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A. B. PAALMAN - DE MIRANDA

Amsterdam

1. Introduction

J. de Groot has proved in [3] that for every group G one can find a connected
metric space M such that the group of all autohomeomorphisms of M is isomorphic
to G : G =~ A(M) |

To represent semigroups in a similar way, we must replace the group of auto-
homecomorphisms by a suitablec semigroup of continuous mappings. The aim of this
note is to prove that every semigroup S with identity eclement can be represented by
the semigroup Q(M) of all quasi-local homeomorphisms of a metricspace M into itself.

Let X, Y be topological spaces. A mapping f: X — Y 1s called a quasilocal
homeomorphism if f 1s continuous and if for each open set O — X there exists an
open set ¥, ¥V < O such that f | Vis a homeomorphism of V onto f(V).

The proof of the theorem is essentially a modification of the proof for groups
by J. de Groot in [3]. |

The semigroup Q(M) of all quasi-local homeomorphisms seems to be the most
suitable to replace the group of all autohomeomorphisms A{(M). We prove in
section 4 the existence of a semigroup S such that there is no Hausdorff-space H
such that S i1s 1somorphic to the semigroup of all local homeomorphisms of H into
itself. Neither can S be 1somorphic to the semigroup of all open continuous mappings
of H into itself. f: X — Yis a local homeomorphism if for each x € X there exists an
open set O, x € O such that f ‘ O is a homeomorphism of O onto f(0).

- Analogous problems were treated by Z. Hedrlin and A. Pultr [6] and by L.
Bukovsky, Z. Hedrlin and A. Pultr [1]. In [6] the following theorem.was proved.
Let S be a semigroup with 1dentity element, then there exists a Ty-space T such that S
1s isomorphic to the semigroup of all local homeomorphisms of T into itself.

In [1] it has been shown that every semigroup with identity element may be
represented by the semigroup of all *‘quasi-coverings” of a Hausdorff space into
itself. The ‘“*‘quasi-coverings’ however are rather special mappings.

Let for instance X be the subset of the real line R consisting of the point 0 and
all x, x = 1. X = {x]xeR,meorx > 1}.

Letf:X — X and g : X — X be defined respectively by

x 1if x = ' 1 if x=0
X} == . X} == .
f() { g() {Zx f x%0
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Both f and g arc homeomorphisms of X into X, f however is a quasicovering of f(X)
but g is not a quasi-covering of g(X).

2. Graph-representations

Lect S be a semigroup with identity clement e and {s,} a system of generators
of S. We now construct the Cayley-graph S’ of S. S’ is a coloured, directed graph
such that each element a € S 1s represented by one vertex v, of S’. Two vertices v,
and vy are joined by an edge with ““colour” s, directed from v, to v, whenever b = s,a.
S’ 1s clearly connected (if a = s,.5,, ... s, , then v, and v, are joined by a path along
a set of consccutively adjacent edges with colour respectively s,
With each a € S we associate the inner right translation g,

H

Sa 15 <+ > Sag» S, )-

0,:x —=xa forall xeS§.

When applying products of mappings from the left to the right

(X) Qa - Qb — (xga) Qb

we see that S 18 homeomorphic to its regular representation S,. This representation is
faithful since § contains an identity element: § ~ S.. Furthermore 1t can easily be
seen that S, is 1somorphic to the semigroup of all transformations of the graph S’
into itself which are colour and orientation preserving.

If S 1s asemigroup with cancellation ther all such transformations are one-to-one
mappings of S’ into itself.

From S’ we now construct an (uncoloured) directed graph S* such that the semi-
group of all endomorphisms E(S*) of S* is isomorphic to S. For countable semigroups
this has been done first by the author [ 7], for semigroups with cardinality less than
the first unaccessible cardinal by Z. Hedrlin and A. Pultr | 5] and for arbitrary semi-
groups by P. Vopénka, A. Pultr and Z. Hedrlin [8]. They constructed for any
cardinal wt a directed graph X such that the identity transformation is the only endo-
morphism of X and such that the cardinal of the set of vertices of X is equal to n1.

The construction of S* given here is different from the one in [5] since the rigid
graph X plays a completely different role.

Construction. Let S* be the Cayley-graph of S and let m be the cardinal of the
sct of gencrators {s.} of S. We assume m = 3 (the case of semigroups of order <3
can be treated separately in a simple way). Let D be the rigid graph constructed in
(8], where D = {f8 l B = w, + 1, w, the least ordinal with card w, = m}. Finally
let ¢ be a one-to-one mapping of the set {s,} onto D.

Suppose that a directed edge with colour s, leads from vertex v, to v,. Replace
the edge in S’ by a graph (D, «, a, b) defined as follows: edges (v, p3s)s (P3.5s Us)s
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(P54 O(s,)) and furthermore D. We do this for every edge of S, but we take care that
all graphs (D, o, ¢, b) are disjoint with the possible exception of their vertices v,
and v,. In this way S’ is transformed into a graph S*.

Theorem 1. E(S*) ~ S.

