STICHTING MATHEMATISCH CENTRUM
 2e BOERHAAVESTRAAT 49
 AMSTERDAM
 ZW 1960-12

On a formula of C.S. Meijer

A.H.M. Levelt

ON A FORMULA OF C. S. MEIJER

$\mathbf{B Y}$
A. H. M. LEVELT ${ }^{1}$)
(Communicated by Prof. J. F. Koksma at the meeting of November 28, 1959)

Some years ago C. S. Meijer ([1], p. 127, formula (G); [3], p. 355, formula (113)) published a formula for generalized hypergeometric functions, which contains many known formulae on special functions. Meijer's formula is
(1)

$$
\left\{\begin{array}{l}
p+k \Phi_{q+l}\binom{\gamma_{1}, \ldots, \gamma_{k}, \alpha_{1}, \ldots, \alpha_{p} ;}{\beta_{1}, \ldots, \beta_{q}, \delta_{1}, \ldots, \delta_{l} ; \lambda \zeta}= \\
\sum_{r=0}^{\infty} \frac{1}{r!} k+1 \Phi_{l}\binom{-r, \gamma_{1}, \ldots, \gamma_{k} ;}{\delta_{1}, \ldots, \delta_{l} ; \lambda}\left(\alpha_{1}\right)_{r \ldots\left(\alpha_{p}\right)_{r}(-\zeta)^{r} \Phi_{p} \Phi_{q}\binom{\alpha_{1}+r, \ldots, \alpha_{p}+r ;}{\beta_{1}+r, \ldots, \beta_{q}+r ; \zeta}} .
\end{array}\right.
$$

Here we use the following notation:

$$
(\alpha)_{r}=\left\{\begin{array}{cl}
\alpha(\alpha+1) \ldots(\alpha+r-1) & \text { if } r \text { is a positive integer, } \\
1 & \text { if } r=0
\end{array}\right.
$$

If p and q are non-negative integers, and $p<q+1$ or for some $i(\mathrm{l}<i<p)$ α_{i} is a non-positive integer, then

$$
{ }_{p} \Phi_{q}\binom{\alpha_{1}, \ldots, \alpha_{p} ;}{\beta_{1}, \ldots, \beta_{q} ; \zeta}
$$

is the analytic function of ζ defined in a neighbourhood of $\zeta=0$ by

$$
\begin{equation*}
{ }_{p} \Phi_{q}\binom{\alpha_{1}, \ldots, \alpha_{p} ;}{\beta_{1}, \ldots, \beta_{q} ; \zeta}=\sum_{n=0}^{\infty} \frac{\left(\alpha_{1}\right)_{n} \ldots\left(\alpha_{p}\right)_{n}}{n!\Gamma\left(\beta_{1}+n\right) \ldots \Gamma\left(\beta_{q}+n\right)} \zeta^{n} \ldots \tag{2}
\end{equation*}
$$

The series on the right of (2) has a finite radius of convergence only in the case that $p=q+1$ and no $\alpha_{i}(i=1, \ldots, p)$ is equal to a non-positive integer. The analytic continuation for this case will not be described here. It can be found in [2], § 2 and in [4]. For our purpose it is sufficient to know, that $0,1, \infty$ are the only singularities (branchpoints in general). Hence, if C is any simple curve connecting 1 and ∞ and $0 \notin C$, there exists a unique analytic function on the complement of C, which has the power series representation (2) in a neighbourhood of $\zeta=0$. The curve C will not be mentioned explicitly in the sequel, but is assumed to be suitably chosen. (Meijer uses the rays ($1,1+i \infty$) and ($1,1-i \infty$).

[^0]In this paper (1) is proved in a new and simple way. The conditions for the validity of (1) given by Melser ([1], p. 127; [3], p. 355) will be deduced anew. Finally a relation for generalized Heine series is given, which is analogous to (1).

