STICHTING

MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49
AMSTERDAM

ZW 1955-013

On almost primes of the second order

> H.J.A. Dupare

The Mathematical Centre at Amsterdam, iounded the llth of February 1946, is a non-protit invitution aiming at the promotion of pure mathematics and its applications, and is sponsored by the Netherlonds Government through the Netherfands Organization for Pure Research (Z.W.O) and the Central National Council for Applied Scientific Research in the Netherlands (T.N.O.), by the Municipality of Amsterdam and by several industries.

On almost primes of the second order

by
H.J.A. Duparc

Introduction. The well-known theorem of Fermat states that for primes p one has $a^{p-1} \equiv 1(\bmod p)$, provided $p \nmid a$. There exist also composite numbers m which satisfy the relation $a^{m-1} \equiv 1$ (mod m), either for some value of a (for instance $a=2$; Poulet numbers) or for all a with (a,m)=1 (Carmichael numbers).

If one possesses a table of all Poulet numbers up to a certain limit, then one may conclude that an integer m below this limit is prime if and only if $m / 2^{m-1}-1$ and m does not occur in the table. This procedure may be formulated in a slightly different way, which may give suggestions for other ways of investigating primality of a positive integer m. One considers the linear recurring first order sequence defined by

$$
u_{0}=1, u_{n+1}=2 u_{n} \quad(n=0,1, \ldots)
$$

and finds out whether its period mod m does or does not divide m-1. Now a generalization suggests itself. Instead of considering linear recurring sequences of the first order one takes such sequences of the second order. Then one finds out whether a certain property of its elements, valid for primes p, holds for the integer m under consideration. Once the composite numbers which also satisfy that property are tabulated, a new test on primality is obtained.

Now consider a second order recurring sequence defined by

$$
\begin{equation*}
u_{0}=0, \quad u_{1}=1, \quad u_{n+2}=a u_{n+1}+b u_{n} \quad(n=0,1, \ldots) \tag{1}
\end{equation*}
$$

Introducing the discriminant $D=a^{2}+4 b$ of its characteristic polynomial $f(x)=x^{2}-a x-b$ one has for a prime p with $p+b$ the following properties
A. $u_{p-\left(\frac{D}{p}\right)} \equiv 0(\bmod p)$;
B. $\quad \mathrm{v}_{\mathrm{p}} \equiv a(\bmod \mathrm{p})$;
C. $\quad u_{p} \equiv\left(\frac{D}{p}\right)(\bmod p)$.

Here v_{n} is an element of the associated recurring sequence defined by

$$
v_{0}=2, \quad v_{1}=a, \quad v_{n+2}=a v_{n+1}+b v_{n} \quad(n=0,1, \ldots)
$$

In order to prove these relations the following properties are used
2;

$$
\begin{align*}
& \quad x u_{n}+b u_{n-1}=A_{n}(x) \equiv x^{n} A_{0}(x)=x^{n}\left(\bmod x^{2}-a x-b\right) \\
& \text { if } \left.\quad\left(\frac{D}{p}\right)=1 \text {, then } 2\right) x^{p-1} \equiv 1\left(\operatorname{modd} x^{2}-a x-b, p\right) ; \\
& \text { if } \left.\quad\left(\frac{D}{p}\right)=-1 \text {, then } 3\right) x^{p+1} \equiv-b\left(\operatorname{modd} x^{2}-a x-b, p\right) ; \\
& \text { if } \left.\quad\left(\frac{D}{p}\right)=0 \text {, then } 3\right) x^{p} \equiv \frac{1}{2} b\left(\operatorname{modd} x^{2}-a x-b, p\right) ; \\
& v_{n}=b u_{n-1}+u_{n+1}=2 u_{n+1}-a u_{n} \quad(n=0,1, \ldots) \text {. }
\end{align*}
$$

The last relation follows from the fact that it holds obviously for $0-0$ and $n=1$ and that the sequences (u) and (v) satisfy the same scurrence relation.

From these properties in the case $\left(\frac{D}{p}\right)=1$ one derives

$$
\equiv x^{p-1} \equiv A_{p-1}(x)=x u_{p-1}+b u_{p-2}\left(\operatorname{modd} x^{2}-a x-b, p\right)
$$

hus $u_{p-1} \equiv c(\bmod p)$, bu $u_{p-2} \equiv 1(\bmod p)$, hence $u_{p} \equiv 1(\bmod p)$ and the ○lations A, B and C follow immediately in this case. In the case $D \cdot=-1$ one cerives similarly

$$
-b \equiv x^{p+1} \equiv A_{p+1}(x)=x u_{p+1}+b u_{p}\left(\operatorname{modd} x^{2}-a x-b, p\right)
$$

'hus $u_{p+1} \equiv 0(\operatorname{lod} p), u_{p} \equiv-1(\bmod p)$, whence again the relations A, B and C follow inmediately. Finally in the case $\left(\frac{D}{p}\right)=0$ one has

$$
b \equiv x^{p} \equiv A_{p}(x)=x u_{p}+b u_{p-1} \quad\left(\bmod x^{2}-a x-b, p\right),
$$

thus $u_{p-1} \equiv \frac{1}{2}(\bmod p), u_{p} \equiv(\bmod p)$, whence also here the relations A, B and C follow easily.

Composite nurbers M which satisfy at least one of the three Pelations A, B and " will be called second order almost-primes. Simple uxamples may show thrt a composite number satisfying one of these celations does not neiessarily satisfy the others. Hence three kinds of second order almost-primes can be distinguished.

[^0]In section 1 the second order almost-primes of the types A, B and C will be considered successively. Section 2 is devoted to a special second order sequence, the sequence of Fibonacci. Properties of the almost primes with respect to this sequence are derived. Further a table of all the almost primes of the type B which are <555200 is given. It was a suggestion of van der Poel to tabulate these numbers in order to obtain a new test on primality. Moreover it will be proved that with respect to the sequence of Fibonacci there exist infinitely many almost primes of each of the types A, B and C. In section 3 it will be investigated whether there exist composite numbers M which satisfy one of the three relations A, B or C for all second order sequences (1) with $(\mathbb{M}, \mathrm{b})=1$. These numbers will be called second order Carmichael numbers. It will appear that there are no such numbers of the kinds A and C, whereas a characterization of those of the kind B will be given. Unfortunately the author was unable to prove or disprove the existence of such numbers.

