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Some applications of lattice theory 1in algebra.

We begin this conference with some well-known facts of lattice
theory.

A partially ordered set P is a set with a relation a € b, satis-
fying the following three postulates:

(1) a & a.
{2) a<band b £c imply 2 € c.
(3) a€band b € a imply a = b.

In general for two elements a and b neither a ¢ b, nor b £ 2 needs
to hold. In this case we call a and b incomparable. If in a partially
ordered set P for every peir a, b of elements either a £ b or b £ a
holds, P i3 called a simply ordered set or a chain.

If, given two elements a and b of a partially ordered set P, there
exists an element c satisfying c ¢ a, ¢ £ b, and x £ 8, x £ b imply
X £ c, then ¢ is called the greatest lower bound (g.l.b.) or the meet
of 2 and b, and written a M b. Obviously two elements have at most one
g.l.b. Similarly one defines the least upper bound (l.u.b.) or the
Join a v b of & and b. So we have

(4) afNnb ¢a.
(%) anNnb &b,
(6) X € a and x £ b imply x € a N D,
(7) a £aUb.
(8) b<gaubd
(9) a <xand b € x imply a Ub ¢ X.

A partially ordered set satisfying the condition, that for every
pair a,b of elements a M b and a Ub exist, 1is called a lattice.

The following relations are valid for meet and join:
(10) anNa = a,

(1) anb=bNa,

(12) (a "b) Nnc=2an(bo Nec).
(13) alba=a.

(1) a Wb =b Ua,

(15) (aub) e =2a u(b ve).
(1) awuvu(anb) = a.

{(17) a n(a Ub) = a.

(18) aub=a2a implies a Nb = b.
(1) anNnb=a implies aUb = b,



A lattice may also be defined as a set with two binary operations
N and U satisfying the postulates (11), (12), (14), (15), (16) and
(17). If a £ b is defined by a N'b = a, the relation £ is a partial
ordering, for which the given operations N and v are the meet and the
join. Instead of (11), (12), (1%), (15), (16) and (17), one can also
take (10). (11), (12), (13), (14), (15), (18) and (19) as postulates.

A subset Q of a partially ordered set P is also a partially
ordered set w.th respect to the same order relation. If P is a lattice
with meet N and join U, Q needs not to be a lattice. @ may even be
a lattice with meet A and join V different from the meet and join
of P. Obviously in this case if a€Q and b &Q, then a Ab £ a Nb and
aVbx2auUb. We call Q & sublattice of P only if the meet- and jo'n-
operations in @ are the same as in P.

Examnle. Let V be a set and 43 a family of subsets of V. If A&Q
and B € @, then A € B is defined by A € B (set—inclusion). With respect
to this relation @ 18 a partially ordered set. If ¢ is the family of
all subsets of V, d> 1s a lattice, in which A UB 1s the union and
AN B 1is the .ntersection of the sets A and B. If we take for V a
group and for <§ the family of the subgroupsof V, @ also 1is a lattice,
in which A n B is the intersection of A and B, but A UB 1is the sub-
group generated by A and B, which in general is a set, which contains
the set-union of A and B as a proper subset.

If V is a2 subset of a partially ordered set P and ¢ is an element
of P, such that ¢ £ x for 2ll x € V, and y £ x for all xéV implies y < ¢,
¢ 1s called the greatest lower bound inf V of V. Simllarly the least
upper bound sup V of V ig defined. If one takes for V a set consioting
of one or two elements, one gets the ordinary meet and Jjoin.

If P iz a partially ordered set such that inf V and sup V exist
for every non-void subset V of P, P is called a complete latlice

An element a of a partially ordered set P is called the preatest
element of P, if x € a for all x€P. An element a of & partially ordered
set P is called a maximal element of P if a € x holds for no xeP. Simi-
Jarly least and minimal elements are defined. If P contains a greatest
element a, a2 1s the only maximal element. In a chain the concepts of
greatest and maximal element coincide. A complete lattice P has a great-
est element (viz. sup P) and a least element (viz. inf P). Usually the
greatest clement (if 1t exists) of a partially ordered set is denoted
by I and the least element (if 1t exists) by O.