Formula (1) is valid in each of the following eight cases Ia, ..., Ie, IIa, IIb, III:
I. None of the numbers $\gamma_{1}, \ldots, \gamma_{k}, \alpha_{1}, \ldots, \alpha_{p}$ is equal to $0,-1,-2, \ldots$, and
a. $p<q+1$ and $p+k<q+l+1$, for all values of λ and ζ.
b. $p<q+1, p+k=q+l+1$, for $|\lambda \zeta|<1$.
c. $p=q+1, k<l$, for $\operatorname{Re} \zeta<\frac{1}{2}$ and all values of λ.
d. $p=q+1, k=l=0$, for $\zeta \neq 1$ and $|(\lambda-1) \zeta|<|\zeta-1|$.
e. $p=q+1, k=l>0$, for $\operatorname{Re} \zeta<\frac{1}{2}$ and $|(\lambda-1) \zeta|<|\zeta-1|$.
II. $k>1$ and at least one of the numbers $\gamma_{1}, \ldots, \gamma_{k}$, but none of the numbers $\alpha_{1}, \ldots, \alpha_{p}$ is equal to $0,-1,-2, \ldots$, and
a. $p<q+1$, for all values of λ and ζ.
b. $p=q+1$, for $\operatorname{Re} \zeta<\frac{1}{2}$ and all values of λ.
III. $p>1$ and at least one of the numbers $\alpha_{1}, \ldots, \alpha_{p}$ is equal to $0,-1,-2, \ldots$, for all values of λ and ζ.
Proof. By (2) the right-hand member of (1) can be formally written as

$$
\begin{gather*}
\sum_{r=0}^{\infty} \frac{1}{r!} \sum_{n=0}^{r} \frac{(-r)_{n}\left(\gamma_{1}\right)_{n} \ldots\left(\gamma_{k}\right)_{n}}{n!\Gamma\left(\delta_{1}+n\right) \ldots \Gamma\left(\delta_{l}+n\right)} \lambda^{n} \sum_{m=0}^{\infty} \frac{\left(\alpha_{1}\right)_{r+m} \ldots\left(\alpha_{p}\right)_{r+m}(-1)^{r}}{m!\Gamma\left(\beta_{1}+r+m\right) \ldots \Gamma\left(\beta_{q}+r+m\right)} \zeta^{m+r}= \\
\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{r=n}^{\infty} \frac{\left(\gamma_{1}\right)_{n} \ldots\left(\gamma_{k}\right)_{n}\left(\alpha_{1}\right)_{r+m} \ldots\left(\alpha_{p}\right)_{r+m}}{n!\Gamma\left(\delta_{1}+n\right) \ldots \Gamma\left(\delta_{l}+n\right) \Gamma\left(\beta_{1}+r+m\right) \ldots \Gamma\left(\beta_{q}+r+m\right)} \frac{(-1)^{r+n} \lambda^{n} \zeta^{m+r}}{m!(r-n)!}= \\
\sum_{n=0}^{\infty} \sum_{j=n}^{\infty} \frac{\left(\gamma_{1}\right)_{n} \ldots\left(\gamma_{k}\right)_{n}\left(\alpha_{1}\right)_{j} \ldots\left(\alpha_{p}\right)_{3} \lambda_{n} \zeta^{j}}{n!\Gamma\left(\delta_{1}+n\right) \ldots \Gamma\left(\delta_{l}+n\right) \Gamma\left(\beta_{1}+j\right) \ldots \Gamma\left(\beta_{q}+j\right)} \sum_{r=n}^{j} \frac{(-1)^{r+n}}{(r-n)!(j-r)!} . \tag{3}
\end{gather*}
$$

Now using

$$
\sum_{r=n}^{j} \frac{(-1)^{r+n}}{(r-n)!(j-r)!}=\frac{(1-1)^{j-n}}{(j-n)!}= \begin{cases}0 & \text { if } j>n \\ 1 & \text { if } j=n\end{cases}
$$

we see that (3) equals the left-hand member of (1).
In each of the cases Ia, b, IIa and III the absolute convergence of (3) can be shown by estimates of the type

$$
\begin{equation*}
\left|\frac{\left(\alpha_{1}\right)_{n} \ldots\left(\alpha_{p}\right)_{n}}{\Gamma\left(\beta_{1}+n\right) \ldots \Gamma\left(\beta_{p}+n\right)}\right| \leqslant C n^{\mathrm{Re}_{\mathrm{e}}\left(\left(\alpha_{1}+\ldots+\alpha_{p}\right)-\left(\beta_{1}+\ldots+\beta_{p}\right)\right\}} \tag{4}
\end{equation*}
$$

Hence, in the following we may restrict ourselves to the case $p=q+1$, where none of the numbers $\alpha_{1}, \ldots, \alpha_{p}$ is equal to $0,-1,-2, \ldots$ In this case we can again prove by (4) the absolute convergence of (3), but only for small values of $|\zeta|$ and $|\lambda|$, provided that $k<l$ or that one of the
numbers $\gamma_{1}, \ldots, \gamma_{k}$ is equal to $0,-1,-2, \ldots$ Next we shall show that (1) has a larger region of validity. We need two lemmas.

