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Let A and B be two groups. Then the (abstract) wreath product A 'l, B 

of A and Bis one way of defining new groups from A and B[l]. If A and B 

are permutation groups then a permutation group Ai B can be defined 

([5], (4] p. 81). This permutation groupGis isomorphic to the abstract 

group A 'l, B if and only if B is a regular permutation group. We generalise 

in what follows the abstract definition of At Bin the sense that the 

group structures of the permutation groups A 1, B can be computed from 

generators and defining relations as well. 

Furthermore, representations of such general wreath products are 

considered (Bis here supposed to be finite). The discussion is carried 

through in terms of modules: starting from a module Mover the group 

algebra KA of the group A over a field K, and a transitive permutation 

representation of B, a KA 1, B - module W is constructed. A sufficient 

condition for the irreducibility of Wis derived (corollary 1 to 

theorem 2) as a special case of a general irreducibility condition for 

modules WG , where G is a subgroup of a certain type of A 'LB (see 

section 3). It appears that Wis irreducible if the matrix representation 

of A afforded by M does not consist of matrices all of which have 1 as 

a characteristic value. This condition is not necessary as has been 

shown by considering a special case (theorem 3). The irreducibility 

condition for WG however is pointed out to be also a necessary condition 

if we take for G metacyclic groups while K is algebraically closed with 

characteristics not dividing the order of G. The KA i B- modules play a 
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role in the definition of generalized transfer maps in the cohomology 

of groups [3] . 

2. Definition of A 2, B and of the modules W 

Let A and B be two groups; then Al B as an abstract group is defined 

as follows. Let for every b ~ B, Ab be a copy of A. Let ITAb be the 

(restricted resp. unrestricted) direct product of the Ab; thentthe 

(restricted resp. unrestricted) wreath product A 'l, B in the group 

generated by the (restricted resp. unrestricted) product group ITAb , 

together with the elements of B, where multiplication of the elements of 
-1 

ITAb with the elements of Bis defined by the relations b ab b = ab b , 
1 1 

for ab E Ab ,, b, b1 1:- B. A 2 B contains IlAb as an invariant subgroup 

with factor group B. It is a splitting subgroup. We assume in what 

follows B to be of finite order, so that the distinction between 

restricted and unrestricted wreath product will not play a role. 

Lemma 1. Let qi: A 2, B • F be a group homomorphism of A 2 B onto the group 

F. Let qi be such that the image of II Ab under 4> has the form IT 'q> (Ab), 

where II' means that the product is taken by letting b run through some 

subset of B. We have for all b' ,b € B that $(Ab)~ 4>(Ab 1 ). Let moreover 

b1 be a fixed chosen element of B, then the set 

-1 
B' = {b I b EB, \/a EA: qi(b )qi(ab )(j>(b) = (j>(ab )} 

1 1 

is a subgroup of B. B' consists precisely of those elements b EB for 

which the equality $(Ab)= (j>(Ab 1) holds. The right coset B'b0 (b0 ~ B) 

of B' consists of precisely those elements b EB for which 

$(Ab b ) holds. 
:L 0 

-1 
Proof. Using (j>(b )q>(ab )q>(b) = q>(ab b), which holds 

0 0 
b, b0 E: B and all a E A, we find that q>(Ab):::::: q>(Ab}. 

true for all 

It follows from 

E: B', then let same relations that B' is a subgroup of B. Now, if b 
-1 

ba ~ B' be such that b = b1b0 • Then <l>{btl )<l>(ab )q>(b) = 
1 0 
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for all a E= A, which means cp(Ab) = cp (Ab ) . Let, inversely, cj>(Ab) = cj>(Ab ) , 
-1 -1 1 1 

then cj>(b)cj>(ab)cj>(b ) = <j>(b)!~ab/cj>(b ) = cj>(a1) for all a~ A. But 

cp(A1) = cj>(Ab ) from which b E. B' and b E. B' follow. The last propos~ 
l 

ition of the lemma follows by same kind of reasoning. 

We are i.n what follows interested in group homomorphisms cp of the 

kind as described in lemma 1, and try to compose homomorphisms of that 

kind. From leimma 1 we see that II'cj>(Ab) is a splitting normal subgroup 

of F with factor group c/>(B). The product II'cj>(Ab) appears to be extended 

over a set of different coset representatives of a certain subgroup B' 

of B, while the set of factors c/>(Ab) is permuted transitively by pre

multiplication by cj>(b-1) and postmultiplication by cp(b). We therefore 

start out with a given subgroup B' c B. B' defines a transitive 

permutation representation of B, which is given by those permutations 

of the right cosets B'b (b € B) of B' which are induced from the right 

regular representation x • xb (b EB) of B (see [4], p. 57). 