Theorem 1. A partially ordered set with a greatest element 1, and
such that inf V exists for all non-void subsets of P is a complete
lattice.

Proof: It is sufficient to DHrove the existence of sup V for ¢n
arbitrary non-void subset V of P. Take the set W, consisting of tnose
elements ye€P, for which x £ y holds for all x¢V. Then W is non-void,



because IeW. So ¢ = inf W exists. If xeV, x € y holds for all yeW, so
X & ¢. Purthermore, if for y4P one has x < y for all xeV, then yeW, so
¢ £y. This proves ¢ = sup V

A family <ﬁ of subsets of a set V is said to satisfy the intcr-
‘section-property, if for every non-void subfamily'kp of <@ we have

(M W€<$, M being the sign for set-intersection.
WeY

From theorem 1 it follows that a family QD of subsets of a set
V, which satisfies the intersection-property and for which V& @ holds,
is a complete lattice with respect to set-inclusion, for which inf W =

T
= W for everyL}/‘@ ¢ .
Wey _
From this we infer that the subgroups of a group, the normal sud-

groups of a group, the ideals of a ring, the left ideals of a ring,
the right ideals of a ring, the subfields of a field, the closed suo-
spaces of a topologlcal space form complete lattices.

In the following we restrict ourselves to families of sets satis-
fying these properties.

A family éb of subsets of a set V is said to satisfy the union-
nroperty, 1f for every non-void subfamily HU of @5 which 1is a chauin,

we have K_j WGW¥} L,)being the sign for set-union.
Wey

The abovc-mentioned algebraic examples all satisfy the union-pro-
perty. The closed subspaces of a topological space, however, i1n general
do not satisfy this property.

In lattice theory properties of lattices are investigated; in par-
ticular lattices which satisfy additional requirements, such as modular
lattices, distributive lattices, complemented lattices and so on. The
results of this theory may then be applied in those branches of algebra,
where these additional requirements hold. So e.g. the ideals of & ring
forming a modular lattice the theory of modular lattices may be applied
to the 1ldeal lattice of a ring.

In a recent publication (Trans. Amer. Math. Soc. 75 (1953), 136~
153) R.L.Blair applied lattice theory to the theory of rings in a some-
what different way. He investigated the consequences of imposing requi-
rements on the ideal lattice of a ring which in general are not satis-
fied by this lattice, in this way restricting the class of rings under
consideration. In doing this ring-theoretical properties may be found
with the use of lattice theory and ring theory both. With this method
he treats complementedness and distributivity. In the following we shall
discuss some of his results on complementedness and make some remarks
on ' pseudo-complementedness.

A lattice is called a modular lattice if
(20) a£ b implies (awec)Mb<£Lau(cNb).

In every lattice a v (¢ Nb) £ (a uc) N b holds, so in a modular




lattice
(21) 24 b implies (auUc)Nb=2a vw(cNDb).

The lattice of the subgroupns of an abelian group is easily seen
to be modular. The lattice of the ideals of a ring is a sublattice of
the lattice of the subgroups of the additive group of the ring (the
sum of two ideals being an ideal) and so, the sublattice of a modular
lattice being modular, 1s a modular lattice.

A lattice L with a greatest element I and a least element O is
called complemented if for every aeL, there exists an a'e€eL, such that
afNa =0, a va = 1. We call a' the complement of a. A lattice L is
called relatively complemented if for every aelL, bel, xeL with a £
there exists an y€L, such that x Ny = a, x Uy = b. We call y the
complement of x relative to a and b.

¥
N
(o)

A complemented modular lattice is relatively complemented. The
complement of x relative to & and b is (a W x') O b, which is the same
element as a J (x' N b).

