STICHTING

MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49
AMSTERDAM

ZW 1955-013

On slmost primes of the second order

HQJOA. Dupa.rc

1965



The Mathematical Centre at Amsterdam, iounded the 1ith of February 1948, is a non-protit
insntution aiming. at the promotion of pure mathematics and its applications, and is
sponsored by fhe Netherlahds Government through the Netherlands Organization for
Pure Research (ZW.0) and the Central Nationol _Council for Applied Scientitic Research
in the Netherlands (T.N.C.). by the Municipality of Amsterdam and by several industries.



On almost primes of the second order

by

H.J.A. Duparc

Introduction, The well-known theorem of Fermat states that for
primes p one has ap’qgg (mod p), provided pt a. There exist also
composite numbers m which satisfy the relation a™ = 4 (mod m), either
for some value of a (for instance a=2; Poulet numbers) or for all a
with (a,m)=1 (Carmichael numbers).

If one possesses a table of all Poulet numbers up to a certain
1imit, then one may conclude that an integer m below this limiﬂ is
prime if and only if m o=

-1 and m does not occur in the table, This
procedure may be formulated in a slightly different way, which may
give suggestions for other ways of investigating primality of a
positive integer m. One considers the linear recurring first order
sequence defined by

u_ =1, u = 2u_ (n = 0,1,...)

and finds out whether its period mod m does or does not divide m-1.
Now a generalization suggests itself. Instead of considering
linear recurring sequences of the first order one takes such sequences
of the second order. Then one finds out whether a certain property of

its elements, valid for primes p, holds for the integer m under
consideration. Once the composite numbers which also satisfy that
property are tabulated, a new test on primality is obtained.

Now consider a second order recurring sequence defined by

(1) u=0, u,=1, u = au

nao + bu (n = 0,1,...).

n+1 n

Introducing the discriminant D = a2+4b of i1ts characteristic polynomial
f(x):xZ—ax—b one has for a prime p with p%/b the following properties

A, up_(z)sz 0 (mod p);
P
B. v, = a (mod p);
_ (D
C. U, =;(p) (mod p).

Here Vi is an element of the associated recurring sequence defined by



v,=2, V,=a, Vv _,.=av_ +bv. (0 =0,1,...).

n+2 n+1

In order to prove these relations the following properties are used

2) xu bu o= An(x) = x" Ao(x) = x" (mod Xg-ax—b) R
U (g) = 1, then 2) xP= T = (modd x2~ax—b,p);
if (%) = -1, then 3) P = p (modd xg—ax—b,p)s
if (%) = 0, then 3) xP=L4b (modd x°-ax-b,p);

vnzbu _4+u

n = 2u_ , .-au (n = 0,1,...).

n+1 n+1 n

‘he last relation follows from the fact that it holds obviously for
2=0 and n=1 and that the sequences (u) and (v) satlsfy the same
eurrence relation.

From these properties in the case (%):1 one derives

A Xp—/]

il

o .
Ap_q(x) = xup_1+bup_2 (modd x“-ax-b,p),

hus uy_ g =0 (mod p), bu, o= (mod p), hence u,= (mod p) and the
relations A,3 and C follow immediately in this case. In the case
Ty

r;: -1 one cerives similarly

_ D+1 _ B 2
b=x = Ap+1(x) = xup+1+bup (modd x“-ax-b,p),

Thn up+1EiO (10d p), upa-ﬂ (mod p), whence again the relations A, B
and C follow irmediately. Finally in the case (%):o one has

| . 2
gba>J)§Ap(x) = Xutbug (modd x“-ax-b,p),

thus up~1za§-(nmd ), u =0 (mod p), whence also here the relations A,
B and C follow easily.

Composite hunbers M which satisfy at least one of the three
relations A,B and J will be called second order almost-primes. Simple
cxamples may show thit a composite number satisfying one of these
relations does not neressarily satisfy the others. Hence three kinds
of" second order almost-primes can be distinguished.