Section 1. Second order almost-primes.
Let $M=p^{r} m=p m$ (with p prime, $2 \nmid p, p \nmid m, r \geqq 1$) be a composite number satisfying the relation A for a fixed given sequence (1). Then one has $p^{r}|M| u_{k}$ for $k=M-\left(\frac{D}{M}\right)$ and moreover by a property of recurring sequences ${ }^{4}$) one has $p^{r} \mid u_{h}$ with $h=p^{r-1}\left(p-\left(\frac{D}{p}\right)\right)$. Now by a property of the symbol of Jacobion has $k=m h+j\left(\frac{D}{p}\right)$ where $j=m{ }^{\prime}-\left(\frac{D}{m^{r}}\right)$, hence $p^{r} \mid u_{j}$. conversely $p^{r} \mid u_{j}$ leads to $p^{r} \mid u_{k}$ on account of $p^{r} \mid u_{h}$. This proves the following criterium for second order almost-primes of the kind A. Theorem. An integer $M=p_{1}{ }^{r_{1}} \ldots p_{s}{ }^{r_{S}}$ (where p_{1}, \ldots, p_{s} are different primes) satisfies $\left.M\right|_{M-\left(\frac{D}{M}\right)}$ if and only if

$$
p_{\sigma}{ }^{r_{\sigma}} \mid u_{j_{\sigma}}, \text { where } j_{\sigma}=M_{\sigma}-\left(\frac{D}{M_{\sigma}}\right), M_{\sigma}=\frac{M}{p_{\sigma}} \quad(\sigma=1, \ldots, s) .
$$

Application. An integer $M=p q$ (where p and q are different primes) satisfies $M / u_{M-\left(\frac{D}{M}\right)}$ if and only if

$$
\left.p\right|_{q-\left(\frac{D}{q}\right)},\left.\quad q\right|_{p-\left(\frac{D}{p}\right)} .
$$

Now second order almost-primes of the type B will be considered. Here the following important relation will be used
4) H.J.A. Duparc, Loc.cit. theorem 33.
3) $\quad v_{h}-v_{k}=D u_{\frac{1}{2}}(h+k) \frac{v_{\frac{1}{2}}(h-k)}{}-v_{k}\left\{1-(-b)^{\frac{1}{2}(h \cdot k)}\right\}$

$$
=v_{\frac{1}{2}}(h+k) v_{\frac{1}{2}}(h-k)-v_{k}\left\{1+(-b)^{\frac{1}{2}(h-k)}\right\} .
$$

The proof of (3) runs as follows. From the identity
(2) $x^{n} \equiv u_{n} x+b u_{n \cdots 1}\left(\bmod x^{2}-a x \cdots b\right)$
one derives replacing x by $a-x$

$$
(a-x)^{n} \equiv u_{n}(a-x)+b u_{n-1}\left(\bmod x^{2}-a x-b\right)
$$

hence by subtraction of there relations

$$
\begin{equation*}
(2 x-a) u_{n} \equiv x^{n}-(a-x)^{n} \quad\left(\bmod x^{2}-a x-b\right) \tag{4}
\end{equation*}
$$

and by addition of them

$$
a u_{n}+2 b u_{n-1} \equiv x^{n}+(a-x)^{n} \quad\left(\bmod x^{2}-a x-b\right)
$$

Then from $v_{n}=b u_{n-1}+u_{n+1}=a u_{n}+2 b u_{n-1}$ one obtains

$$
\begin{equation*}
v_{n} \equiv x^{n}+(a-x)^{n} \quad\left(\bmod x^{2}-a x-b\right) \tag{5}
\end{equation*}
$$

Another proof of the relations (4) and (5) can we given by mathematical induction on n. Now (3) may be found by straight forward substitution of the results (4) and (5) using also the relations $x(a-x) \equiv-b\left(\bmod x^{2}-a x-b\right)$ and $(2 x-a)^{2} \equiv D\left(\bmod x^{2}-a x-b\right)$. It may here be remarked that a further important relation, to be used later,
(6)

$$
\begin{aligned}
u_{h}-u_{k}= & u_{\frac{1}{2}}(h+k) v_{\frac{1}{2}}(h-k)-u_{k}\left(1+(-b)^{\frac{1}{2}}(h-k)\right) \\
& u_{\frac{1}{2}}(h-k) v_{\frac{1}{2}}(h+k)-v_{k}\left(1-(\cdots b)^{\frac{1}{2}(h-k)}\right)
\end{aligned}
$$

can be proved in entirely the same way.
Remark. The relations (3) and (6) with $k=1$ are also given by D. Jarden, Factorization formulae for numbers of Imonacs's sequence decreased or increased by a unit, Riv. Lemat. 5 (1951): 55--58.

Now let $M=p^{r} m=p m$ ' (with $p \nmid m$) be a second order almost prime of the type B. Then for $h=\mathbb{M}$ and $k=m$ ' in the case $\left(-\frac{b}{p}\right)=1$ the relation $(-n)^{\frac{1}{2}} p^{r-1}(p-1) \equiv 1\left(\bmod p^{r}\right)$, hence $(-b)^{\frac{1}{2}\left(M-m^{\prime}\right)} \equiv 1\left(\bmod p^{r}\right)$, and the a elation (3) yield
$7^{\prime} \quad V_{M}-v_{m} D u_{\frac{1}{2}}\left(1+m^{.}\right)^{u_{2}}\left(M-m^{1}\right) \quad\left(\bmod p^{r}\right)$.
$)=+1$ one has 5) $u_{\frac{1}{2}\left(M-m^{1}\right)}=u_{\frac{1}{2} p^{r-1}(p-1) m} \equiv 0\left(\bmod p^{r}\right)$,
) $=-1$ one has 5) $u_{\frac{1}{2}\left(M+m^{\prime}\right)}=u_{\frac{1}{2} p^{r-1}(p+1) m} \equiv 0\left(\bmod p^{r}\right)$
$f\left(\frac{D}{p}\right)=0$, one has 5) $p \mid D$ and moreover $u_{\frac{1}{2}}\left(M-m^{\prime}\right) \equiv u_{\frac{1}{2} p^{r-1}(p-1) m} \equiv 0\left(\bmod p^{r-1}\right)$ quently in each of these three cases one has $v_{M} \equiv v_{m}\left(\bmod p^{r}\right)$. using (7) the relation $v_{M} \equiv a\left(\bmod p^{r}\right)$ leads to $v_{m^{\prime}} \equiv a\left(\bmod p^{r}\right)$ and rely.
In the case $\left(-\frac{b}{p}\right)=-1$ however one has
the relation (3) yields

$$
v_{M}-v_{m^{\prime}} \equiv v_{\frac{1}{2}}\left(M+m^{\prime}\right) \quad v_{\frac{1}{2}}\left(M-m^{\prime}\right) \quad\left(\bmod p^{r}\right)
$$