An element a of 2 lattice is called meet-irreducible if a = b Nc

implies a = b or a = ¢

An element a of a lattice is called a point if a # 0 and x £ a
implies x = O or x = a

Blair proves the following theorem:

Theorem 2. If L is a complete complemented modular lattice with
at least two elements, and if each element of L is the g.l.b of a
set of meet-irreducible elements, then the greatest element I of L is
a join of points.

Now we shall prove the well-known fact that the ideal lattice of
a ring has the property that each element is the g.l.b. of a set of meet
irreducible elements. For the proof of this theorem we make use of @
theorem of Zorn, which is equivalent with the axiom of choice of set
theory.

Theorem 3. {Zorn). If a non-void partially ordered set P has the
property that for every non-void subset V of P, which i1s a chain, an
element ¢ exists with x € ¢ for all xeV, then P contains a maximal
element.

Theorem 4. If a family C@ of subsets of a set V satisfies the
intersection-property and the union-property and if Vé(@y then every
element of é@ is the g.l.b. of meet-irreducible elements of @?o

Proof: Let Ae&@, Take the subfamily %J of @>, consisting of those
meet-irreducible elements W of @Dy for which A & W holds. The family

FP is non-void, because Vétﬁa For the intersection X = (—\ W we have
y We W
A X, Take an element ceV, cé.A and the subfamily fl of , consist-

/
ing of those elements U of ¢>y for which A% U and e é U.



The family.(L is non-void, because A<517, Furthermore {1 satisfies

the condition of Zorn's theorem, because the set-union L of a subchain
of {1 is an element of @ . for which A& L and céL holds, so L e (L. B

By Zorn's theorem f?.has a maximal element Y. Suppose ¥ = R NS, R e{@s
Se@ Then we have A @ R, A€ S. Moreover c¢ R or ¢ gf S, for if ¢ &€ R
and ¢ € S would hold both, ¢ € Y would also hold, contrary to ¥ e (..

So Re{) or s €(2, so by the maximality of Y in{l, R=Y or S = Y.

So Y is meet-irreducible in §) and A& Y, so Y éL‘y, so X® Y As ¢ 6 Y,
we have C,¢ X This proves X € A; we had already found A& X, s0 A = X,
which finishes the proof.

We have already seen that the ideal lattice of a ring satisfies
the conditions of theorem 4, so in this lattice every element is the
g.1.b. of meet-irreducible clements. If the ideal lattice 1s comple-
ménted, we mey apply theorem 2. Now a point of the ideal lattice 1is
called in ring-theoretical language a minimal ideal, so we find that
if the ide¢l lattice is complemented, the ring is the sum of 1ts mini-
mel ideals. The converse of this theorem is & direct consequence of
a well-known lattice-theoretical Theorem,

Theorem 5. (Blair). A ring has a complemented ideal lattice if and
only if it is the sum of its minimal ideals.

With a usual method of ring theory 2 sum of minimal ideals way be
refined to a (discrete) direct sum.

It is perhaps of some interest to point out a terminological dif-
ficulty involved by the concept of direct sum. For the sake of simolil-
city we give the definition of direct sum for a finite number of sum-
mands .

A ring R is called the (inner) direct sum of its subrings
Sq,...,Sn, 1f there exists an isomorphism /\ between R and the rine R
consisting of the n-tuples (sq,;..,sn) where s, € S,, and where oddi-
tion and multiplication is defined by (Sq""an) + (tq,e..gtn) =
= (Sq+t1’°°'9sn+tn) and (sqga..,Sn)(tq,,..,tn) = (sqtq,,..,snt y: fur-
thermore A transforms an element ¢ € S, into (0,...,0, ¢, 0,...,0)
with ¢ in the Jth nlace and zeros elsewﬂerea R' is called the outer

direct product of Sq,u.,,S In a similar way the direct product of an

infinite number of Summandg is defined. Direct summands of & ring are
ideals in it,

The sum of a family é) of ideals of a ring is the ideal zenerated
by the ideals in éb. It consists of those elements of the ring which
may be written as a finite sum of elements of ideals belonging to qﬁ.