-k . - e = - —

1) Confer for instance H.3,A. Duparc, Periodicity properties of
recurring seqguences II, Proc.Kon.Ned,Ak.v.Wetensch. A 57 (1954),
473-485; thedrem 30,

2) H.J.A. Duparc, Loc.cit. theorem 36.
3, H.J.A. Duparc, Loc.cit., theorem 37.



In section 1 the second order almost-primes of the types A,B and
C will be considered successively. Section 2 is devoted to a special
second order sequence, the sequence of Fibonacci, Properties of the
almost primes with respect to this sequence are derived., Further a
table of all the almost primes of the type B which are < 555200 is
given., It was a suggestion of van der Poel to tabulate these numbers
in order to obtain a new test on primality. Moreover it will be proved
that with respect to the sequence of Fibonaccl there exist infinitely
many almost primes of each of the types A,B and C. In section 3 it will
be investigated whether there exist composite numbers M which satisfy
one of the three relations A, B or C for all second order sequences (1)
with (M,b)=1. These numbers will be called second order Carmichael
numbers. It will appear that there are no such numbers of the kinds A
and C, whereas a characterization of those of the kind B will be given.
Unfortunately the author was unable to prove or disprove the existence
of such numbers.,

Section 1. Second order almost-primes.

Let M = p'm = pm' (with p prime, 2} p, ptm, rz1) be a composite
number satisfying the relation A for a fixed given sequence (1). Then
one has prl M! Uy for k:M—(%) and moreover by a property of recurring
p With h=pr—1 (p-(g)z. Now by a property of
the symbel of Jacobion has k:mh+j(5) where j=m _(EQ), hence prluj.

Conversely pr}uj leads to ppfuk on account of pp}uh. This proves the

sequences one has pr u

following criterium for second order almost-primes of the kind A.

Theorem., An integer M=pqpq...psrs (where Dyse..sPg aTE different
primes) satisfies M*u p, 1f and only if
M‘(ﬁ)
fo n D M
1 ,ujg_, where J_ = Mg - (ﬁ;)’ M= o (o= 1,...,8).

Application. An integer M=pg (where p and g are different primes)
if and only if

satisfiesg M’u D
M-(m)
a-(3) p-(3)

Now second order almost-primes of the type B will be considered.
Here the followling important relation will be used

- - - ——

4) H.J.A. Duparc, Loc.cit. theorem 33,



' _ _ NEE \é'(h"l-{)
3) VetV = DU Yi(nek) - Vi | 1000 ?

far(pys (P ]

= Yi(n+k) "3 (h-x) " Yk

oj-

The proof of (3) runs as follows. From the identity

(2) xnszunx + bu, ., (mod x°-a%-b)

-1

one derives replacing x by a-x

(a-x)nsaun(a—x) +bu,_, (mod xo-ax-b),

hence by subtraction of there relations

(4) (2x-a)u_= x"-(2-x)"  (mod x"-ax-b)

and by addition of them

n n 2
au +2bu,_, = x +(a-x) (mod x“-ax-Db).
Then from vn=bun-1+un+1 = aun+2bun_1 cne obtailns
'5) v_=x" + (a-x)" (mod xCmax-b) .

Another proof of the relations (4) and (5) car be given by mathematical
induction on n. Now (3) may be found by straight forward substitution

of the results (4) and (5) using also the relatione x(a-x)= -b(mod x-a%~b)
and (2x-a)2EED(mod X2~8X—b). It may here be remnrked that a further
important relation, to be used later,

L | R
L0) Up=Uy = UL (pa) Vi(hok) T ak(1+(~o) ( ))
yolh-k
" (h-k) Vi (hie) T Uk(1~(~b) )
can be proved in entircly the same wav.

Hemark. The relations (3) and (6) with k=1 are also gilven by D. Jarden,
Factorization formulae for numbers of I bonacz2i's gequence decreased or
‘ncreased by a unit, Riv. Lemat. 5 (1951), 55-58.