Proof. Let fe E(S*) and let DI, be the copy of D contained in the subgraph
(D, «, a, b) of S*.

We first prove that f(D} ) < D!, for some y, c and d.

Since D, , contains the edges

(07 50 12.5). (07 2;?5,4,) and (17 ,, 2;&)

it follows that (0% ,) cannot be a vertex of the form v, or p} , of S*. Hence f(0; ,) =
= D!, for some y, ¢ and d. | , |

If B, , € D5 ,, then there is a finite chain of directed edges connecting G, , and f3; ,.
From this it follows that f(8%,) € D? 4, hence f(D},) = D} ,.

From the rigidity of D it follows that f(f3;,) = Bl a4

We next prove that f(p},) = p? ..

Since pg , is connected with ¢{s,)s ,, we have f(p;b) = pi 4 which implies y = «
or f(Pas) € D¢ 4.

In this case f(p%,) = Bi 4 for some Be D f < ¢(s,). Now let «’ be chosen so
that ¢(s, ) = B, and let ¢ = s,.b. Then it follows from the construction of S* that
- f(v,) € DY 4 hence f(p;,) € DL, and this implies f(P(s.);.o) = ¢(s.)l.a€ DI .

From the construction of D it then follows that < c;b(saf) a contradiction.

Thus each vertex of the form p; , of S* is mapped onto a vertex of the form p_ ;.
From this 1t follows that each vertex of the form v, i1s mapped onto a vertex of the
form v,.

. It can now ecasily be seen that E(S*) is isomorphic to the semigroup of all trans-
formations of S’ into itself which are colour and orientation preserving. Hence
E(S*) ~ S. .

If S is a semigroup with cancellation then each transformation fe E(S*) is
one-to-one.

3. Quasi-local homeomorphisms

Similarly as in [3] we shall replace every edge of S* by mutually homeomorphic
topological spaces P and introduce a topology in the resulting set such that a space M
will be obtained satisfying the following condition:

'Q(M)aS:



AL B PAALMAN - DE MIRANDA 279

ke - e v SR

bt o T iy . e R R L Rt LERE ek T AT T A e et e e ol Frpg wre g e AL iy e AU 15 S St LT ol A il Vil e T s - e o~

An example of a Pcano curve P which is rigid under topological transformatzons
of P into P was given in [2]. We bricfly mention its construction.

Consider a circle C! in {hn., plane and let fcz"}; . be a double sequence of distinct
natural numbers > 2. Let ltp L be a countable everywhere dense subset of C'. Affixe
to each p; a chain C; of a, lmi\s, contained in the interior of C! (p; excepted) and
mutually disjoint. Next we take a countable dense subset {p7} on the union of all C;
such that each p7 is of order two. Affixe to each p; a chain C7 of a7 links contained
in the interior of that link to which p? belongs, and such that all new chains are
mutually disjoint. Proceed by induction; we take care that the diameters of the C; tend
to zero, and take the closure P of the countable number of chains obtained in this
manncr. We remark that 2 i1s not rigid for topological transformations of P into P
only, but also for quasi-local homeomorphisms.

Let f be a quasi-local homeomorphism and let {p}* be the set of all points pf
such that there is an open set O, p§ e O with f| O a homeomorphism. The set {p}}*
is everywhere dense in P. Since the p’ are the only points of maximal order (order 6)
in P, the set {pi}* is mapped into the set {p"} To each p* is affixed a chain of & links,

all a} distinct. This implies that f(p}) = p' for all pje {p;}* Since {p;}* is dense in P,
f 1s the 1dentity transformation.

Now let a and b be two points on the circle C' of order two. Each directed edge

a = (x,, x:) of S§* 1s replaced by a copy P, of P, a replacing x; and b replacing x,.
We take care that all P, are disjoint with the possible exception of the points a and b.
Into the union of all P

M = {JP,
&
we introduce a metric in the same way as in [3].

Theorem 2. Let S be a semigroup with identity element. Then there exists

a connected metric space M such that S is isomorphic to the semigroup of all
quasi-local homeomorphisms of M : S ~ Q(M).

Proof. Let M bz the metric space, obtained from the graph S*. M is clearly
connected.

If f* e E(S*), then it can easily be seen that f* can be extended to a quasi-local
homeomorphism f of M into M.

Now let f bz a quasi-local homeomorphism of M into M. We shall prove that f
maps every copy of P identically onto a copy of P. Let P, be such a copy of P. P_is

compact and connected, hence f(P,) is compact, which implies f(P,) = U P,..

Let {pi}* be the set of all points p| € P, such that there is an open set O, pf e O with
f [ O a homeomorphism Then {p/}* is mappud into the set of all points of maximal

order in U P, together with the set of endpomts {ag, bg,}i=1-
i=1
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Let {pi}' = {p}}* be the set of all points which are mapped into the set of all

n

points of maximal order in |J P .. Then {p;}! is everywhere dense in P,, and it is not

i=1
difficult to sce that each point pf e/ pi}! is mapped onto the corresponding point pj
contained in one qf the P, From this it follows that cvery point x € P, is mapped
onto a corresponding point x contained in one of the P,

Since we have chosen the endpoints @ and b of P to be points of order two and
since S* contains no trivial cycles of order two it follows that P, is mapped identically
on another copy P, of P.

