Certain representations of the wreath product

and of a certain type of its subgroups

*)
by Willem Kuyk

1. Introduction

Let A and B be two groups. Then the (abstract) wreath product A7 B
of A and B is one way of defining new groups from A and B[l]. If A and B
are permutation groups then a permutation group A% B can be defined
([5],[4] p.- 81). This permutation groupsis isomorphic to the abstract
group Al B if and only if B is a regular permutation group. We generalise
in what follows the abstract definition of A B in the sense that the
group structures of the permutation groups Al B can be computed from
generators and defining relations as well.
Furthermore, representations of such general wreath products are
considered (B is here supposed to be finite). The discussion is carried
through in terms of modules: starting from a module M over the group
algebra KA of the group A over a field K, and a transitive permutation
representation of B, a KA B-module W is constructed. A sufficient
condition for the irreducibility of W is derived (corollary 1 to
theorem 2) as a special case of a general irreducibility condition for
modules WG , where G is a subgroup of a certain type of A1l B (see
section 3). It appears that W is irreducible if the matrix representation
of A afforded by M does not consist of matrices all of which have 1 as
a characteristic value. This condition is not necessary as has been
shown by considering a special case (theorem 3). The irreducibility
condition for WG however is pointed out to be also a necessary condition
if we take for G metacyclic groups while K is algebraically closed with

characteristics not dividing the order of G. The KA { B- modules play a
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role in the definition of generalized transfer maps in the cohomology

of groups [3].

2. Definition of A9 B and of the modules W

let A and B be two groups; then A.ZB as an abstract group is defined
as follows. Let for every b € B, A, be a copy of A. Let HAb be the

thentthe

(restricted resp. unrestricted) digect product of the Ab;
(restricted resp. unrestricted) wreath product AT B in the group
generated by the (restricted resp. unrestricted) product group HAb ,
together with the elements of B, where multiplication of the elements of
-1

MA, with the elements of B is defined by the relations b "a,_ b = a ,
b b1 blb

for ab [ Ab , b, b1 e B. A2 B contains HAb as an invariant subgroup
with factor group B. It is a splitting subgroup. We assume in what
follows B to be of finite order, so that the distinction between

restricted and unrestricted wreath product will not play a role.

Lemma 1. Let ¢: A2 B > F be a group homomorphism of A2 B onto the group
F. Let ¢ be such that the image of IIAb under ¢ has the form H'¢(Ab),

where II' means that the product is taken by letting b run through some
subset of B. We have for all b',b & B that ¢(Ab) = ¢(Ab,). Let moreover

b1 be a fixed chosen element of B, then the set

B' = (b | beB, Vaeh: ¢ Dola, )6 = ¢(a )}
1 1
is a subgroup of B. B' consists precisely of those elements b &€ B for
which the equality ¢(Ab) = ¢(Ab1) holds. The right coset B'bo (b0 € B)
of B' consists of precisely those elements b € B for which

¢(Ab) = ¢(Ab b ) holds.
1l o

Proof. Using ¢(b_1)¢(ab Yo(b) = cb(ab b), which holds true for all
o o
b’bo € B and all a € A, we find that ¢(Ab)§ ¢(Ab ). It follows from

Q
same relations that B' is a . subgroup of B. Now, if b € B', then let

-1
b _. Then ¢(b6 1¢(ab )¢(b0) = ¢(ab p ) = ¢(ab )
1 10 1

1 —
b6 € B' be such that b = b1




for all a € A, which means ¢(Ab) = ¢(Ab ). Let, inversely, ¢(Ab) = q>(Ab ),

then ¢(b)¢(ab)¢(b-1) = 4(0)¢(a, Yoo 1yle ¢(a)) for all a € A. But 1

- 1
¢(A1) = q>(Ab ) from which b l'e B' and b € B' follow. The last propos#

ition of the lemma follows by same kind of reasoning.

We are in what follows interested in group homomorphisms ¢ of the
kind as described in lemma 1, and try to compose homomorphisms of that
kind. From lemma 1 we see that H'¢(Ab) is a splitting normal subgroup
of F with factor group ¢(B). The product H'¢(Ab) appears to be extended
over a set of different coset representatives of a certain subgroup B'
of B, while the set of factors ¢(Ab) is permuted tkansitively by pre-
multiplication by ¢(b_1) and postmultiplication by ¢(b). We therefore
start out with a given subgroup B'C B. B' defines a transitive
permutation representation of B, which is given by those permutations
of the right cosets B'b (b € B) of B' which are induced from the right
regular representation x » xb (b € B) of B (see [4], p. 57).