$\left.\frac{3}{2}\right)=1$ one has 6$) u_{p^{r-1}(p-1)} \equiv 0\left(\bmod p^{r}\right), u_{\frac{1}{2} p}^{r-1}(p-1) \equiv 0\left(\bmod p^{r}\right)$, = using the relation $u_{2 n}=u_{n} v_{n}$ one obtains $v_{\frac{1}{2} p^{r-1}(p-1)} \equiv 0\left(\bmod p^{r}\right)$; inge $m=\frac{1}{2}\left(M-m^{\prime}\right) / \frac{1}{2} p^{r-1}(p-1)$ is odd finally $\frac{1}{\frac{1}{2}} p^{p}\left(M-m^{\prime}\right) \equiv 0\left(\bmod p^{r}\right)$. re case $\left(\frac{D}{p}\right)=-1$ one finds in entirely the same way $\left.-m^{\prime}\right) \equiv 0\left(\bmod p^{r}\right)$. The case $\left(\frac{D}{p}\right)=0$ does not occur here since $=a^{\prime}+4 b$ leads to $-b=\left(\frac{1}{2} a\right)^{2}(\bmod p)$, hence $\left(-\frac{b}{p}\right)=1$. Consequently in all possible cases one has $v_{M} \equiv v_{m}\left(\bmod p^{r}\right)$ hence ζ (8) the relation $v_{M} \equiv a\left(\bmod p^{r}\right)$ Leads to $v_{m} \equiv a\left(\bmod p^{r}\right)$ and tErsely.
This proves the following
Dem. A necessary and sufficient condition for $M=p_{1}{ }^{r_{1}} \ldots p_{S}{ }^{r_{S}}$ (where ... p_{s} are different primes) to be a second order almost-prime of B is

$$
\mathrm{V}_{M_{\sigma}} \equiv a\left(\bmod p_{5}^{r_{\sigma}}\right), \text { where } M_{\sigma}=\frac{M}{p_{\sigma}} \quad(\sigma=1, \ldots, s)
$$

articular a product $M=p q$ of two different prime factors is second r almost-prime of the kind B if and only if

$$
v_{p} \equiv a(\bmod q), \quad v_{q} \equiv a(\bmod p)
$$

.J.A. Duparc, Loc.cit. theorem 33.
.J.A. Dupare, Loc.cit. theorem 3! an 3?.

Second order almost-primes of the kind C.
,et $M=p^{r} m=p^{\prime}(p \nmid m)$ satisfy

$$
u_{M} \equiv\left(\frac{D}{\mathbb{M}}\right) \quad(\bmod M)
$$

If $\left(\frac{D}{p}\right)=+1$ then 7$) u_{h} \equiv u_{k}\left(\bmod p^{r}\right)$ if $p^{r-1}(p-1) \mid n-k$. Hence $u_{M} \equiv u_{m}\left(\bmod p^{r}\right.$ and one finds $u_{m}=\left(\frac{D^{1}}{m}\right)\left(\bmod p^{r}\right)$. Conversely the last relation leads to $\lambda_{M} \equiv\left(\frac{D}{M}\right)\left(\bmod p^{r^{m}}\right)$.
If $\left(\frac{D}{p}\right)=-1$ then in the case $\left(\frac{-b}{p}\right)=+1$ one has $(-b)^{\frac{1}{p} p^{r-1}(p-1) \equiv 1\left(\bmod p^{r}\right)}$ and moreover 8) $p^{r}\left|u_{2} p^{r}(p+1)_{b}\right| u_{\frac{1}{2}\left(M+m^{\prime}\right)}$. Consequently using (6) one finds $p^{r} \mid u_{M}+u_{m}$.. In the $\operatorname{case}\left(\frac{-b}{p}\right) \stackrel{\frac{1}{2}}{=}\left(\mathbb{M}+\mathrm{m}^{r}\right)$ one has

$$
\left.(-b)^{\frac{1}{2} p^{r}(p-1)} \equiv-1\left(\bmod p^{r}\right) \text { and moreover } 8\right) p^{r} \mid u_{p} r(p+1)
$$

$p^{r}+u_{\frac{1}{2} p^{r}(p+1)}$, hence $\left.p^{r}\right|_{\frac{1}{2} p^{r}(p+1)} \left\lvert\, v_{\frac{1}{2}\left(N+m^{\prime}\right)}\right.$ and (6) yields $\left.p^{r}\right|_{u_{M}+u_{m}}$. In either case one has $u_{M}=-u_{m}\left(\bmod p^{r}\right)$ and $u_{M} \equiv\left(\frac{D}{M}\right)\left(\bmod p^{r}\right)$ leads to $u_{m} \overline{\bar{F}}\left(\frac{D}{\mathrm{~m}^{1}}\right)\left(\bmod p^{r}\right)$ and conversely.

Finally if $\left(\frac{D}{p}\right)=0$ one has 9$) p \mid u_{p}$, hence 7) $p^{r}\left|u_{p}\right| u_{M}$ and the relation $u_{M} \equiv\left(\frac{D}{M}\right)\left(\bmod p^{r}\right)$ is satisfied automatically $p_{\text {since }}$ both members of this congruence are $\equiv 0\left(\bmod p^{r}\right)$.