Now,let c/>: A • A' be a homomorphism of the group A onto the group 

A'= c/>(A). Let c/> : A • A' denote same homomorphism c/> except that it is 
X X X 

applied upon a copy A of A and ends up in a copy A'= cp (A) of A'. In 
X X X X 

order to avoj_d excessive notation we denote in what follows the group 

cj> (A) by c/>(A ). Let for every B'b the symbol AB;b denote a copy of A. 
X X X 

.Then let for every b E B, c/>b be a homomorphism of Ab onto A~,b = c/>(A8 ,b) 

defined by the map ab • c/>(a8 ,b) (a EA). We try to extend the homo

morphisms c/>b to a homomorphism of IIAb onto II c/>(A8 ,b~· This is not 

necessarily possible for every choice of subgroup B'C B. 

Lemma 2. GivEm a subgroup B' of B, the homomorphisms cj>b: Ab • cj>(A8 ,b) 

defined by the mappings ab • cj>(a8 ,b) (a E: A) can be extended to a 

homomorphism of IIAb onto II c/>(A , ) if and only if one of the following 
B b 

conditions is fulfilled: 

(i) B' is any subgroup of Band c/>(A) i.s abelian, 

(ii) B' is the trivial subgroup of Band cj>(A) is non-abelian. 

If such an extension homomorphism exists, then it is unique. 
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Proof. It is sufficient to prove that rpb can be extended to a homo

morphism of IT A into cp(AB 1 ). Such an extension homomorphism 
b EB' b 

necessarily maps an element (ab) e IT Ab onto the product in ¢(A ,) 
b 1=-B' B 

of the images cp(ab) of the components of (ab). We see readily that if 

¢(AB,) is abelian then such an extension exists and is unique, whatever 

B'CB is taken. If on the other hand ¢(AB,) is non-abelian and if 

B' i {1}, then one finds easily an element in IT Ab that is carried 
b c;;.B' 

into two different elements of ¢(AB 1 ), under the correspondence described 

above. 

Proposition 1. Let a group homomorphism¢: A • A'= ¢(A) be given. Let 

furthermore B'C: B be a subgroup of B such that the derived homomorphisms 

cpb of lemma 2 are extendable to a homomorphism (called also¢) of IT Ab 

onto TI ¢(AB'b). Denote the permutation representation induced from the 

right regular representation of B on.B' by TI(B). Then the group 

H(¢(A),TI(B)) generated by the groups TI cji(AB'b) and TI(B) with defining 
-1 

relations 1T(b0 )cp(aB'b)Tr(b0 ) = cji(a8 ,bb ~ (b0 ,b '= B) is homomorphic to 

A 2 B under the map 0 

where (cp(a8 ,b)) is the image in TI cji(A8 ,b) of (ab) in TI Ab under¢. 

Proof. The proposition can be verified immediately. 

Remark. The definition of H(cji(A),TI(B)) is in fact independent from the 

extendability of the cpb and from the finiteness of B. 

Let P(cp(A)) be an arbitrary isomorphic permutation representation 

of cp(A), then H(cp(A),TI(B)) is as an abstract group isomorphic to the 

wreath product P( ¢(A)) 'l, TI(B) of the permutation groups P( ¢(A)) and TI (B) . 

Those permutation groups P(cji(A)) '2 ir(B) were first introduced in [s]. 

The modules Ware obtained as follows. Let B' c B be a subgroup of 

B and let cp: A • A' = cp(A) be a given homomorphism. Let furthermore M be 
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a finitely generated K,cji(A)-module with basis { e.}. Let for every co set 
]. 

B'b, M , ~ M be a Kcjl(A 'b)-module, where for every B'b, cjl(AB'b) denotes 
B b B B 'b 

a copy of cjl(A) acting in sam~ way upon a basis {ei } of MB'b as <P(A) 

acts upon the basis {e.} of M. 
]. 

Define W = l G)M8 ,b , where the summation is taken over the 

(different) cosets of B'. Then W becomes in the obvious way a K TI cjl{A8 ,b)

module. Let n(B) be the permutation representation of B defined by B'. 

We make W into a Kn(B)-module by letting the elements of n(B) act upon 
B'b the basis elements e. of Was follows: 
]. 

IT(b) 
0 

Then we have 

(B'b) 
e. 

]. 
= 

-1 
(B'bb0 ) 

e. 
]. 