Now, let ¢: A > A' be a homomorphism of the group A onto the group
A' = ¢(A). Let ¢x: Ax > Aé denote same homomorphism ¢ except that it is
applied upon a copy Ax of A and ends up in a copy Aé = ¢X(Ax) of A'. In
order to avoid excessive notation we denote in what follows the group
¢X(Ax) by ¢(Ax). Let for every B'b the symbol AB;b denote a copy of A.
Then let for every b &€ B, ¢b be a homomorphism of Ab onto Aé'b = ¢(AB,b)
defined by the map a, > ¢(aB,b) (a € A). We try to extend the homo-

morphisms ¢b to a homomorphism of HAb onto T ¢(A This is not

B'b)"
necessarily possible for every choice of subgroup B'C B.

Lemma 2. Given a subgroup B' of B, the homomorphisms ¢b: Ab - ¢(AB, )

defined by the mappings ay -> ¢(aB,b) (a € A) can be extended to a °
homomorphism of HAb onto I ¢(AB'b) if and only if one of the following
conditions is fulfilled:

(i) B' is any subgroup of B and ¢(A) is abelian,

(ii) B' is the triwial subgroup of B and ¢(A) is non-abelian.

If such an extension homomorphism exists, then it is unique.




Proof. It is sufficient to prove that ¢b can be extended to a homo-

morphism of ii Ab into ¢(AB,). Such an extension homomorphism
b €B'
necessarily maps an element (a ) € I A onto the product in ¢(A_,)
b® " pep' b B
of the images ¢(ab) of the components of (ab). We see readily that if

¢(AB,) is abelian then such an extension exists and is unique, whatever
B'C_B is taken. If on the other hand ¢(AB,) is non-abelian and if

B' # {1}, then one finds easily an element in I ‘Ab that is carried
into two different elements of ¢(AB,), under tgéégorrespondence described

above.

Proposition 1. Let a group homomorphism ¢: A > A' = ¢(A) be given. Let

furthermore B'CZ B be a subgroup of B such that the derived homomorphisms
¢b of lemma 2 are extendable to a homomorphism {called also ¢) of I Ab
onto Il ¢(AB,b). Denote the permutation representation induced from the
right regular representation of B on B' by T(B). Then the group

H(¢(A) ,m(B)) generated by the groups I ¢(AB,b) and T(B) with defining
relations w(b;1)¢(aB,b)n(bo) = ¢(aB’bb ¥ (bo,b € B) is homomorphic to
A? B under the map °

(4,m: bla) > 1) ($Cag, )

where (¢(aB,b)) is the image in I ¢(AB,b) of (ab) in I Ab under ¢,

Proof. The proposition can be verified immediately.

Remark. The definition of H(¢(A),n(B)) is in fact independent from the

extendability of the ¢b and from the finiteness of B,

Let P(¢(A)) be an arbitrary isomorphic permutation representation
of ¢(A), then H(¢(A),n(B)) is as an abstract group isomorphic to the
wreath product P(¢(A)) 2, 7n(B) of the permutaticn groups P(¢(A)) and m(B).
Those permutation groups P(¢(A)) 7 w(B) were first introduced in [5].

The modules W are obtained as follows. Let B' &« B be a subgroup of

B and let ¢: A - A' = ¢(A) be a given homomorphism. Let furthermore M be




a finitely generated K¢(A)-module with basis {ei}. Let for every coset

B'b, M = M be a K¢p(A_,, )-module, where for every B'b, ¢(A ) denotes

B'b B'b B B'b
a copy of ¢(A) acting in samg way upon a basis {ei } of Mg, 2s ¢ (A)

acts upon the basis {ei} of M.

Define W = 2 CDMB'b , where the summation is taken over the

)-

(different) cosets of B'. Then W becomes in the obvious way a K]T¢(AB,b

module. Let 7(B) be the permutation representation of B defined by B'.
We make W into a Kmn(B)-module by letting the elements of w(B) act upon

1
the basis elements e? b of W as follows:

1 1 -1
neh,) (B'D) _ (B'bb,)

) (b € B).
1 1 (o]

Then we have

Theorem 1. Let R be the smallest ring of endomorphisms of W containing
K H¢(AB,b) and Kn(B). Then R = KH(¢(A),n(B)), where H(¢ (A),m(B)) is the
group defined in proposition 1. If B'CC B is chosen such that the
homomorﬁhisms ¢b of lemma 2 can be extended to II Ab, then by letting
the elements b'(ab) of A1lB act on W in same way as their images

(¢, m) b'(ab) = w(b')(¢(aB,b)) in H(¢(A),n(B)) do, W becomes a KA 1B~

module.