Resuming one finds the following
Theorem. An integer $M=p_{1}{ }^{r_{1}} \ldots p_{S}{ }^{r_{S}}\left(p_{1}, \ldots p_{S}\right.$ different primes $)$ satisfies for a sequence (1) the relation $u_{M}=\left(\frac{D}{M}\right)(\bmod M)$ if and only if

$$
u_{M_{\sigma}} \equiv\left(\frac{D}{M_{r s}}\right)\left(\bmod p_{\sigma}^{r_{\sigma}}\right), \quad M_{\sigma}=\frac{M}{p_{\sigma}}, p_{\sigma} \nmid D(\sigma=1, \ldots, s) .
$$

Application. An integer $M=p a$ (where p and q are different primes not dividing D) is a second order almost--prime of the kind C if and only if

$$
\begin{equation*}
u_{p} \equiv\left(\frac{D}{p}\right)(\bmod q), \quad u_{q} \equiv\left(\frac{D}{q}\right) \quad(\bmod p) . \tag{9}
\end{equation*}
$$

Remark.
For all odd primes p dividing D the integer $M=p^{r}(r=1,2, \ldots)$ satisfies $p^{r} \mid u_{M}$, hence

$$
u_{M}=\left(\frac{D}{M}\right)(\bmod M)
$$

so all these integers are second order almost-primes of the kind C.
Section 2. In this section integers will be investigated which satisfy A, B or C for one of the most simple recurring sequences of the second order, viz. the sequence of fibonacci:

$$
u_{0}=0, u_{1}=1, \quad u_{n+2}=u_{n+1}+u_{n} \quad(n=0,1, \ldots) .
$$

7) H.J.A. Duparc, loc.cit. theorem 33.
8) H.J.A. Duparc, loc.cit. theorem 33 and 38.
9) H.J.A. Duparc, loc.cit. theorem 36.

Here almost primes M of the type A satisfy $M / u \quad M-\left(\frac{5}{M}\right)$ ，those of the type B satisfy $M \mid V_{M}-1$ and those of the type C satis $\left.\frac{M}{Y}\left(\frac{2}{M}\right) M \right\rvert\, u_{M}-\left(\frac{5}{M}\right)$ ．

It will now be proved that there are infinitely many almost－primes of the type A ．For the proof use will be made of the following Lemma．If $2 \nmid m, 3 \nmid M, 5 \nmid m, M \left\lvert\, u_{M-\left(\frac{5}{M}\right)}\right.$ ，then $N=u_{2 M}$ satisfies the same relations，i．e． $2 \nmid N, 3 \nmid N, 5 \nmid N$ and $N \left\lvert\, u_{N-\left(\frac{5}{N}\right)}\right.$.
Proof．One has $2 \nmid N$ ，since $2 \mid N=u_{2 M}$ would lead to $3 \mid 2 M$ ，contrary to 3才M．

One has further $3 \nmid N$ ，since $3 \mid N=u_{2 M}$ would lead to $4 \mid 2 M$ ，contrary to 2申м。

Finally one has $5 \nmid N$ ，since $5 / N=u_{2 M}$ would lead to $5 / 2 M$ ，contrary to 5．f M．

Further if c denotes the smallest positive integer with M / u_{c} and $C=C(N)$ the smalles positive integer with $M\left|u_{C}, M\right| u_{C+1}-1$ ，then it has been proved ${ }^{10}$ that $v=\frac{C}{C}$ is an integer，which is equal to 1,2 or 4 ．The value $\mathrm{v}=4$ only occurs if c is odd．Now by assumption one has $\mathrm{c} \left\lvert\, \mathrm{M}-\left(\frac{5}{\mathrm{M}}\right)\right.$ ， hence $C \left\lvert\, 2\left(M-\left(\frac{5}{M}\right)\right)\right.$ in the cases $v=1$ or 2．Tn the case $v=4$ the integer c is odd，hence $c \left\lvert\, \frac{1}{2}\left(M-\left(\frac{5}{M}\right)\right)\right.$ and also then $C \left\lvert\, 2\left(M-\left(\frac{5}{M}\right)\right)\right.$ ．Consequently 11） $u_{2 M} \equiv u_{2\left(\frac{5}{M}\right)}=\left(\frac{5}{M}\right)(\bmod M)$ ，hence $M \left\lvert\, u_{2 M}-\left(\frac{5}{M}\right)=N-\left(\frac{5}{M}\right)\right.$ ．Since both N and M are odd one has also $2 M \left\lvert\, N-\left(\frac{5}{M}\right)\right.$ ，hence $N=u_{2 M} \left\lvert\, u_{N-\left(\frac{5}{I I}\right)}\right.$ ．Finally $\left(\frac{5}{\mathbb{M}}\right)=\left(\frac{5}{N}\right)$ ．In fact if $\left(\frac{5}{M}\right)=1$ ，then $M \equiv \pm 1(\bmod 10)$ ，honce $2 M \equiv \pm 2(\bmod 20)$ and $N=u_{2 M} \equiv u_{ \pm 2}=$ $= \pm 1(\bmod 5)$ ，thus $\left(\frac{5}{N}\right)=1$ ．If however $\left(\frac{5}{2}\right)=-1$ then $M \equiv \pm 3(\bmod 10)$ ，hence $2 \mathrm{M} \equiv \pm 6(\bmod 20)$ and $N=u_{2 M} \equiv u_{+6}-8=3$（mod 5），hence $\left(\frac{5}{N}\right)=-1$ ．This proofs $N \left\lvert\, u_{N}-\left(\frac{5}{N}\right)^{\circ}\right.$

Now using the lemma one obtaing infinitely many almost primes M_{h} of the type A once one such number $\mathbb{N}=M_{0}$ with $(11,30)=1$ and $M \left\lvert\, u u_{M-\left(\frac{5}{M}\right)}^{\text {found．In fact one has only to take }}\right.$

$$
M_{h+1}=u_{2 M_{h}} \quad(h=0.1, \ldots)
$$

Now for M_{0} one may take any prime $\neq 2,3,5$ ，for instance $M=7$ ；then u_{14} is almost－prime in the sense A ．Here it has to be remarked that $u_{2 k}=u_{k} v_{k}$ is certainly composite．

10）H．J．A．Duparc，C．G．Lekkerkerker，W．Peremans，Reduced sequences of integers and pseudo random numen now ZW 1953－002，Mathem．Cen－ trum；theorem 11.
11）H．J．A．Duparc，C．G．Lekkerkerker，W．Peremans，Loc．cit．，theorem 2.