(b I: B). 
0 

Theorem 1. Let R be the smallest ring of endomorphisms of W containing 

K TI<J>(AB'b) and Kn(B). Then R = KH(cjl(A),ir(B)), where H(cjl(A),TI(B)) is the 

group defined in proposition 1. If B'C: Bis chosen such that the 

homomorphisms cpb of lemma 2 can be extended to IT Ab, then by letting 

the elements b' (ab) of A 1. B act on W in same way as their images 

(qi,n) b'(ab) = n(b')(cp(a8 ,b)) in H(cjl(A),n(B)) do, W becomes a KA'l,B

module. 

Proof. It is sufficient to prove that for all b EB, a~ A and every 
* -1 coset B'b the relations n(b0 )q>(a8 ,b*)ff(b0 ) = cjl(a8 ,b*b) between the 

0 
automorphisms: in n(B) and IT <l>(A8 'b) of W hold true. 

Let W = I I A~B'b)e~B'b) be an arbitrary vector in W. Then 
(i) B'b 

I 1 
(i) B'b;,f B'b* 

]. ]. 

-1 \ \ 
n(bo )qi{aB'b*) l l 

(i) B'b 

(B'b) (B'bb~1) 
A. e. + 

]. ]. 

= 

= 
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= l l A~B'b)e~B'b) + 

(i) B'b~B'b* 1 1 
= 

= 

q.e.d. 

Remark. The symbol W denotes in what follows a module W of the type 

constructed above, the operator ring being KA'2. B, where the elements of 

A 2. B are defined to act upon W as defined in theorem 1. In case however 

that B ' C B is such that the ~b cannot be extended to IIAb , we may 

consider the module W to be a KH(~(A),n(B))-module, or (remark on 

proposition l) as a KP( HA)) i n(B) - module. All definitions and propos-. 

itions pertaining A 'Z. B and the module W that will be derived in what 

follows can be carried over to the groups P( HA)) i n(B) - considered as 

abstract groups - and the module W. 

3. The class C and the modules WG·: 

The letter G denotes in what follows a subgroup of A- 'l, B with the 

properties: 

(i) G contains a subgroup A which is a subdirect product of IT Ab ; 

(ii) a set of right coset representatives of G with respect to A is also 

a set of representatives of A 2 B with respect to IT Ab· •. 

The class of groups defined by (i) and (ii) is denoted by C. Example 

of groups in C are A 2 B itself, the group extensions G of A by B: G/A ~ B, 

which are embedded in A 2 B ( [5] , [ 6]). Other groups of C are defined in 

[6]. Finally,, we would mention the groups G with subgroup A, such that 

the permutation group defined by A in G is isomorphic to B (Frobenius 

embedding). 

Let W bE~ a KA'l,B-module as defined in section 2, then WG will 

denote the same module except that the operators are restricted to KG 

in KA 1. B. 
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Proposition~~- If B' = {1} then WG is isomorphic to the induced module 

M~, , where MB, is the KA-submodule of WA obtained from the KTI Ab -module 

MB' by restriction of the operators to KA. 

Proof. B' = {1} implies B ::''IT(B) under the map b-+ 'IT(b). If '!T(b)ab ~ G 

with ab t A are the representatives of A in G then we have 

WG = IG 'JT(b)ab MB' = I01T(b) MB' . The map I bab@ mb • 

(~ E: MB,) defines a KG-isomorphism of M~, = l bab ®MB, onto 

(see [2], p. 74, 323). 

Proposition 8. WG is reducible if the KA-module M8 , is reducible. 

* * Proof. Let MB, be an irreducible KA-submodule of MB, , then l G) MB 'b 

is a KG-submodule of WG. 

Lemma 3. WG is irreducible if the KA-module WA contains no other KA-sub

modules than thosewhich are direct sums of MB'b's. 

Proof. The condition of the lemma implies that the submodules of WG must 

also be direct sums of MB'b's. A direct sum of MB'b's can never be a 

proper submodule of WG, as the automorphisms 1T(b)ab act transitively 

upon the modules MB'b' 

Let a vector 
B'b B'b* 

v = l >-.e. + l J.1.e. 0. ,µ_ ~ K) of the KA-sub-
1 1 1 1 1 1 

module MB'b (3~ MB'b* 
* 

(B'b ~ B'b*) be denoted by(>..,µ_). Let moreover 
1 1 

(a .. ) and (a .. ) denote the matrix blocks in T(a) 
1J l.J 

(a~ A), corresponding 

to the modules MB'b and MB'b* respectively, in the (direct sum) matrix 

representation T of A afforded by WA. Let those blocks have degree n. 

Then we prove, 

Lemma 4. If the KA-module Mis irreducible and if for all pairs of 

different co sets B 'b ,B 'b* the KA-module M8 'b 0 MB 'b* C WA does not 

contain a subdirect submodule S such that there exist vectors (x. ,y.) 
1 1 

and (A.,µ.) in S, and an a~ A with the property 
1 1 
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n 
* I a .. yj I µi 

j=l l.J 
(i=l, ... ,n) 

n 

I a .. x. = >... 
j=l l.J J l. 