Now let M=p m=pm! (with p4 m) be a second order almost prime of
the type B. Then for h=M and k=m' in the case /- %):1 the relation

e : x
‘M-m')

-

1
(-p)3P (puq)s.ﬂ (mod p"), hence (-b)

celation (3) yield

= 1 (mod p"), and the

ot . ! r
7. Vg = Vo = Duige {wod p ).

2\ ) u%<M"m')



+1 one has = 0 (mod p"),

N
i
<
=
N
=
]
=
1l
e
s
i
A

r
) = -1 one has 5) u%(M+m‘)= u1 r-ﬂ(_ =0 (mod p )

D 5) =
£ (5)=O, one has p!D and moreover u%(M_m,)==ul P

(p-
quently in each of these three cases one has v =V (mod P )
=a

using (7) the relation v,=a (mod p") leads to Vo

M
rsely.

In the case (- %) = -1 however one has

5 (em')

1 r-1
(-0)2P (p-1) 2 -1 (mod p"), hence (-b) = -1 (mod p").

the relation (3) yields

V., - V., =V, v (mod pr).
M m' = F(Mm') F(M-m')
;) = 41 one has 6) U oL4 =0 (mod p"), U g =0 (mod p"),
p " (p-1) 2 (-1
. . r
wsing the relation Uy, =u, v, one obtains v pp 1(p 1)~WO (mod p )
2

since m =%(M-m')/%pr'1(p—1) is odd finally L (Mem! ) =0 (mod p").
1e case (2) = -1 one findg in entirely the same way

Hn,)ga 0 (mod p"). The oasg (2):0 doecs not occgr here since

= a“+4b leads to -b=(32)° (mod p), hence (- 5) = 1
Consequently in all possible cases one has vaﬁvm,(mod p') hence
5z (8) the relation Vy =2 (mod p") leads to Vo =8 (mod p") and
>rsely.

This proves the following
r, r

~em, A necessary and sufficient condition for M:p,I eeal (where

s
-.,Pgy are different primes) to be a second order almost-prime of
B is
r.

3 M
VM%;za (mod p_ '), where M_= o (o= 1,...,8).

articular a product M=pg of two different prime factors is second
 almost-prime of the kind B if and only if

v, =a (mod q), vy =2 (mod p).

-.J.A. Duparc, Loc.cilt. theorem 33.
.J.A. Duparc, Loc.cit theorem 2" ... 3R.



second order almost-primes of the kind C. 6
et M= p'm = pm' (pkm) saticfy

Uy Eﬁ(%) (mod M),

Tf (—) = +1 then 7) uh"uk (mod p") if ppmq(paﬂ)‘ h-k. Hence uy=u_ L (mod p~

g nd one finds U ﬂ’(—T (mod p"). Conversely the last relation leads to
Ay = ( ) (mod p .
D

1f (5) = -1 then in the case (%;)

and moreover pP§ ulpp(
2

|
+1 one has (~pr (p~42531 (mod pt)

il

p+1) &uE(M+m')' Consequently using (6) one

. r ‘
finds p !uM+um,. In the case (7;) -1 one has

L.r

z -1) - r 8) _r
“b)ap‘(p = -1 (mod p") and moreover D {u
( ( ! pf(p+1)’
r r
& %’ul r » hence p &v

50 (p+1)

In either case one has u

) and (6) yields p iu +u

Vi (v ! M “m'"

o' (p+1)
M= Uy (mod p") and u
1er(m.) (mod p") and conversely.

Finally 1f (p) = 0 one has 9) p]up, hence P P}uM and the

relation uy ( ) (mod p¥) is satisfied automatically Psince both mem-

M:z(%) (mod p") leads to

7) r“u

bers of thlo congruence are = 0 (mod pP).

Resuming one finds the following
r r

Theorem. An integer M = P4 q...pu ° (Dqs..,,pg different primes) satis-
f'ies for a sequence (1) the relation Uy 55 (%) (mod M) 1if and only if
I’I
— (D o M
uMqu;(M;J (mod p. ), M,= S pJﬁ‘D (o=1,...,8).