Now with these definitions of sum and of direct sum the direct
sum of an infinite number of rings 1s in general not the sum of those
rings, but contains the sum as a wroper subset, viz. the subset of the

elements with only a finite number of components # 0. This subset is



usually called the @discrete direct sum of the given summands. Perhaps
it would be better to use in this case the term "direct sum" and to
call the above-mentioned direct sum "direct union”. With this termi-
‘nology a direct sum would be a sum.

We remark that in a similar way the lattice of right ideals may
be treated, which yields the following theorem:

Theorem 6. (Blair). A ring has a complemented right ideal lattice
if and only 1f it is the sum of its wminimal right ideals.

Obviously this theorem remains valid if right is replaced by left
in it both times it occurs.

We are now go.ng toreplace the concept of complementedness by that
of pseudo-complementedness.

In a lattice L with a least element O an element a* is called the

pseudo-complement of the element a if a (O a* =0 and if a Nx = 0 im-
>*

plies x £ a
In a lattice L an element a*b is called the pseudo-complement of

the element a relative to the element b if a N (&*b) £ b and if
anNx 4£5b implies x £ &%b.

If in a lattice with a least element 0 each element has a pseudo-
complement, the lattice is called pseudo-complemented

If in a lattice each ordered pair of elements has a relative l.eu-
do-complement, the lattice is called relatively vnseudo-compleuented.
Obviously a* = 9‘Oa Furthermore a* may be defined as the gireatest

element x for which a M x = 0 and simllarly for a*p .

In Birkhoff's "Lattice theory" some properties of pseudo-comple-
ments are deduced for relatively pseudo-complemented lattices. However,
it is possible to deduce them for pseudo-complemented latcices as will
be shown 1n the following. This 1s a real genefalizatlon, because &
relatively pseudo-complemented lattice is distributive and 1t 1is easy
to give examples of pseudo-complemented lattices which are not even
modular .

We now suppose our lattice to be pseudo-complemented. Then we
have:

(22) aNx=0and aNy=20 inmply a A (x Jy) = 0.

Proof: x £ a* and vy 2 &%, so x Wy £ a¥, so a N (x Uy) £ a N a¥*=0
so an (x Uy) = 0.

(23) a & a7,

Proof: This follows from a N a¥ = 0.
{24) a2 £b implies b¥ < a¥,

Proof: a N b 2 bNb¥=0, soanhb

Applying (24) twice we get:

a &b implies &% ¢ p*¥,
R XX _ %

¢ ¢
* 0O, so b £ a*n

—~~
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Proof: From (23) and (24) .t follows that 2X** a¥; substituting
a® for a in (23) we get a* ¢ a¥¥*¥, so *¥ = ¥,
(27) (a UD)* = 2% b,

Proof: a @ a* M b* = 0 and b N & N ¥ = 0, so, using (22), we pet
(aub)nN a*Np¥=0, so #FNb* g (a U b)Y, The converse inequality

a Ub gives (a L/b)* < a¥* b4 aub gives (a Lﬁb)%‘é

£ ¥, so (a L)b)* < a*N ¥ So we have (a L)bf$ = a*n ™
(28) & Ub¥ <L (a2 no)¥.

Proof: a N b £ a gives a¥ < (a NbY*, a Nb £ b gives b*.é.(a M b)*;
so e U* £ (a Nb)¥,

The converse inequality of (28) is not valid in general (intuitio-
nistic propositional calculus!).
(29) (2 MDY = &¥* X"

Proof: a Nb N (anb™ =0, sob N (anb) £ &, so
b N(a /‘\b)%(\ X L N a* =0, sob N (a N e 2a*%= 0, so
(a N b\ % 2 v¥ oso (a Nb)Y N & N e * A = 0, so (a,f\_b)*m
N g N 0, so SAF AP 4 (a{A\bf%*. The converse inequality i1s
trivial: a MDb £ a gives (a N pY¥ < 2% e\ b < b gives (a NDY* £
“<0¥% so0 (aNb)¥ £ A ¥ So we have (a A B = 2% N pe