Also one obtains infinitely many numbers of the desired kind from the sequence $u_{2 p}$, where p runs through all infinitely many primes $\geqq 7$. Remark. There appears to be the following connection between prime pairs and the almost primes considered here. If $p \equiv 17(\bmod 20)$ and $q=p+2$ are both prime, then $M=p q$ is an almost prime of the kind A. $=u p-\left(\frac{5}{p}\right)^{\text {. }}$

In fact since $-\left(\frac{5}{p}\right)=\left(\frac{5}{q}\right)=1$ one has $p \left\lvert\, u_{p+1}=u_{q-\left(\frac{5}{q}\right)}\right.$ and $q \mid u_{q-1}=u_{p+1}=$

The almost-primes of the type B were defined by $M v_{M}-1$. A table of all such numbers which are <555200 is given at the end of this paper.

It will now be proved that there are also infinitely many almostprimes of the type B. Here the following lemma will be proved: Lemma. If $2 \nmid M, 3 \neq M, M \mid V_{M}-1$, then $N=v_{M}$ satisfies the same relations. Proof. The relation $2 / \mathrm{N}=\mathrm{V}_{\mathrm{M}}$ would lead to $3 \mid \mathrm{M}$, contrary to $3 \nmid \mathrm{M}$. The relation $3 \mid N=v_{M}$ would lead to $4 \mid M-2$, contrary to $2 \nmid M$.

If $N=1(\bmod 4)$, then $4 M \mid V_{M}-1$, hence $2 M \left\lvert\, \frac{1}{2}(N-1)\right.$ and using (3)

$$
M=v_{M}\left|u_{2 M}\right| u_{\frac{1}{2}(N-1)} \left\lvert\, 5 u_{\frac{1}{2}}(N-1) u_{\frac{1}{2}(N+1)}=v_{N}-1\right.
$$

If $N \equiv 3(\bmod 4)$, then $\frac{1}{2}(N-1)$ is odd. Since $M \left\lvert\, \frac{1}{2}(N-1)\right.$ one finds again using (3)

$$
M=v_{M}\left|v_{\frac{1}{2}(N-1)}\right| v_{\frac{1}{2}(N-1)} v_{\frac{1}{2}(N+1)}=v_{N}-1
$$

From this lemma it appears that any number of the sequence defined by

$$
M_{h+1}=v_{M_{h}} \quad(h=0,1, \ldots)
$$

is a number of the desired type, once it is now that M_{0} is so. Here for M_{0} one may take for instance $M_{0}=4181=37.113$, which number satisfies $M_{0} \mid V_{M_{0}}-1$, as may be easily verified by making use of the second theorem of section 2 .

Finally the almost-primes of the type C are considered. These composite integers satisfy $M\} M_{M}\left(\frac{5}{M}\right)$. Of course it will be proved that there exist also infinitely many pseudo-primes of this type and also here a lemma will be used.
Lemma. If $M \equiv 1(120)$ and $M / U_{M}-\left(\frac{5}{M}\right)$, then these relations hold also for $N=u_{M}$ 。
Proof. One has $C(8)=12$, hence $N=u_{M} \equiv u_{1}=1(\bmod 8)$. Also $C(3)=8$, hence $N=u_{M} \equiv u_{1}(\bmod 3)$. Finally $C(5)=20$, hence $N=u_{M} \equiv u_{1}=1(\bmod 5)$. Consequent... ly $N \equiv 1(\bmod 120)$ and $\left(\frac{5}{M}\right)=\left(\frac{5}{N}\right)=1$. Since both N and M are odd the relation $M \left\lvert\, u_{M}-\left(\frac{5}{M}\right)=N-1\right.$ leads to $M \left\lvert\, \frac{1}{2}(N-1)\right.$. Then using (6) one finds

$$
N=u_{M}\left|u_{\frac{1}{2}}(N-1)\right| u_{\frac{1}{2}}(N-1) \quad v_{\frac{1}{2}}(N+1)=u_{N}-1=u_{N}-\left(\frac{5}{N}\right)
$$

From this lemma it follows immediately that any element of the sequence defined by

$$
M_{h+1}=u_{M_{h}} \quad(h=0,1, \ldots)
$$

is a number of the desired type provided M_{o} is so. For M_{o} one can take for instance $13201=43.307$.

Section 3. Second order Carmichael numbers.
A second order Carmichael number of the type A is a composite number M which satisfies $M / u_{M-}\left(\frac{D}{M}\right)$ for all recurring sequences (1) with $(M, b)=1$. It will be shown however that such numbers do not exist.

Let $M=p^{r} m$ with $p+m$ be a second order Carmichael number of the type A. Now first take a recurring sequence (1) with characteristic polynomial $f(x)=(x-1)(x-g)$, where g is a primitive root mod p^{r}. Then for $u_{n}=\frac{g^{n}-1}{g-1}$ one has $p^{r} \mid u_{n}$ if and only if $p^{r-1}(p-1) \mid n$. Consequently the first theorem of section 1 gives $p^{r-1}(p-1) \left\lvert\, p^{r-1} m-\left(\frac{D}{p^{r-1}}\right)\right.$, hence $r=1$. Further consider a recurring sequence for which tre characteristic polynomial $f(x)=x^{2}-a x-b$ is a mod pirreducible divisor of the cyclo.. tomic polynomial of degree $p^{2}-1$. Then one has p / u_{n} if and only if $p+1 / n$. In fact $p+1 \mid n$ leads obviously to 12) $p\left|u_{p+1}\right| u_{n}$. Conversely if $p \mid u_{n}$, with $p+1 \not \mathcal{L}^{\prime}$, then an integer h exists such that $p \mid u_{h}$ with $0<h<p+1$. Henco using (2) $x^{h} \equiv b u_{h-1}(\operatorname{modd} f(x) p)$ and $x^{h(p-1)} \equiv 1(\operatorname{modd} f(x), p)$ where $0<h(p-1)<p^{2}-1$, contrary to the construction of $f(x)$. Then the immediate consequence $p|M| u_{m}-\left(\frac{D}{\mathrm{~m}}\right)$ of the assumption on M lcads to $p+1 \left\lvert\, m-\left(\frac{D}{m}\right)\right.$. Now consider another such sequence with polynomial $x^{2}-a x-b$, where $b_{1} \equiv b(\bmod p)$. Hence $p+1 \left\lvert\, m-\left(\frac{D_{1}}{m}\right)\right.$. If one chooses b_{1} such that $b_{1} \equiv b(\bmod q)$ for every divisor q^{2} of m apart from one divisor q_{q} and that $\left(\frac{a^{2}+4 b}{q}\right)=-\left(\frac{a^{2}+4 b_{1}}{q}\right)$, then $\left(\frac{D}{m}\right)=-\left(\frac{D 1}{m}\right)$. This leads to the contradiction $p+1 \mid m+1$ and $p+1 \mid m-1$.