Hence f permutes the P,’s among themselves, and we may conclude from theorem
1 that S =~ E(S*) ~ Q(M).

Corollary. Let S be a semigroup with cancellation, with identity element.

Then there is a connected metric space M such that S is isomorphic to the semigroup
of all homeomorphisms of M into M.

The proof follows easily from the fact that in this case each transformation
f* e E(S*) is one-to-one.

Theorem 3. Let S be a semigroup with identity eleinent. Then there exists
a connected compact Hausdorff space H such that S is isomorphic to Q(H).

Proof. Let M be the metric space such that S ~ Q(M), and let H be the Cech-
Stone compactification of M. Let f be a quasi-local homeomorphism of M into M
and ff its extension to H. Since M contains an open dense subset such that every
point of this set has a neighbourhood with compact closure, 1t follows that for every
open set O < H there is an open set V, V < O such that V < M. This together with
the fact that fBf is continuous implies that Bf is a quasi-local homeomorphism of H.

Now let g be an element of Q(H). As g is a quasi-local homeomorphism there i1s
for every open set O — H an open set V < M such that g i V 1s a homeomorphism.

~ Since M is metric, it satisfies the first axiom of countability and for every point
x € V there is a countable sequence of different points x, € V' converging to x, hence
g(V) = M. Next let x be an arbitrary point of M, then there exists a sequence {X,},
x, € M, x, — x such that g(x,) € M. From the continuity of g it follows that g(x,) —
— g(x) and hence g(x) e M. |

Thus g(M) « M and g restricted to M is a quasi-local homeomorphism of M
into itself. From this follows easily |

O(H) =~ Q(M), so O(H) ~ S .

Corollary. Let S be a semigroup with cancellation and identity element. Then
there is a connected compact Hausdorff space H such that S is isomorphic to the
semigroup T(H) of all topological transformations of H into H. Moreover T(H) =

— o(H). |
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4. Local homeomorphisms and open continuous mappings

Let S be the semigroup {e, a, b} with identity element e and multiplication defined
by ab = ba = aa = bb = a.

Let I be a Hausdor!T space and L(#) the semigroup of all local homeomorphisms
of I 1nto 1scelf.

O(H) will denote the semigroup of all open continuous mappings of H into I1.

Theorem 4. There is no Hausdorff space H such that S is isomorphic to L(H).

Proof. Let S be isomorphic to L{H). Then L(H) = {e, f, g} with & the identity
mapping and f and g local homeomorphisms such that fg = gf = ff = gg = g.
Let A be the subset of H such that for each ae 4 f(a) = g(a). Then A4 is closed.
A #+ H and A = 0 since for each point b € f(H) we have f(b) = g(b). We now prove

that Aisopen. Let pe H \ A, pe 4. Let O be a neighbourhood of f(p) = g(p) such
that f is a homeomorphism on O. ‘

Let V be a neighbourhood of p such that f(V) < O and g(V) < 0. Since pe

f(x) and g(x) are contained in O.

Since ff = fg we have f(f(x)) = f(g(x)) and hence f is not one-to-one on O,
a contradiction.

Thus A 1s open and closed.
Now let ¢ be the mapping defined by

_ X for xé& A
#x) {g(.x) for xe A

It is clear that ¢ is a local-homeomorphism of H. Since g(H) < f(H) = A, we have
¢ *= f, ¢ &+ g. Furthermore for each x ¢ A we have f(x) ég(H), since otherwise
f{x) = g(y) and hence gf(x) = g(x) = gg(y) = g(¥) = f(x). Thus g(H) + f(H).
Since ¢(A) = g(A) = g(H) *+= A, we have ¢ =+ & This however is contradictory to
the fact that each local homeomorphism ¢ of H is contained in L(H).

Theorem S. There is no Hausdor[f space H such that S is isomorphic to O(H).

Proof. Let O(H) = {e, f, g} with ¢ the identity and f and g open continuous
mappings such that fg = gf = [f=gg = g. If 4 = {x|xeH, f(x) = g(x)}, then
A %+ 0 and A is closed. Furthermore g(H) < f(H) < A, f(H) and g(H) open. Let
pe H \ A, peA, then f(p) = g(p)eg(H) and hence there is an open set ¥, pe Vsuch
that f(V) < g(H). Let xe H N\ An V. Then f(x) € g(H) and hence f(x) = g(»). Thus
g(f(x)) = g(x) = g(g(y)) = g(y) = f(x). From this it follows that x € 4, a contra-
diction.

The set 4 = {x ! x € H, f(x) = g(x)} is an open and closed set. In the same way

~as 1in the proof of Theorem 4 we now can construct an open continuous mapping ¢
" such that ¢ ¢ O(H). |
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