Lemma 1. If $\zeta \neq 1$, then

$$
\limsup _{r \rightarrow \infty}\left|\frac{(-\zeta)^{r}\left(\alpha_{1}\right)_{r} \ldots\left(\alpha_{q+1}\right)_{r}}{r!}{ }_{q+1} \Phi_{q}\binom{\alpha_{1}+r, \ldots, \alpha_{q+1}+r ;}{\beta_{1}+r, \ldots, \beta_{q}+r ; \zeta}^{\frac{1}{r}}=\left|\frac{\zeta}{\zeta-1}\right| .\right.
$$

Proof. The function

$$
f(w)={ }_{q+1} \Phi_{q}\binom{\alpha_{1}, \ldots, \alpha_{q+1} ;}{\beta_{1}, \ldots, \beta_{q} ; \zeta(1-w)}
$$

is analytic in w for $|w|<\left|1-\zeta^{-1}\right|$. Using (2) we can easily derive that

$$
\left[\frac{d^{r}}{d w^{r}} f(w)\right]_{w=0}=\left(\alpha_{1}\right)_{r} \ldots\left(\alpha_{q+1}\right)_{r}(-\zeta)^{r}{ }_{q+1} \Phi_{q}\binom{\alpha_{1}+r, \ldots, \alpha_{q+1}+r ;}{\beta_{1}+r, \ldots, \beta_{q}+r ; \zeta}
$$

for $|\zeta|<1$. Both members being analytic in ζ (if $\zeta \neq 1$), the equality is valid in the cut ζ-plane. Hence, the Taylor expansion of $f(w)$ in powers of w is

$$
f(w)=\sum_{r=0}^{\infty} w^{r} \frac{(-\zeta)^{r}\left(\alpha_{1}\right)_{r} \ldots\left(\alpha_{q+1}\right)_{r}}{r!}{ }_{q+1} \Phi_{q}\binom{\alpha_{1}+r, \ldots, \alpha_{q+1}+r ;}{\beta_{1}+r, \ldots, \beta_{q}+r ; \zeta}
$$

As $f(w)$ is analytic for $|w|<\left|1-\zeta^{-1}\right|$, the radius of convergence of the Taylor series is equal to $\left|1-\zeta^{-1}\right|$. Lemma 1 expresses this fact in a different way.

Lemma 2. If none of the numbers $\gamma_{1}, \ldots, \gamma_{k}$ is equal to $0,-1,-2, \ldots$, then

$$
\left.\left.\limsup _{r \rightarrow \infty}\right|_{k+1} \Phi_{l}\binom{-r, \gamma_{1}, \ldots, \gamma_{k} ;}{\delta_{1}, \ldots, \delta_{l} ; \lambda}\right|^{\frac{1}{r}}=\left\{\begin{array}{cl}
1 & \text { if } k<l \\
\max (1,|1-\lambda|) & \text { if } k=l>0 \\
|1-\lambda| & \text { if } k=l=0
\end{array}\right.
$$

However, if one of the numbers $\gamma_{1}, \ldots, \gamma_{k}$ is equal to $0,-1,-2, \ldots$, the \lim sup equals 1 in all cases.

Proof. The proof runs along the same lines as that of lemma 1. The starting point is now

$$
\begin{equation*}
\frac{1}{1-w} k+1 \Phi_{l}\binom{1, \gamma_{1}, \ldots, \gamma_{k} ;}{\delta_{1}, \ldots, \delta_{l} ; \frac{\lambda w}{w-1}}=\sum_{r=0}^{\infty} w^{r}{ }_{k+1} \Phi_{l}\binom{-r, \gamma_{1}, \ldots, \gamma_{k} ;}{\delta_{1}, \ldots, \delta_{l} ; \lambda} \tag{5}
\end{equation*}
$$

This formula is the special case $p=1, q=0, \alpha_{1}=0, \zeta=w(w-1)^{-1}$ of (1). Hence, it is valid for small values of $|\lambda|$ and $|w|$. If λ is fixed, the function $g(w)$ on the left of (5) has a Taylor expansion in powers of w. It is easily seen that the coefficient of w^{r} in that expansion is an analytic function of λ. From these considerations it is clear that for each λ the expansion (5) holds in a certain neighbourhood of $w=0$. Now $g(w)$ has a singularity in $w=1$ if $k<l$, in 1 and $(1-\lambda)^{-1}$ if $k=l>0$, and in $(1-\lambda)^{-1}$ if $k=l=0$.