Now first second order Carmichael numbers of the type C will be considered, i.e. composite numbers M satisfying $u_{M} \equiv\left(\frac{D}{M}\right)(\bmod M)$ for all recurring seauences (1) with $(M, b)=1$. It will be proved that these numbers do not exist neither.

Suppose $M=p^{r} m$ with $p \nmid$ is a second order Carmichael number of the type C. Now first take a recurring sequence (1) with charactertistic polynomial $f(x)=(x-1)(x-g)$ where g is a primitive root mod p. Then for $u_{n}=\frac{g^{n}-1}{g-1}$ one has $p^{r} \mid u_{n}$ if and only if $p^{r-1}(p-1) \mid n$. Consequently the
12) H.J.A. Duparc, Loc.cit. theorem 36.
third theorem of section 1 gives $p^{r} \left\lvert\, u_{p_{m}}-1=\frac{g\left(g^{p^{r} m-1}-1\right)}{g-1}\right.$ and $p^{r-1}(p-1) \mid p^{r m-1}$ hence $r=1$ and $p-1 \mid m-1$. Further a special recurring sequence (1), necessary to disprove the existence of the second order Carmichaelnumbers of the type C will be constructed. First the following lemma is proved.

Lemma. For every prime $p \geqq 7$ there exist integers r, s and t such that $t=r+s$ and $\left(\frac{r}{p}\right)=\left(\frac{s}{p}\right)=\left(\frac{t}{p}\right)=1$.
Proof. Let h be an arbitrary odd quadratic residu η_{1} of p. Such an integerhexists since $p \geqq 7$. Take $s=\left(\frac{h-1}{2}\right)^{2}, t=\left(\frac{h+1}{2}\right)^{2}$, then $r=t-s=h$ and also s and t are quadratic residues mod p with $t=r+s$.

Now the special recurring sequence (1) necessary to disprove the existence of the second order Carmichael numbers of the type C will be constructed. If r, s and t denote the above found integers, first take $a^{2} \equiv t(\bmod p), b^{\prime} \equiv-\frac{1}{4} s(\bmod p)$. Then for $D^{\prime}=a^{2}+4 b^{\prime}$ one has $D^{\prime} \equiv t-s=r(\bmod p)$, hence $\left(\frac{-b}{p}\right)=\left(\frac{D^{\prime}}{p}\right)=1$. Now take $b^{\prime} \equiv b(\bmod p)$ such that $D=a^{2}+4 b$ is a non-residu mod m. (This can be obtained by the Chinese remainder theorem; for b one has to satisfy $\dot{b} \equiv b^{\prime}(\bmod p)$ and $b \equiv \frac{1}{4}\left(d-a^{2}\right)(\bmod m)$, where d is a fixed integer with $\left.\left(\frac{d}{m}\right)=-1\right)$. Then one has $\left(\frac{D}{p}\right)=\left(\frac{D^{\prime}}{p}\right)=1$ and $\left(\frac{D}{m}\right)=-1$. Consequently for this sequence one has using (6)

$$
u_{m}-1=u_{\frac{1}{2}}(m-1) v_{\frac{1}{2}}(m+1)-\left(1-(-b)^{\frac{1}{2}(m-1)}\right)
$$

hence $u_{m}-1 \equiv u_{\frac{1}{2}}(m-1){ }^{\frac{1}{2}}(m+1)(\bmod p)$ on account of $\left(\frac{-b}{p}\right)=1$ and $p-1 \mid m-1$. Moreover one has 13) $p \left\lvert\, u_{\frac{1}{2}}(p-1)\right.$, hence $p \left\lvert\, u_{\frac{1}{2}(m-1)}\right.$, thus $p \mid u_{m}-1$ and pf $u_{m}-\left(\frac{D}{m}\right)$. This disproves the existence of the second order carmichael numbers of the kind C and only those of the kind B may exist.

Finally an attempt will be made to construct second order Carmichael numbers of the type B, i.e. numbers M satisfying

$$
\mathrm{v}_{\mathrm{M}} \equiv a(\bmod M)
$$

for all recurring sequences (1) with $(M, b)=1$.
First consider a sequence with $f(x)=(x-1)(x-g)$ where $(g, M)=1$. Then one has $v_{n}=g^{n}+1$, hence

$$
v_{M}-a=g^{M}+1-(g+1)=g\left(g^{M-1}-1\right)
$$

and $M \mid V_{M^{-a}}$ if and only if $M \mid g^{M-1}-1$ for all introduced g, ie. for all g g with $(M, g)=1$. Consequently M is certainly an ordinary Carmichael number, hence M is odd, quadratfrei and a product of at least three different prime factors. Moreover by taking for g a primitive root mod p one finds $p-1 \mid M-1$. For $M=p m$, where p is one of the prime factors of M and 13) H.J.A. Duparc, Loc.cit. theorem 38.
$0-1 / m-1$ further conditions are derived now.
Q. First consider the case $\frac{m-1}{p-1}$ is odd. In this case consider, as before, a scquence for which p / u_{n} if and only if $p+1 / n$. Then $\left(\frac{-b}{p}\right)=-1$ since otherwise 14) already $p \left\lvert\, u_{\frac{1}{2}}(p+1)\right.$. Henco $(-b)^{\frac{1}{2}(p-1)} \equiv-1(\bmod p)$, consequently $(-b)^{\frac{1}{2}(m-1)} \equiv-1(\bmod p)$. Then (3) yields $v_{m}-a \equiv v_{\frac{1}{2}}(m-1) V_{\frac{1}{2}}(m+1)(\bmod p)$ and $p \mid v_{m}-a$ is equivalent to $p / v_{\frac{1}{2}}(m-1) \quad v_{\frac{1}{2}}(m+1)$. Again using the fact that the considered sequencefp u_{n} if and only if $p+1 \mid n$ one finds using $u_{2 n}=u_{n} v_{n}$ (10) either $p+1 \mid m-1, p+1 \nmid \frac{1}{2}(m-1)$ or $p+1 \mid m+1, p+1 \nmid \frac{1}{2}(m+1)$.