Application., An integer M = pa Where p and ¢ are different primes not

dividing D) is a second order almost-prime of the kind C if and only if

D D

(9) uy=(g) (mod @), uy =(z) (med o).

Remark,

For all odd primes p dividing D the integer M:pr (r=1,2,...)satisfics
r)

P Uy hence D _

50 all these integers are second order almost-primes of the kind C.

Section 2, In this section integers will be investigated which satisfy

A,B or C for one of the most simple recurring sequences of the second
order, viz. the sequence of Flbonacci:

u =0, u =1, U o= U 4fu (n=0,1,...).

n+2 n+1 "n

H.J.A. Duparc, loc.cit. theorem 33.
8) H.J.A. Duparc, loc.cit. theorem 33 and 38,
9) H.J.A. Duparc, loc.cit. theorem 36
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Here almost primes M of the type A satisfy M{u 5, those of the type
B satisfy M ‘VM-ﬂ and those of the type Crmtis?ﬁ(ﬁ) MluM—(%)o

It will now be proved that there are infinitely many almost-primes
of the type A. For the proof use will be made of the following
-

Lemma . H’Z*M,B*M,5&M,MKUM4LV
— i
relations, i.e. 24N, 3.} N, 540 and N

then N=uEM satisfies the same

uNM(%).
Proof, One has 24/N, since 2)N=u2M would lead to 3 i2M, contrary to
34 M.
One has further 3,¥N, since 3)N=u2M would lead to MIEM, contrary to
2.p M.

Finally one has 54/N, since 5]N:u2
*'M.

Further 1f ¢ denotes the smallest positive integer with M‘uC and
¢=C(N) thequalles pogitive integer with M]uc, Mfuc+1~1, then 1t has
been proved>that V= % is an integer, which is equal to 1,2 or 4, The
value v=4 only occur; if ¢ iz odd. Now by assumptlon one has CIM—(%),
hence C\E(M~(é)) in the cases v=1 or 2. In the case v=4 the integer c¢

would lead to 5

M 2M, contrary to

1

o

M
is odd, hence ci%(Mn(%)) and also then C)E(M~(%)), Consequently 11)
[y
UsyE= U (5)=(%) (mod M), hence M)ugMu(ﬁ) = N~(%). Since both N and M are

M
. hans also o i ~ oy - (2
odd one has also 2M 2M]uN~(5)' Finally (M) = (N)' In

-
N-(2), hence N=u
M il

fact if (g) =1, then M= #1 (mod 10), honce 2M=+2 (mod 20) and Neugy=u_

- RS - —k
+1 (mod 5),thus (%):1. If however [2)=-1 then M= +3 (mod 10), hence
2M= +6 (mod 20) and N=u

il

U, o3 (1103 5), hence (%)=-1. This proofs

- QME —a—
N}u Eoe
)
N'<N)

Now using the lemma one obtains infinitely many almost primes Mh of
the type A once one such number M:MO with (11,30)=1 and Miu 5 ig
found. In fact one has only to take , M(M)

Myiq = ugmh (h = 0.1 )

Now for Mo one may take any prime #2,3,5, for instance M=7; then gy ig

almost-prime in the sense A, Here 1t has to be remarked that u is

2k~ "k
certainly composite,

ke e U i e e e man b o

10) H.J.A. Duparc, C.G. Lekkerkerker, W. Peremans, Reduced sequences of
integers and pseudo random nunoT. Tigopoct ZW 1953-002, Mathem.Cen-
frum; theorem 11.

11) H.J.A, Duparc, C.G. Lekkerkerker, W. Peremans, Loc.cit., theorem 2.



[s]
Also one. obtains infinitely many numbers of the desired kind from

the seguence u,_, where p runs through all infinitely many primes 2 7.

2p
Remark., There appears to be the following connection between prime pairs
and the almost primes considered here. If p=17 (mod 20) and g=p+2 are
both prime, then M=pg is an almost prime of the kind A.