(i=l, ... ,n), 

then WA contains no other KA-submodules than those .. 'Which are arbitrary 

direct sums of MB'b's. 

Proof. From the irreducibility of M and the subdirectness of A in II Ab 

it follows immediately that every MB'b is an irreducible submodule of WA. 
Let V be a submodule of WA, not equal to a direct sum of MB'b's. Then 

MB'bC V implies that MB'b is a direct summand of V. If we leave away all 
* those direct summands from V, then we are left with a submodule V of 

* WA , V being a submodule of the direct sum of a~:numbe:v.'of MB 'b 's, which 

contains no MB'b as a submodule. 

* * Let S be the smallest non-trivial submodule of V in a composition 
* * series of V. Then it follows from theJordan-Htilder theorem that S is 

* KA-isomorphic: to some module MB'b' As S is not equal to any MB'b , there 

must exist at least two different cosets B'b and B'b* such that the 

KA-projection S of s* into MB 'b 0~ 'b* is a subdirect module of 

MB'b0MB'b* c:wA and is not equal to MB'b0MB'b'ti . s is an irreducible 

module, ass* is irreducible. The pro(jection 1r(S) of S into MB'b is for 

that reason a KA-isomorphism. 

Now,let (>...,µ.)and (x. ,y.) be vectors in S such that ,the conditions 
l. l. l. l. 

of the lemma hold true. This means that there exist two different vectors 

in S, viz. O.,µ.) and <I a . . x., Ia~:_y,) = O.,I a~ .Y:), having same 
l. l. l.J J l.J J l. l.J J 

projection in 'TT (S) , viz. 0. , 0) . This is however impossible on account 
l. 

of the isomorphism between Sand MB'b' 

Theorem 2. The module w0 is irreducible if the conditions of lem.ma 4 

with respect to the KA-module WA are satisfied. 
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Proof. Lemma 3 and lemma 4. 

Corollary 1. Let G = A 1. B, then WA 2. B = W is irreducible if not all the 

matrices of the irreducible matrix rep~esentation of A afforded by M 

have a characteristic value equal to 1. 

Proof. We have A= TI Ab. Let S be an irreducible subdirect KA-submodule 

of MB'b (t)MB'b*, then take for 0,i,µi) E: Sa vector (1,µi). Such a 

vector exists in Sas the projection of Sin MB'b is onto. Take 

(x. ,y.) = (l,11.), (a ) = I (identity matrix), (a~.)~ I. We have that 
1 1 1 ij 1J 

la~. 11. = 11. only if (a~.) has a characteristic value equal to 1. 
1J J J 1J 

Corollary 2. If the degree of the irreducible representation of A 

afforded by Mi is equal to 1, then theorem 2 gives: 

WG is irreducible if for every pair of different cosets B'b and B'b* 

there exists an element a~ A such that for the entries a and a* 

(a,a* 4i:. K) corresponding to the modules MB'b and MB'b* in the diagonal 

representation of A afforded by WA, the inequality a-/. a* holds. 

Remark. The question whether the condition of theorem 2 is also a 

necessary condition for the irreducibility of WG has to be answered in 

the negative (see theorem 3 below). This condition is however necessary 

in the following case. Let K be algebraically closed, and let A and B be 

both finite cyclic with order n and m, respectively. Assume that nm is 

not divisible by the characteristic of K. Then take for G the metacyclic 

groups G/A ~ B. The module WG is in this case isomorphic to the induced 
G 

module M8 , (proposition 2). A simple calculation shows that in this case 

the condition. of corollary 2 is equivalent to (the sufficient partoof) 

the irreducibility criterion for M~, as has been derived in [2], §47. 

This condition however is also necessary (loc.cit.). It is likely that 

the condition. of corollary 2 is also necessary if we take for G 

metabeli.an groups (A and B abelian, G/A '= B). 
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Theorem 3. Leit A and B be finite, K algebraically closed. Assume that 

the characteristic of K does not divide the order of At B. Let B' = {l}. 

Then W is an irreducible KA 1 B- module if M is an irreducible KA-module. 

Proof. We have W = ~ 'l. B (proposition 2). The assumptions of the theorem 

permit us to apply an irreducibility criterion for induced modules 

([2], §45). According to this theorem, we have only to show that for 

every b 6. B the irreducible Kn Ab -modules ~ are not K TI Ab -isomorphic. 

This follows howev~r immediately from the fact that every Ab' acts 

trivially on Mb if and only if b # b'. 

The only if part of the theorem follows from proposition 3. 
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