This yields the first part of lemma 2. If one of the numbers $\gamma_{1}, \ldots, \gamma_{k}$ is equal to $0,-1,-2, \ldots$, then $g(w)$ has a singularity at $w=1$. This completes the proof.

From lemma 1 and lemma 2 it follows that the series on the right of (1) converges absolutely in the cases Ic, d, e and IIb. Moreover, the convergence is uniform, if λ and ζ are restricted to compact sets. Hence, this series represents a function which is analytic in λ and in ζ. As (1) holds for small values of $|\lambda|$ and $|\zeta|$, the validity of (1) is also proved in the cases Ic, d, e and IIb.

The above-mentioned generalization of (1) to Heine series (for definition and properties of Heine or basic series see [5], ch. VIII) is

$$
\left\{\begin{array}{r}
k+p \Psi_{l+s}\binom{\gamma_{1}, \ldots, \gamma_{k}, \alpha_{1}, \ldots, \alpha_{p} ;}{\delta_{1}, \ldots, \delta_{l}, \beta_{l}, \ldots, \beta_{s} ; \lambda \zeta}=\sum_{r=0}^{\infty} \frac{\left[\alpha_{1}\right]_{r} \ldots\left[\alpha_{p}\right]_{r} \zeta^{r}}{\left[q^{-r}\right]_{r}\left[\beta_{1}\right]_{r} \ldots\left[\beta_{s}\right]_{r}} \tag{6}\\
\cdot{ }_{k+1} \Psi_{l}\binom{q^{-r}, \gamma_{1}, \ldots, \gamma_{k} ;}{\delta_{1}, \ldots, \delta_{l} ; \lambda}{ }_{p} \Psi_{s}\binom{\alpha_{1} q^{r}, \ldots, \alpha_{p} q^{r} ;}{\beta_{1} q^{r}, \ldots, \beta_{s} q^{r} ; \zeta},
\end{array}\right.
$$

where $0<q<1$,

$$
[\alpha]_{r}=\left\{\begin{array}{cc}
(1-\alpha)(1-\alpha q) \ldots\left(1-\alpha q^{r-1}\right) & \text { if } r \geqslant 1, \\
1 & \text { if } r=0,
\end{array}\right.
$$

and

$$
{ }_{p} \Psi_{s}\binom{\alpha_{1}, \ldots, \alpha_{p} ;}{\beta_{1}, \ldots, \beta_{s} ; \zeta}=\sum_{r=0}^{\infty} \frac{\left[\alpha_{1}\right]_{r} \ldots\left[\alpha_{p}\right]_{r}}{\left.[q] r\left[\beta_{1}\right]_{r} \ldots\left[\beta_{s}\right]\right]_{r}} \zeta^{r} .
$$

(6) is always valid if $|\zeta|<1$ and $|\lambda|<1$. A proof and a more precise discussion of the validity of (6) can be given in a similar way as was done for formula (1).

Mathematisch Centrum, Amsterdam

REFERENCES

1. Meijer, C. S., Ontwikkelingen van gegeneraliseerde hypergeometrische fụncties. Simon Stevin 31, 117-139 (1956).
2. —. Expansion theorems for the G-function I. Proc. Kon. Ned. Akad. v. Wetensch., Series A 60 (1952) = Indag. Math. 14, 368-379.
3. ——, Expansion theorems for the G-function. V. Proc. Kon. Ned. Akad. v. Wetensch., Series A 60 (1953) = Indag. Math. 15, 349-357.
4. Nørlund, N. E., Hypergeometric functions. Acta Mathematica, 94, 289-349 (1955).
5. Bamey, W. N., Generalized hypergeometric series. Cambridge tracts in mathematics and mathematical physics, No. 32.

[^0]: ${ }^{1}$) The author wishes to express his gratitude to Prof. Meijer for his clarifying criticism of an earlier version of this paper.