Again two cases are distinguished. If $p \equiv 1(\bmod 4)$, then $4|p-1| m-1$, Hence $p+1 \mid m-1, p+1 \nmid \frac{1}{2}(m-1)$ is excluded on account of $p+1 \equiv 2(\bmod 4)$. Consequently the second relation (10) holds i.e. $p+1|m+1, p+1| \frac{1}{2}(m+1)$, hence $\frac{m+1}{p+1}$ is an odd integer. In the case $p \equiv 3(\bmod 4)$ one has $4+p-1$, hence $4+m-1$ and $m \equiv 3(\bmod 4)$. Now $p+1 \mid m-1$ is again excluded since $4 \mid p+1$, $4 \nmid m-1$. Then (10) yields again $p+1 \mid m+1, p+1 \nmid \frac{1}{2}(m+1)$, and again $\frac{m+1}{p+1}$ appears to be an odd integer.
b. In the second case to be considered the integer $\frac{m-1}{p-1}$ is even, hence 4|m-1. Since here $p-1+\frac{1}{2}(m-1)$ one has $(-b)^{\frac{1}{2}(m-1)} \equiv 1^{p-1}(\bmod p)$ and (3) yields $p / u_{\frac{1}{2}}(m+1)$ $\frac{u_{1}}{2}(m-1)$. Again considering the above used sequence for which $p \mid u_{n}{ }^{2}$ if and only if $p+1 \mid n$ one finds either $p+1 \left\lvert\, \frac{1}{2}(m+1)\right.$ or $p+1 \left\lvert\, \frac{1}{2}(m-1)\right.$. Now $4 \mid m-1$, hence $\frac{1}{2}(m+1)$ is odd and $p+1 \left\lvert\, \frac{1}{2}(m+1)\right.$ excluded. consequently $p+1 \left\lvert\, \frac{1}{2}(m-1)\right.$.

Resuming the results a second order Carmichael number M of the type B is certainly an ordinary Carmichael number and further if p / M, $M=p m$, either both $\frac{m-1}{p-1}$ and $\frac{m+1}{p+1}$ are odd integers or both $\frac{m-1}{p-1}$ and $\frac{m-1}{p+1}$ are evon.

It will now be proved that also the reversed property holds. Let M bo a Carmichael number. Consider a prime factor p of M and put $M=p m$. First suppose that both $\frac{m-1}{p-1}$ and $\frac{m+1}{p+1}$ are odd integers. Then for all recurring sequences with $\left(\frac{-b}{p}\right)=1$ one has $(-b)^{\frac{1}{2}(p-1)} \equiv 1(\bmod p)$ and if $p \nmid D$ one has either $p \left\lvert\, u_{\frac{1}{2}}(p+1)\right.$ or $p \left\lvert\, \frac{u_{1}}{}(p-1)\right.$. Hence $(-b)^{\frac{1}{2}(m-1)} \equiv 1(\bmod p)$ and moreover either $p \left\lvert\, u_{\frac{1}{2}}(m+1)\right.$ or $p \left\lvert\, u_{\frac{1}{2}(m-1)}\right.$. Then (3) yields $p \mid v_{m}-a$. In the case $p \mid D$ onc has obviousiy $p \left\lvert\, D u_{\frac{1}{2}}^{2}(m+1) \frac{u_{1}}{2}(m-1)\right.$, hence $v_{m} \equiv a(\bmod p)$. For all sequences with $\left(\frac{-b}{p}\right)=-1$ however one has $(-b)^{\frac{1}{2}(p-1)} \equiv-1(\bmod p)$ and, as remarked in section 2 , here $p \nmid D, T h e n)$ either $p \left\lvert\, v_{\frac{1}{2}}(p+1)\right.$ or $p \left\lvert\, v_{\frac{1}{2}}(p-1)\right.$, consequentiy $(-b)^{\frac{1}{2}(m-1)} \equiv-1(\bmod p)$ and moreover cither p| $v_{\frac{1}{2}}(m+1)$ or $p \left\lvert\, v_{\frac{1}{2}}(m-1)\right.$. Then (3) gives again $p \mid v_{m}-$.
14) H.J.A. Dupare, Loc.cit. theorem 38.
15) H.J.A. Duparc, Loc.cit. theorem 38.

In the case both $\frac{m-1}{p-1}$ and $\frac{m-1}{p+1}$ are even the integer $p-1$ divides $\frac{1}{2}(m-1 \cdot)$ hence $(-b)^{\frac{1}{2}(m-1)^{p-1}} \equiv 1(\bmod p)$. Since both $p-1$ and $p+1$ divide $\frac{1}{2}(m-1)$ one has $p\left|D u_{p-1} u_{p+1}\right| D u_{\frac{1}{2}(m-1)} u_{\frac{1}{2}(m+1)}$ and (3) yields also here $p \mid v_{m}-a$. This completes the proof of the following

Theorem. An integer M is a second order Carmichael number of the type B if and only if for every prime divisor p of M (with $M=p m$) either both $\frac{m-1}{p-1}$ and $\frac{m+1}{p+1}$ are odd integers or both $\frac{m-1}{p-1}$ and $\frac{m-1}{p+1}$ are even integers.

Some more properties for the number M can be derived.
First it has to be remarked that the integers $\frac{m-1}{p-1}$ and $\frac{m+1}{p+1}$ are both odd if and only if $\frac{M-1}{p_{\overline{1}}+1}$ and $\frac{M-1}{p+1}$ are both even. In fact $\frac{M-1}{p-1}-\frac{m-1}{\bar{p}-1}=m$ is odd and so is $\frac{M-1}{p+1}+\frac{p-1}{p+1}=m$.