_(5)=(5)o * ) o -
In fact since (p)~(q)_1 one has p)up+1_uqﬁ(i) and qluq__,1 041
=U . g
5
p-(5)
The almost-primes of the type B were defined by M v, ~1. A table of

M
all such numbers which are < 555200 is given at the end of this paper.

It will now be proved that there are also infinitely many almost-
primes of the type B. Here the following lemma will be proved:

Lemma, If 24’M, 34"M, M IVM—ﬂ, chen N:_—vM satisfies the same relations.

Proof. The relation 21N=vM would lead to 3|M, contrary to 3%’M. The
relation 3’N=VM would lead to M)M—Q, contrary to 2%‘M.
If N1 (mod 4), then 4M}VM—1, hence 2M}%(N—1) and using (3)

M= VM\ uzM\“%(N-ﬂ) S N-1) W(ne) = Yyl

If N=3 (mod 4), then +(N-1) is odd. Since Ml%(N—ﬂ) one finds again
using (3)

v..-1,

N

1= v | ) ) () S

From this lemma it appears that any number of the sequence defined
by

is a number of the desired type, once it 1s now that Mo is so. Here for
M, one may take for instance MD=4181=37.113, which number satisfies
Mo vMawﬂ, as may be easily verified by making use of the second theorem
of section 2.

Finally the almost-primes of the type C are consgidered. These
composite integers satisfy M{uMu(%). Of course it will be proved that
there exist also infinitely many‘pseudowprimeﬂ of this typz and also

here a lemma will be used.

=
Lemma., If M=1 (120) and M}UM“(ﬁ), then these relations hold also for
N=U,,.

M
Proof. One has C(8)=12, hence N=uy = u,=1 (mod 8).Also C(3)=8, hence
N=uy = u, (mod 3). Finally C(5)=20, hence N=uy=u,=1 (mod 5). Consequent-

ly N=1 (mod 120) and (i ~(%}=1. Since both N and M are odd the relation

=
M!uM»( ) = N-1 leads to M‘%(Nwﬂ). Then using (6) one finds

=W,



J

From this lemma it follows immediately that any element of the

NzuMl "5 (N-1) \u%(N~1) Vi(n4t) T Uyl= uN“(%)'

sequence defined hy

M = u (h = 0,1,...)

h+"1 M

h

is a number of the desired type provided Mo is so, For MO one can take
for instance 13201 = 43.,307.

Section 3. Second order Carmichael numbers,

A second order Carmichael number of the type A is a composite
number M which saticfies M‘UM_(D) for all recurring sequences (1) with
(M,b)=1. It will be shown however that such numbers do not exist.

Let M=p'm with p4 m be a second order Carmichael number of the
type A. Now first take a recurring sequence (1) with characteristic
polynomlal f( )=(x-1)(x-g), where g is a primitive root mod p". Then

r.“/](13 W)In. Consequently

p-1) lp m—(wF%%—), hence

r=71. Further conslder a recurring sequence for which thg chflracteristic

for U= -7—-onc has prlun if and only if p

the flPSt theorem of section 1 gives pp*ﬂ(

polynomial f(x) = x2~ax—b is a mod p irreducible divisor of the cyclo-
tomic polynomial of degrece pg—ﬂ. Then one has p]un if and only 1if p+11n
In fact p+11n leads obviously to 2) p) p+1} . Conversely 1f p{un, wilth
p+44”n‘, then an integer h exists such that p}u with O<h<p+1. Hence
using (2) x0 E%uhﬂq(modd f(x)p) and o= q>‘~1 (modd f(x),p) where
O<:h(p—1)<.p2~1, contrary to the construction of f(x). Then the

immediate consequence D\M[gn“(;“ of the assumption on M lecads to
1

p+’1*m~(2 . Now consider anothef BUC% zequence with polynomial Xz—ax—b1
where b b (mod p). Hence p+1l m-( —1) If one chooses b, such that

