V 1 CV and E' CE. 

A full subgraph Hof G is a subgraph of G, containing every 

edge of G the vertices of which are in H. 

If p 1 , ... ,pk are vertices of G, G\(p 1, ... ,pk) will denote 

the full subgraph containing the vertices of G except for 

p 1' ... 'pk' 
It is well known (e.g. see [11], p.46) that a graph G can 

be represented rectilinearly in the Euclidean three-space E3 , 

i.e. : 

(i) there is a one-to-one correspondence between the set of 

vertices of G and a set of points of E3, 

(ij) if two vertices are neighbours in G, corresponding points 

are joined in E3 by a straight linesegment, 

(iij) two such segments have at most an endpoint in common. 

Henceforth, G will be identified with its representation 

in E3 . 
A pa th is a subgraph homeomorphic to an interval. 

A graph is connected if each pair of vertices can be joined 

by a path. 
A component of a graph G is a maximal connected subgraph 

of G. 
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A cycle in G is a subgraph of G homeomorphic to a circle. 

An-cycle is a cycle containing n vertices. 

A triangle of G is a cycle containing exactly three vertices, 

say p,q and r, such that, if C denotes the component of G which 

contains p,q and r, C\(p,q,r) is connected. 

A graph is called planar if there is a homeomorphism from 

G into the two-sphere s2 . Henceforth, if G is a planar graph, 
2 we assume G ~S • 

Proposition; A map can be represented by a planar graph i.e. 

(1) there is an one-to-one correspondence between the countries 

of the map and the vertices of a planar graph. 

(ij) two countries are adjacent if and only if the corresponding 

vertices are neighbours in this graph. 

(c.f. ['1], p.2'13). 

Colouring a graph with a given number of colours is: to assign 

a colour to each vertex in such a way that any two neighbours 

obtain different colours. 

In view of the proposition above the four colour problem 

for maps can be reduced to the four colour problem for planar 

graphs which consists in proving or disproving that four colours 

are sufficient to colour any planar graph. (Actually, these 

problems are equivalent.) 

If G is a planar graph, a face of G is a region in s2 the 

boundary of which consists of edges and vertices of G, and 

which does not contain any vertex or edge of G itself. A face 

of G which is bounded by a cycle containing n vertices G is 

called an n-gon. 

A graph G is called triangular if it is planar and if each 

face of G is a 3-gon. 
It is easily seen that a regular map without rings consistmg 

of one or two countries can be represented by a triangular 

graph. Conversely, given a triangular graph G, by forming its 
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arid def1n1ng a country as th~ clos~re 

of a face of G*, one attains a reg!1lar map the representing 
graph of which 1e G. 

§ 3 fharacter1zation of triangular gra,Eh~ 

Theorem 1: Let G be a connected grapr., conta1ng « 0 vertices, 

d 1 edges, and «2 triangles. The following properties I and II 
are equivalent: 

I. G is a triangular graph and G contains at least four = 
vertices 

II. (a) Each edge of G belongs to exactly two triangles, = 
(b) The set of triangles of G is ttconnected 11 , that is it 

cannot be decomposed into two classes in such a way that 

each edge of G only belongs to triangles of the same class, 
(c) -« +« -0( =-2 o 1 2 

Proof: I--+ II; If 0(1 denotes the number of 3-gons in G, we 
have -0(0 +0(1-«2':" -2 (Euler) (see e.g. [·1], pag.207). 

Because it is obvious that each triangle bounds one 3-gon in 
order to prove II (c), it is sufficient to show that the 
boundary of a 3-gon is a triangle. First, observe, that for 
each vertex of G thl':re is a cycle the vertices of which are 
exactly the neighbours of this vertex. Now, let p,q and r 

denote the vertices of the boundary of a 3-gon. We prove that 
any two vertices sand t of G~p,q,r) can be connected by a 

path in G\(p,q,r) (Because G contains at least four vertices 
G\(p,q,r) is non-void). sand t can be connected by a path in 
G and we may suppose that this path only contains the vertex 

p or the edge (p,q). Let us consider for example the second 
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case. Let the vertices on the path bes, ... ,u,p,q,v, ... ,t. 

We find a path joining sand tin G\(p,q,r), (1) going from 

s to u, (ij), the going along a cycle the vertices of which 
are exactly the neighbours of p, and avoiding q and r, up to 

a neighbour of q, (iij), then going from this vertex along a 

cycle the vertices of which are exactly the neighbours of q, 

and avoiding p and r up to v, (iv), than joining v and t. Thus, 
we have proved II (c). On account of the property, that the 

boundary of a 3-gon is a triangle, II (a) is obvious. II (b) 
is trivial. 