Similarly $\frac{m-1}{p-1}$ and $\frac{m-1}{p+1}$ are both even if and only if $\frac{M-1}{p-1}$ and $\frac{M+1}{p+1}$ are both odd. Here the relation $\frac{\mathrm{M}+1}{\mathrm{p}+1}+\frac{\mathrm{m}-1}{\mathrm{p}+1}=m$ is used.

Further it will be shown that M contains at least 4 different prime factors.

In fact consider the largest prime factor p of M. If for p one is In the first case i.e. if both $\frac{m-1}{p-1}$ and $\frac{m+1}{p+1}$ are odd, then $\frac{m-1}{p-1}-\frac{m+1}{p+1}=$ $=\frac{2(m-p)}{p^{2}-1}$ is even. Since $p-1 \mid m-1$ one has $p<m$, hence $\frac{2(m-p)^{p-1}>0 \text { and con- }{ }^{p+1}{ }^{2}-1}{p-1}$. sequently $\frac{2(m-p)}{p_{2}^{2}-1} \geqq 2$, hence $m \geqq p^{2}+p-1$. If however $\frac{m-1}{p-1}$ and $\frac{m-1}{p+1}$ are both even then $p^{2}-1 \mid m-1$, hence $p^{2} \leqq m$. In either case from $p^{2} \leqq m$ one deduces that m must have more than two different prime factors, which proves the assertion.

Moreover one has $3 \nmid M$, for above it was found that either $p^{2}-1 \mid m_{m}^{2}-1$ or $p^{2}-1 \mid M^{2}-1$. Taking $p \neq 3$ one has $3 \mid p^{2}-1$, hence in the first case $3 \nmid m$, thus $3 \nmid M$, whereas in the second case the relation 3 YM follows immediately. Finally in the first case (where both $\frac{m-1}{p-1}$ and $\frac{m+1}{p+1}$ are odd) one finds after a little discussion $m \equiv p(\bmod 24)$, hence $M=p m \equiv p^{2} \equiv 1(\bmod 24)$. In the second case by the above remark both $\frac{M-1}{p-1}$ and $\frac{M+1}{p+1}$ are odd, hence $M \equiv p(\bmod 24)$ and $m \equiv 1(\bmod 24)$ 。

If $M \neq 1$ (mod 24) the number of prime factors of M is odd. In fact putting $M=p_{1} \ldots p_{s}$ for every prime factor of M one is in the second case (since in the first case it was found that $24 / \mathrm{M}-1$). Hence

$$
M \equiv p_{\sigma}(\bmod 24) \quad(\sigma=1, \ldots, s)
$$

and after multiplication of these relations

$$
\mathbb{M}^{S} \equiv \mathbb{M} \neq 1(\bmod 24)
$$

Hence $2 \nmid \mathrm{~s}$.
As a consequence of this fact it appears that in the case $M \neq 1$ (mod 24) the number M must have at least 5 different prime factors.

Up till now the author has not been able to prove or to disprove the cxistence of second order Carmichael numbers of the kind B. Since every such number is certainly an ordinary Carmichael number all Carmichael numbers $<10^{8}$ are investigated 16) but none of them appeared to be a second order Carmichael number. So there are no second order Carmichael numbers $<10^{8}$.

Table of all almost primes <555200 of the type B with respect to the sequence of Fibonacci.
The Poulet numbers occurring in this table are indicated by P apart from the Carmichatl numbers, which are denoted by C.

705	$=3.5 .47$
1605	$=5.7 .107$
2465	$=5.17 .29$
2737	$=7.17 .23$
4181	$=37.113$
5777	$=53.109$
6721	$=11.13 .47$
10877	$=73.149$
13201	$=43.307$
15251	$=101.151$
24465	$=3.5 .7 .233$
34561	$=17.19 .107$
35785	$=5.17 .421$
51841	$=47.1103$
54705	$=3.5 .7 .521$
64079	$=139.461$
64681	$=11.911$
67251	$=131.521$
67861	$=79.859$
75077	$=193.389$
90061	$=113.797$
96049	$=139.691$
97921	$=181.541$
100065	$=3.5 .7 .953$
100127	$=223.449$
105281	$=11.17 .563$
113573	$=137.829$
118441	$=83.1427$
146611	$=271.541$
161027	$=283.569$

```
162133 = 73.2221
163081 = 17.53.181
186961 = 31.37.163
194833 = 29.43.197
197209 = 199.991
209665 = 5.19.2207
217257 = 3.139.521
219781 = 271.811 P
228241 = 13.97.181 P
229445=5.109.421
231703 = 263.881
252601 = 41.61.101 C
254321 = 263.967
257761 = 7.23.1601
268801 = 13.23.29.31
272611 = 131.2081
302101 = 317.953
303101 = 101.3001
323301=3.11.97.101
330929 = 149.2221
399001 = 31.61.211 C
430127 = 463.929
433621 = 199.2179
447145=5.37.2417
455961 = 3.11.41.337
490841 = 13.17.2221
497761 = 11.37.1223
512461 = 31.61.271 C
520801=241.2161
```


Litterature

H.J.A. Duparc, On Carmichael numbers, Simon Stevin 29 (1952), 21-24.
H.J.A. Duparc, C.G. Lekkerkerker, W. Poremans, Reduced sequences of integers and pseudo random numbers, Rapport ZW 1953-002, Mathem. Centrum.
H.J.A. Duparc, Periodicity properties of recurring sequences I and II, Proc.Kon.Ned.Ak.v.Wet. A57 (1954),331-342 and 473-485.
D. Jarden, Factorization formulae for numbers of Fibonacci's.sequenc decreased or increased by a unit, Riv.Lemat.5(1951), 55-53
P. Poulet, Table des nombres composés vérifiant le théorème de Ferma pour le module 2 jusqu'à 100000000, Sphinx 8(1938), 42-52.

[^0]: 1) Confer for instance H. ¿.A. Duparc, Periodicity properties of recurring sequences II, Proc.Kon.Ned.Ak.v.Wetensch. A 57 (1954), 473-485; theorem 30.
 2) H.J.A. Dupars, Loc.cit. theorem 36.

 3i H.J.A. Dupare, Loc.cit. theorem 37.