= 1
b,=b (mod a) for ovary divisor q of m apart from one divisor g, and
that (2 gMb) = (i——iéi ), then (%): ~(§1). This leads to the contra-

diction p+1)m+1 and B+1)m 1.
Now first second order Carmichaecl numbers of the type C will be

M.J%) (mod M) for all

recurring sceauences (1) with (M,b)=1. It will be proved that these

consldered, i.e. composite numbers M satisfying u

numbers 4o not exist neither.
Suppose M:prm with p%’m is a second order Carmichael number of the
type C. Now first take a recurring sequence (1) with characterti tic

polyngmial f(x)=(x~1)(x-g) where g is a primitive root mod p'. Then for
r--1

u= 21 one nas pP\un if and only if p"~ '(p-1) | n. Consequently the

n  g-1

12) H.J.A. Duparc, Loc.cit. theorem 36.
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' : (g° ™)
third theorem of section 1 gives p &u » 1= g gg_q and
pm

pvq(puﬂ)}prm~1 hence r=1 and p~1]m—1. Further a special recurring

p
sequence (1), necessary to disprove the existence of the second order
Carmichaelnumbers of the type C will be constructed. First the follow-
ing lemma 1is proved.

Lemma. For every prime pz 7 there exist integers r,s and t such that

t=r+s and (£)=(E)=(g)=4.

p p

Proof. Let h be an arbitrary odd quadrat%e residu £1 of p. Such an
integer h-exists since p2 7. Take s:(Egi) s t~(E%1) , then r=t-s=h and

also s and t are guadratic residues mod p with t=r+s.

Now the special recurring sequence (1) necessary to disprove the
existence of the second order Carmichael numbers of the type C will be
constructed, If r,s and t denote thc above found integers, first take
APt (mod p), b'=- %s (mod p). Then for D'=a®+4b' one hae
D'z=t-s=r (mod p), hence (%?) = (%%) = 1. Now take b'=b (mod p) such
that D = a2+4b is a non-residu mod m. (This can be obtained by the
Chinese remainder theorem; for b one has to satisfy b=b! (mod p) and

bsg%-(d~a2)(mod m), where d 1s a fixed integer with (%):—1). Then one
has (%):(E%J=1 and (%)=~1. Consequently for this sequence one has
using (6)

T = () Vi(mar) - (R,

b

hence u _-1=uy vy ) (mod p) on account of (%T)=1 and p-1|m-1.
2

: (m—”l)) 5 (m+1

13 .
pluy (p-s b

This disproves the existence of the second order Carmichacl

Moreover one has
. D
U -(Z2) .,
o u,-(2)

numbers of the kind C and only those of the kind B may exist.

E hence p?u%(m_q), thus pkum~1 and

Finally an attempt will be made to construct second order Car-
michael numbers of the type B, 1.¢. numbers M satisfying

szez(mod M)

for all recurring sequences (1) with (M,b)=1.
First consider a sequence with f(x)=(x-1)(x-g) where (g,M)=1.
Then one has vn=gn+1, hence

vy - @ = g1 - (g+1) = g(s

M-

M-1_1)

and MlvM~a if and only if M}g
with (M,g)=1. Conseqguently M 1s certainly an ordinary Carmichael number,

-1 for all introduced g, ie. for all g

hence M iz odd, qguadratfrei and a product of at least three different
prime factors. Moreover by taking for g a primitive root mod p one
finds p-1 )M—ﬂ.‘For M=pm, where p is one of the prime factors of M and

- —— - 2~ -t

13) H.J.A. Duparc, Loc.cit. theorem 38.
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pwﬂlm«ﬂ further conditions are derived now,

a,., First congsider the case —~T-1u odd. In this case consider, as befor:,
a seauence for which pfu if and only ii p+1fn Then (:E)=~1 since other-
w1wcqu) already p}ul(p+1), Hence (—b)2 P-Ts g (mod p), consequently
(gb)E(qu)Ezﬂq (mod p). Then (3) yields v m=? =V (1) vl(m+1)(mod p) and
p}v -3 is equﬁyggfggéfo p)vl(m 1) Vi(met): Again using the fact that the
consgildered Dequcnccipf U, if and only if p+1[n one finds using Un=u, vy,

(10) eilther p+’\‘m-—’\, o145 (m-1) or pe|m+, pe1d & (me1).