II~I: Set up a one-to-one correspondence between the set of 

triangles of G and a set of disjoint closed 2-cells in the 

euclidean plane. For each triangle take a homeomorphism between 

the triangle and the boundary of the corresponding closed 2-cell. 

In this way, using II (a) and II (b), one obtains a 

npo1ygonsystem 11 as defined in chapter 6, p. 130, o.f [ 11]. Such 

a system gives use to a complex of which the underlying 

polyhedron is the two-sphere (IIc). The 1-skeleton of this 
complex is a planar graph satisfying I. 

Theorem 2: Let G be a connected graph, containing ~o vertices, 
~1 edges, and ~ 2 triangles. The following properties I and II 

are equivalent: 

1· (a), G is a triangular graph, 
(b), If p,q and rare (not necessarily different) vertices 

of G, G\(p,q,r) is connected and non-void. 

II. (a), The full subgraph the vertices if which are exactly 

the neighbours of a vertex of G is a cycle, 

( b ) , - oc o + ~ 1 - cx2 = -2. 

Proof: r~II: II (a) is obvious. By Ib it follows that each 

3-gon is bounded by a triangle. From this and from the identity 

of Euler II (b) follows. 
II~I: If p,q and rare mutual neighbours, by the argument, 
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employed in the first part of the proof of theorem 1, using 

II (a)., ~Je find that G\(p,q,r) le c:onnec~ecL Thus, p,q and r 

are vertices of a triangle. From this and from II (a) 1t follows 
that each edge le ccnta1ned in at lea!t two triangles. Further, 
an edge (p,q) is contained 1n at most two tr1.anglea. For, if 

not, the full subgraph the vertices cf which are the neighbours 
of p contains a tripod. This however contradicts II (a). Thus 
(Th 1, II (a)) holds. From II (a) "we also obtain (Th 1,II (b)). 

Property II ( b) implies ( Th 1, II ( c)). From theorem 1 it follows 

that F satisfies I (a), I (b) is a consequence of II (a). 

Remark: 
Using the fact that 3 « 2=2 ~1 in the graphs which are 

considered, property II (c) of theorem 1, and property II (b) of 

theorem 2 can be replaced by the property: 

1 °'o = 3 C)( 1 + 2. 
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§ 4 A case of colouration 

The order of a vertex p of a graph G, denoted by O(p,G), is 
the number of its neighbours in G. 

Lemma: Let G be a planar graph. Let H be a full subgraph of G 

which can be coloured using at most four colours. If for each 

vertex p of G\H the inequality O(p,G)f 5 holds and if in each 

component of G\H there is a vertex q with O(q,G)~ 4, then G 
can be coloured using at most four colours. 

Proof: By induction with regard to the number of the vertices 
of G. 

Let G be a graph having n vertices. We may suppose HIG. Let p 

be a vertex of G\H such that O(p,G)~ 4 and let C denote the 
component of G\H to which p belongs. 

We consider two cases: 

(i) C contains only one vertex, namely p, It is trivial that 

G\p satisfies the induction hypothesis. 

(ij) If C contains more than one vertex, let C 1, ... , Ck ( k ~ 1) 

denote the components of C\p. For each i ( 1" 14 k), there is 

a vertex pi, such that p1 belongs to Ci and p1 is a neighbour 

of p. Because 0( p1 , G) ~ 5, we have 0( p1 , G\p) ~ 4. 
From this it follows that G\p satisfies the induction hypothesis. 

So in both cases G\p can be coloured using at most four 

colours. If for the neighbours of pat most three colours are 

used, one assigns top a colour different from these ones. 

If not, let in "cyclic" order q,r,s and t denote the neighbours 

of p, coloured by a,b,c and d respectively. By definition, an 

(a-c)-2ath will be a path in G the vertices of which are 

coloured by a and c alternately. 

First suppose q ands are not connected by an (a-c)-path. Then 

we interchange the colours a and c for all vertices which are 

connected withs by an (a-c)-path, and we colours by a, and 

p by c. Secondly, suppose, q ands are connected by an (a-c)­

path.By the Jordan curte theorem we know that in this case rand 

tare not connected by a (b-d)-path. Now, in the same way, we 
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interchange the colours band d for all vertices which are 

C'Onnec-tea. with: t by a (b'-d)-patH,, and we colour t by cl; ah6. p 
"dy ti. 

Theorem 3: Any planare graph in which the order of each vertex 
is at most five can be coloured using at most four colours. 

Proof: By induction with regard to the number of vertices of G. 
Let G be a graph satisfying the conditions of the theorem and 
having n vertices. 

