STICHTING

MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49
AMSTERDAM

```
ZW 1954-013
```

An inequality involving Beta-functions
R. Doornbos, H.J.A. Duparc, C.C. Lekkerkerker and W. Peremans

1954

An inequality involving Beta -functions.
 by
 > R.Doornbos, H.J.A.Duparc, C.G.Iekkerkerker and W.Peremans.

 R.Doornbos, $\mathrm{H} . \mathrm{J} . A . D u p a r c, C . G$. Iekkerkerker and W.Peremans.

 R.Doornbos, $\mathrm{H} . \mathrm{J} . A . D u p a r c, C . G$. Iekkerkerker and W.Peremans.}This report deals with a question put by the Statistical Dept. It concerns an inequality in which complete and incomplete Beta-func. tions occur. The result is as follows.

If a and b are positive, then for $0<\mathrm{g} \leqq \frac{7}{2}$ one has

Proof. First of all we deal with the particular case $g=$. We dents the left hand member of (1) by $I(g)$. Let m be the triangle bounded by the lines $x=y=0, X+y=1$ and T ' the triangle bounded by the lines $x=\frac{1}{2}, y=0, x+y=1$. Then for reasons of symmetry we haw

$$
I\left(\frac{1}{2}\right)=\frac{1}{B(a, b) B(a, a+b)} \cdot\left\{\iint_{T}-2 \iint_{T}\right\}
$$

If in both integrals of the last member we apply the substitution $x=x, y=u(1-x)$ we get

$$
\begin{aligned}
L\left(\frac{1}{2}\right)= & \frac{1}{B(a, b) \frac{B}{B}(a, a+b)} \cdot\left\{\int_{0}^{1} x^{a-1}(1-x)^{a+b-1} d x \cdot \int_{0}^{1} u^{a-1}(1-u)^{b-1} d u\right. \\
& \left.-2 \int_{\frac{1}{2}}^{1} x^{a-1}(1-x)^{a+b-1} d x \cdot \int_{0}^{1} u^{a-1}(1-u)^{b-1} d u\right\} \\
= & 1-\frac{2}{B(a, a+b)} \int_{\frac{1}{2}}^{1} x^{a-1}(1-x)^{a+b-1} d x
\end{aligned}
$$

Consequently

$$
\begin{aligned}
& L\left(\frac{7}{2}\right)<\left\{1-\frac{1}{B(a, a+b)} \int_{\frac{1}{2}}^{1} x^{a-1}(1-x)^{a+b-1} d x\right\}^{2} \\
& =\left\{\frac{1}{B(a, a+b)} \int_{0}^{\frac{1}{2}} x^{a-1}\left(1-x^{a+b-1} d x\right\}^{2},\right.
\end{aligned}
$$

which proves the result for $g=\frac{1}{2}$.

Next we deduce from this result that (1) also holds for $0<g<\frac{3}{2}$, We put

$$
\begin{aligned}
& \frac{B(a, b)}{B(a, a+b)}=c \\
& c\left\{\int_{0}^{g} x^{a-1}(1-x)^{a+b-1} d x\right\}^{2}-\int_{0}^{g} \int_{0}^{g}(x y)^{a-1}(1-x-y)^{b-1} d x d y= \\
&=\varphi(g)
\end{aligned}
$$

We shall prove that there exists a point g_{0} with $0<g_{0}<\frac{1}{2}$, such that $\varphi(g)$ is steadily increasing for $0<g<g_{0}$ and steadily decreasing for $g_{0}<g<\frac{1}{2}$. The relation (1) will then be proved complelely.

We note that on account of the logarithmic convexity of the Γ - function we have

$$
c=\frac{B(a, b)}{B(a, a+b)}=\frac{\Gamma(b)}{\Gamma(a+b)} \cdot \frac{\Gamma(2 a+b)}{\Gamma(a+b)}>1
$$

$$
\text { Differentiating } \varphi(g) \text { with respect to } g \text { we get }
$$

$$
\begin{aligned}
& \varphi^{\prime}(g)=2 c g^{a-1}(1-g)^{a+b-1} \int_{0}^{g} x^{a-1}(1-x)^{a+b-1} d x \\
& -2 \int_{0}^{g}(g x)^{a-1}(1-g-x)^{b-1} d x \\
& =2 g^{a-1}(1-g)^{a+b-1}\left\{c \int_{0}^{g} x^{a-1}(1-x)^{a+b-1}-\int_{0}^{\frac{g}{1-g}} x^{a-1}(1-x)^{b \cdots-1}\right. \\
& =2 g^{a-1}(1-g)^{a+b-1} \quad \varphi_{1}(g), \text { say. }
\end{aligned}
$$

Next differentiating $\quad \varphi_{1}(g)$ we find

$$
\begin{aligned}
& \varphi_{1}^{\prime}(g)=c \cdot g^{a-1}(1-g)^{a+b-1}-\frac{1}{(1-g)^{2}}\left(\frac{g}{1-g}\right)^{a-1}\left(\frac{1-2 g}{1-g}\right)^{b-1} \\
& =g^{a-1}(1-g)^{-(a+b)}\left\{c(1-g)^{2(a+b)-1}-(1-2 g)^{b-1}\right\} \\
& =g^{a-1}(1-g)^{-(a+b)} \quad \varphi_{2}(g), \text { say. }
\end{aligned}
$$

Clearly
(2)

$$
\left\{\begin{array}{l}
\varphi_{1}(0)=0, \\
\varphi_{1}\left(\frac{1}{2}\right)<c \quad \int_{0}^{1} x^{a-1}(1-x)^{a+b-1} d x-\int_{0}^{1} x^{a-1}(1-x)^{b-1} d x \\
=c B(a, a+b)-B(a, b)=0, \\
\varphi_{2}(0)=c-1>0, \quad \varphi_{2}\left(\frac{1}{2}\right)>0 .
\end{array}\right.
$$

$$
-3-
$$

Further we have $\varphi_{2}(g)=0$ if and only if

$$
1-2 g=\quad \sqrt[b-1]{c} \quad(1-g)^{\frac{2(a+b)-1}{b-1}}
$$

in the case $b \neq 1$,
$1=c \cdot(1-g)^{2 a+1}$ in the case $b=1$ 。
Since for fixed real $\alpha \neq 1$ the function $f(t)=t^{\alpha}$ is either a convex or a concave function for $t>0$, it follows that $\varphi_{2}(g)=0$ for at most two values of g.

Since $\varphi_{2}(g)$ is the derivative of $\varphi_{1}(g)$, apart from a positive factor for $g \neq 0$, it follows from the above result and the relations (2) that $\varphi_{1}(g)$ is equal to zero for $g=0$, positive for small values of g, negative for $g=\frac{1}{2}$ and that $\varphi_{1}(g)$ has at most two extra in the interval $\left(0, \frac{1}{2}\right)$. Hence $\varphi_{1}(g)$ has exactly two extrema and exactly one zero, g_{0}, say, in the interval $0<g<\frac{1}{2}$. Moreover $\varphi_{1}(\mathrm{~g})$ is positive for $0<\mathrm{g}<\mathrm{g}_{0}$ and negative for $g_{0}<\mathrm{g}$. . The function $\varphi_{1}(g)$ being the derivative of $\varphi(g)$, apart from a positive factor (for $g \neq 0$), the proof is completed.