Again two cases are distinguished. If p=1 (mod 4), then 4,p—1}m—1,
Hence p+1}m—4, p+1%ﬂ%(mw1) is excluded on account of p+1=2 (mod 4).
Conseqguently the second relation (10) holds i.e. p+1im+1, p+1 | (m+1),
hence @i% is an odd integer. In the case p=3 (mod 4) one has 44 p-1,
hence 44 m-1 and m=3 (mod 4), Now p+1jm-1 is again excluded since
Gp+, 4'¥n11 Then (10) yields again p+1}m+1 p+1*’ (m+1), and again

%{%~appears to be an odd integer

b. In the second case to be considercd the integer %{%-is even, hence
M‘muﬂ. Since here paﬂz%ﬁ(m'ﬂ) one has (—.b)%—'(m-/l =1 (mod p) and (3)
vields p]ul(m+1) ul<m 1) Again considering the above used sequence for
which p\ if" and only if p+1{ n one finds either p+1l (m+1) or

p+1] % (m- ﬂ) Now 4}m~1 hence 5 (m+1) is odd and p+1}2 (m+1) excluded.
Consequently p+1| 5 (m-1).

Resuming the results a second order Carmichael number M of the

type B 1s certainly an ordinary Carmichael number and further if le

. . m-1 m+1 R ) m-1
M~pm cither both T and 5FT are odd intcezers or both 57 and —17 are

It will now be proved that also the reversed property holds. Let

M b a Carmichael number, Congider a prime factor p of M and put M=pm,

First supposc that both m-1 and itk

p-1 D+ 1~
recurring sequences with (%g) 1 one has (—b)a(p 1>Ei1 (mod p) and

m—ﬂ)an (mod pj

arc odd integers. Then for4all
d

if pt' D one has either p}u;( +1) ©F p}u%(p*q). Hence (wb)%(
and moreover either p‘ul(m+1) or p\u‘(m,q)' Then (3) yields p]vm~a. In {
the case p‘D on¢ has obviously p]D ul( 1) ul( 1Yy hence v, =8 (mod p).
For all sequences with (:E)zuq however one hgm p)2 > (- 1) -1 (mod p)

hcrc p}'D'ﬂu?) either p}vl(p+1)

and, as remarked in section ?,
§(m >-~1 (mod p) and moreover cither
(3

p\Vl<pm1>, consequently (-b

D\Vl(m+1) or p\ L (m-1) Then ) gives again p}vm—a.

14) H.J. A. Dupar Loc.cit, theorem 38.
15) H.J.A. Duparc, Loc.cit. thcorem 38.
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In the case Poth m}% and %%% are even the integer p-1 divides
5(m-1) hence («b)§(m'1 =1 (mod p). Since both p-1 and p+1 divide 3(m-1)
one has p) Dup_q up+1}Du%(m_q) u%(m+1> and (3) yields also here p]vm-a.

fo

This completes the proof of the llowing

Theorem. An integer M is a second order Carmichael number of the type B
1f and only if for every prime divisor p of M (with M=pm) either both

g:1 and g:q are odd intcgers or both %EjAand %%% are even integers. j
' Some more properties for the number M can be derived.
First it has to be remarked that the integers %{% and %{% are both J
odd if and only if M= ang M0 are potn even. In fact M1 "m-1 o onis
M- pn’il’l p+ p-1 p-"1
odd and so0 is —s + . |
p+1 P+ |
Similarly %{% and %i%~a§eqboth ﬁven if and only if %}i and %;% are
o . . +1  m-1 _ }
both odd. Here the rclation 58T - o T m 1s used.