If G ie not connected, by the induction.hypothesis each 

component of G-and thus G also-can be coloured using at most 
four colours. 

(i) Thus we may suppose that G is connected. 

Now, if G contains a vertex p with O(p,G), 4,the lemma 
applies, using the induction hypothesis. 

(ij) Thus, we may suppose, that the order of each vertex of G 
equals five. 

If G contains a cutpoint i.e. a vertex p such that G\p is 
not connected, let c1, •.. ,Ck (k~2) denote the components of 

G\p. Let c! be the full subgraph of G the vertices of which are 

the vertices of Ci and p. Each c1 satisfying the induction 
hypothesis can be coloured and by a permutation of the colours 

we can attain that in each C~ p has a fixed colour. From this 

it follows, that we can colour G using at most four colours. 

(iij) Thus we may suppose that G contains no outpoint. 

If G contains two vertices p and q such that G\(p,q) is not 

connected, let c1, •.• ,Ck (k>2) denote the components of 

G\(p,q). 
Let Ci be the full subgraph of G the vertices of which are the 

, vertices of Ci and p and q ( 1 ~ i-' k). By ( i) and (:lij) we know 
that c1 is connected. Thus p and q can be joined in C~ by a 
pa th which is by definition a j ordan-arc. For each j ( 1 ~ j • k) 
we construct a planar graph 
If1*- 1Cj p andg_ are joined by 

add a jordan-arc, joining p 

H cj as follows: 

* an edge we put Cj=Cj. 
and q in a fixed c1 

If not, we 

(i/j), to cj, 
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;,.' u"' b.. 1 1 CM 1' C'' F ~no o va n~ng 1 .rom ,. or each j the order or p and q 1n 
* . V . V 

C4 is at most five. Indeed, 1f p and q are neighbo~~s 1n O, 
,) 

this fact is trivial, a~d. 1f net, we observe that totn p and 
q are neighbours of at least one ve~tex or each c~ (1~j) and 

l, 

such a vertex does not occur tn c~. 
Thus, C~ containing less than n v;rtlces satisfies the 1nduct1on 

J 

hypothe31B and can be coloured using at moat rour coloura. 

From the construction of c; it followa, that 1n each c; p 
and q obtain different colours. Moreover, 1t 11 eaaily •een, 
that in each C~ by a permutation of the ccloure we can attain 

., 
that both p and q obtain fixed ( bi,.l t different) col c.iurs. Frcm 

this it follows that G can be coloured using at moat four 
colours. 

(iv) We may, therefore, suppose that G does not contain 

vertices p and q such that O\(p,q) 1s not connected. 
In view of (iij) we know that the boundary or any face of 

G is a cycle. Now, suppose that there exists a raoe of G the 

boundary of which is a n-cycle with n i 4. Let in eye lie order 
the vertices on this n-cycle be p,q,r,s, •... Obeerve, that 

by (iv) we know that p and rare not neighbours. Thue we can 
form a new graph o* by contracting p and r to one point p•. 

Moreover, using the fact that each edge of O can be supposed 
to be a polygonal-line, it 1s not difficult to prove that a* 
is a planar graph. Because d(q,G)~ 5, we have d(q,G*) .i 4. 
Because G\{r,p) is connexted in view of (iv), G*\pllf is 

connected. Taking H=:p*, the lemma applies and we can colour ~ 
and consequently G using at most four colours. 
(v) Thus we may suppose that each face of O ia bounded by a 

cycle which contains (at most) three vertices. 
It is easily shown and well known that each graph which 

satisfies (1)-(v) is topologically equivalent to the 1-skeleton 
of the icosaedron. This graph, however, can be coloured using 

at most four colours. This completes the proof. 
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Corollary 1: An infinite planar graph in whi 

vertex is at most five can be coloured 

colours. 

the order 

a.t !!10.:l\t 

Proof: Each finite subgraph of the given graph can be c 

in view of theorem 3, using at most four colours. By a 

of de Bruijn and Erdos([2])stating, that an infinite graph can 

be coloured using at most n colours if and only if each finite 

subgraph can be coloured using at most n colours, the given 

graph can be coloured using at most four colours. 

Corollary 2: Any map of order 4' 5 can be ~oloured using at most 

four colours. 

Proof: Use the proposition of§ 2 and theorem 3. 

Remark: In view of corollary 1 corollary 2 also holds for 

infinite maps which can be defined by a slight modification of 

the definition of a map. 

Mathematisch Instituut, Universiteit van Amsterdam. 

Mathematisch Centrum, Amsterdam. 
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