We define the operation V by a V b = (a U Db)**. Then we have
af£aVUb £(avbd*, b aub £ (a ubl™ if a4 x, b £ x and
x7 = x , then a Ub £ x, so (a ley**_é x** = x  If we call an element
a closed if a = &% (or equivalently if a = ©* for some b), then in the
partially ordered set of closed elements the operation V 1is the join-
operation. Furthermore (29) yields that if a and b are closed, a M\ DL i
closed too. So we find that the closed elements form a lattice.

is trivial: a &

The following two properties are obvious:
(30) 0% =1,
(31) 1I¥ = 0.
Applying (27) and (30) we get a vV a¥ = (a u a%)**‘= (a*rﬁ ¥V =
= 0" = I, 80 we have:
(32) a Vv g% = 1.

I

*

By definition we have a N a¥ = 0, so in the lattice of closed ele-
ments a* is a complement of a.
(33) (ano)* = & vip*

Proof: (a M Db)* = (a P\bj**q¢= (a*ﬁ*(ﬁb**f* = (v By = g7 v b
(34)  (a v b = &Nt

Proof: (a V bf* = (a L)b)*** = (a U bfe = 8% N p*,

A complemented lattice in which the complements satisfy (33) and
(34) is called an orthocomplemented lattice. So the lattice of closed
elements is orthocomplemented. Furthermore in this lattice every element
has only one complement. For suppose we have elements a and a' with
e*¥ = a', ana =0, aVa' =1, then anNa' = 0 implies a' £ &%,
so a¥% £a™ and a YV a' = I implies 0 = I¥ = (a V a‘)% = a* N a¥, so




a”™ < 2™ 30 we have 2'* = &¥* and therefore a' = a** = g *¥ = a%
A lattice 1s called a distributive lattiée if it satisfies
(35) afN(buc)£L(anbd) ulsnec). |
In every lattice (anNb) U(anNc) <an (b uc) holds, so a dlse-
tributive lattice satisfies
(35) an(buce) =(and)Uu(anc) .
A complemented distributive lattice is called a Boolean alpgebra.
It is a well-known theorem of lattice theory that an orthocomp)le-
mented lattice, in which every element has only one complement, 6 ir a
Boolean algebra (Birkhoff, Lattice theory, p. 171).
So we may conclude:

Theorem 7. The closed elementc of a pseudo-complemented lattice
form a Boolean algebra,

In Birkhof{'s "Lattice theory" this theorem is proved only for
pseudo-comnlemented distributive lattices.

If the ideal lattice of a ring R is pseudo-complemented and A 1s
an 1deal of R, obviously the pseudo-complement A* of A is the sum of
all ideals disjoint from A. Conversely if in a ring R the sum of cll
ideals disjoint from an ideal A is also disjoint from A, the 1ldeal
lattice of R 1s pseudo-complemented. So we have:

Theorem 3. If the ideal lattice of a ring R is pseudo-complemented
the sum of the ideals of a family <§ of ideals of R with the property
that ae D, B é(f and A # B imply A M B = 0 (the zero ideal), is a2
diacrete-éirect sum,

The lattice of closed elements in a pseudo-complemented lattice
may be trivial. If a lattice L with O and I is such that the partially
ordered set of elements # O has a least element, then L is pseudo-com-
slemented with a¥ = 0 for a # 0, and 0% = I. The only closed elements
are 0 and I. In the ideal lattice of a ring R this is the case if R
contains a least ideal # 0, which e.g. occurs in primitive rings w-th
minimal right ideals, the sum of all minimal right ideals being such
an ideal (cf. Jacobson, Amer. J. Math. 57 (1945), p. 317).



