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This report deals with a question put by the Statistical Dept.

1t concerns an inequality in which complete and incomplete Beta-Tfunc-
tions occur. The result is as follows.

If a and b are positive, then for O < g £ 4+ one has

g & 2 '
J/ // (Xy)a”1(1—x~y)b"1dxdy ][ xa_1(1—x)a+b“1dx !
. 0 0 0
(1 , e A _—
B(a,b)B(a,8+0) < B(a,a+b)

Proof. First of all we deal with the particular case g = 3. We denot:
tihie left hand member of (1) by L (g). Let T be the triangle bounded
by the lines x =y = 0, z+y = 1 and T' the triangle bounded by the

2

lines x =% , ¥y = 0, xty = 1. Then for reasons of symmetry we hav-

L (%) = (s, b)%(a,a+b) '{JC/ "2 jg{ }

If in both integrals of the last member we apply the substitution
x =%, vy =u(1-x) we get

! 1
] j/ a-1 a+b—1 J/ a—1 =1
L(%) = ~ B(a,b )B(a,a+b) ° 3 x7 (1-x) dx. / & (1-u) du.

g 1
-2 l/’xa"1(1«x)a+b“1 dxgv/r 118‘—1(1--11)10"1 du
0

P

1
_ 2 // a-1 a+b~1
= 1 = mgm P X (1-x) dx.
Consequently 1

L(?a’) < {1— “g*(‘a“;;-rg i/ Xa~1( 1—X)a+b_1 ax } 2

S B _8+b-1 2
{ B(a,a+b) O/ (1-x% dx} .

which proves the result for g = 3
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Next we deduce from this result that (1) also holds for O<g < =-
e put
a,b o
a,a+b - i

g

{4

g
x2 <1~x)a‘“b"1dx}2 - 7 S ey xp® laxay =
0 0

= ¢(g).
“e shall prove that there exists a point g  with 0 < g < % , such
that ‘P(g) is steadily increasing for O<g < 8o and steadily de-

creasing for g,< &< %. The relation (1) will then be proved comple-

tely.

We note that on account of the logarithmic convexity of the
[T - function we have

_ Bla,b) (b T (2a+b)
¢ = Béa,a+b§ = F%a+b5 ° Flatb) 1

Differentiating ¢(g) with respect to g we get

: g
o'(g) = 20 ga-—1(1__g)a1—b~‘] é a1 (1~X)a+b—1dx

g
~2 “/ (g:s:)a"1 ('l—-gmx)b"1 ax
0
g -
a1 a+b—1 a1 a+b1 LI b
= 2g (1-g) c J/ X (1-x) - Jf L7 %)
0 0
= 2g%7 1 (1-g)2"P" 1, ¢,(8) , say.

Next differentiating ¢, (g) we find

a-1 _
@i (g) = c.g® 1(1-g)2" 1 - (1_1_g)2 (55 ) )

_ ga~1(1«g)—(a+b) { c(1~g)2(a+b)"1 _ (1~2g)b'1}

= &2 1(1-2)"(3*P) ¢ (g), say.
Clearly

¢,(0) =0, 1
@1<%) < c d/ Xa"1(1~x)a+b“1dX~ d/ xa~1(1~x)b"1dx

(2) = ¢ B(a,at+b)~ B(a,b) = 0,

c~-1 >0 s (PZ(%) > 0.

]

9,(0)




-3

Further we have qz(g)'= 0 if and only if
2(a+b)~1
b1

b-1
\/  c. (1-g) in the case b # 1,

1 = Ce (1—g)23+1 in the case b = 1.
Since for fixed real o # 1 the function f(t) = +% is either a con--
vex or a concave function for t > O , it follows that cpz(g) = 0
for at most two values of g.

Since @Z(g) is the derivative of @1(g), apart from a positive
Tactor for g # 0, it follows from the above result and the relations
(2) that @1(g) is equal to zero for g = 0, positive for small va-
lues of g, negative for g = % and that @1(8) has at most two extra-
in the interval (0,%). Hence @1(g) has exactly two extrema and
exactly one zero, 8y SaY5 in the interval O < g < %. Moreover

1-2g

{]

wq(g) is positive for O < g < g, and negative for g < 8 = e

The function @1(g) being the derivative of ¢(g) , apart from a
positive factor (for g # O) , the proof is completed.