Further it will be shown that M contains at least 4 different primc
factors.
In fact consider the largect prime factor p of M. If for p one is

in the first case i.c. if both D23 and g{} are odd, then 21 - g—% =
= g%mlgl‘is even, Since p-1|{m-71 one has p<«<m, hence g-%112->0 and con-
'p _’] - p ~1 -
sequently 2(m-p) > 2, hence m§3ﬁ+p—1. If however %:%~and %?% are both \

Ps-" ~
even then pz—ﬂ}m—ﬂ, hence p°< m. In elther case from p%g_m one deduces

that m must have more than two different prime factors, which proves
the assertion.

Morcover one has 34’M, for above 1t was found that either p2—1lm2—1
or pz—ﬂlME—ﬁ. Taking p#3 one has B{pz—ﬂ, hence in the first case B%m,
thus 3+M, whereas in the second case the relation 3.¥M follows iImmediate-~

ly. s . NP1 et aman o m-"1 m+1
Finally in the first case (wherc both 57 5

finds after a little discussion m=p (mod 24), hence M=pm apgs’l (mod 24),
In the second case by the above remark both %{%—and %{% are odd, hence
M=p (mod 24%) and m=1 (mod 24),.

If M1 (mod 24) the number of prime factors of M is odd. In fact
putting M:p,l...pS for every prime factor of M one 1s 1In the second case
(since in the first case it was found that 24,M—1). Hence

and

are odd) one

M=pg (mod 24) (o7=1,...,8)
and after multiplication of these relations
M°= M=:1 (mod 24).

Hence 2/%5.
As a consequence of this fact it appecars that 1in the case M#éﬂ
(mod 24) the number M must have at least 5 different prime factors,
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Up t1ll now the author has not been able to prove or to dilsprove
the cxistence of second order Carmichacl numbers of the kind B. Since
cvery such number 1s certainly an ordinary Carmichael number all Car-
michael numbers < 10~ are investigated 19) but none of them appeared

to be a second

order Carmichael number, So there are no second order

Carmichael numbers <(108.

Table of

all almost primes < 5552004 of the type B with respect

to the sequence of Fibonaccei.
The Poulet numbers occurring in this table are indicated by P
apart from the Carmichael numbers, which are denoted by C.

705
1605
2465
2737
4181
5777
6721

10877
13207
15251
ohhes
34561
35785
51844
54705
64079
64681
67251
67861
75077
90061
96049
97921
100065
100127
105281
113573
118441
146611
161027

L (O { {  { C  { {  {  |  { (  { O

Litterature
H.J.A. Duparc,

H.J.A. Duparc,

H.J. A, Duparc,
D. Jarden,

P. Poulet,

3.5.47 162133 = 73.2221
5.7.107 163081 = 17.53.181
5.17.29 C: 186961 = 31.37.163
7.17.23 194833 = 29,43 ,197
37.113 197209 = 199.991

53 .109 209065 = 5,19.2207
11.13 .47 217257 = 3.139.521
73.149 219781 = 271.811 P
43,307 228241 = 13.,97.181 P
101 . 157 229U45 = 5,109,421
3.5.7.233 231703 = 263,881
17.19.107 252601 = 41.61.101 C
5,17 .42 254321 = 263,967

L7 .1103 257761 = 7.23.,1601
3.5.7.521 268801 = 13.23.29.31
139 . 467 272611 = 131.2081
71,911 302101 = 317.953
131.521 303101 = 101.3001
79,859 323301 = 3.11.97.101
193,389 330929 = 149,2221
113,797 399001 = 31.61.211 C
139,697 430127 = 463,929
181,541 433621 = 199.2179
3.5.7.953 LiTa4s = 5.37.2417

003 LhL9g 455961 = 3,11.41.337
11.17.563 hg0841 = 13.17.2221
137.829 497761 = 11.37.1223
83,1427 512461 = 31.61.271 C
271.54 520801 = 241.,2161
283,569
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