Proof. It is sufficient to prove that for all b € B, a €« A and every

coset B'b" the relations ﬂ(b;1)¢(aB,b*)ﬂ(bo) = ¢(a b ) between the

B'b*

automorphisms in T(B) and H¢(AB,b) of W hold true. °
t 1

AFB b)eiB p) be an arbitrary vector in W. Then

Let W = ) N

(i) B'b

L g ELED

-1 . -1
m(b )¢(aB.b*)ﬂ(bo) W= ﬂ(bo )¢(aB,b*) R i

(B'b*)

' . 1%
@R G G G

-1
= (b ) z i i & i ¢(aB1b

© (1) B'b# B'b*




%)

(B'b) (B'b) (B'b*)
Ai ei + (E) Ai ¢(aB'b

*
eiB'b b)

(i) B'b#B'b*

¢(a )y wo.

B'b b
(o)

Remark. The symbol W denotes in what follows a module W of the type
constructed above, the operator ring being KA?{ B, where the elements of
Al B are defined to act upon W as defined in theorem 1. In case however
that B'CC B is such that the ¢b cannot be extended to HAb , we may
consider the module W to be a KH(¢(A),(B))-module, or (remark on
proposition 1) as a KP(#(A))Z m(B) - module. All definitions and propos-
itions pertaining A? B and the module W that will be derived in what
follows can be carried over to the groups P(¢(A)) L 7(B) - considered as

abstract groups - and the module W.

3. The class C and the modules WGt

The letter G denotes in what follows a subgroup of A 7 B with the
properties:
(i) G contains a subgroup A which is a subdirect product of IIAb ;
(ii) a set of right coset representatives of G with respect to A is also

a set of representatives of A { B with respect to IIAb}

The class of groups defined by (i) and (ii) is denoted by C. Example
of groups in C are A2B itself, the group extensions G of A by B: G/A = B,
which are embedded in A¢ B ([5] ,[6]). Other. groups of C are defined in
[6]. Finally, we would mention the groups G with subgroup A, such that
the permutation group defined by A in G is isomorphic to B (Frobenius

embedding) .

Let W be a KA 7B -module as defined in section 2, then WG will

denote the same module except that the operators are restricted to KG

in KA B.




Proposition 2. If B' = {1} then W, is isomorphic to the induced module

G

B is the KA-submodule of WK obtained from the KII Ab—module

MB' by restriction of the operators to KA.

Mg, , where M

Proof. B'

{1} implies B 2 7(B) under the map b + 7(b). If w(b)Eb e G

with ;b € A are the representatives of A in G then we have

We= 1@ ®a, M, = J@n®) M, . Themap ] ba ®m

(mb € MB,) defines a KG-isomorphism of Mg,
(see [2], p. 74, 323).

N -
L b z 'n(b)abmb
= 2 bab @MB, onto WG

Proposition 3. W_, is reducible if the KA-module MB' is reducible.

G

% — *
Proof. Let My, be an irreducible KA-submodule of Mg, , then ZC)MB'b

is a KG-submodule of WG.

Lemma 3. WG is irreducible if the KA-module WK contains no other KA-sub-

modules than thosewhich are direct sums of MB,b‘s.

Proof. The condition of the lemma implies that the submodules of WG must

also be direct sums of MB,b's. A direct sum of MB,b’s can never be a

proper submodule of WG , as the automorphisms ﬂ(b)z

b act transitively

upon the modules MB'b'

B'b*
i
(B'b # B'b™) be denoted by (Ai,ui). Let moreover

b
Let a vector v = ) red Py Y u.e
11 1

module M, ® M

(A;,u; € K) of the KA-sub-
B'b*
(aij) and (aij) denote the matrix blocks in T(a) (a & A), corresponding
to the modules MB'b and MB'b* respectively, in the (direct sum) matrix

representation T of A afforded by WK . Let those blocks have degree n.

Then we prove

Lemma 4. If the KA-module M is irreducible and if for all pairs of
different cosets B'b,B'b* the KA-module MB'b @ MB'b* CWK does not
contain a subdirect submodule S such that there exist vectors (xi,yi)

and (Ai,ui) in S, and an a € A with the property




T %

jzl aij Yj # My (i=1,...,n)

n

J21 ij xJ = Al (i=1,...,n) ,
then WK contains no other KA-submodules than those which are arbitrary
direct sums of MB,b's.

Proof. From the irreducibility of M and the subdirectness of A in IIAb

it follows immediately that every MB'b is an irreducible submodule of WK'

Let V be a submodule of W— , not equal to a direct sum of M 's. Then

A B'b
MB'bC: V implies that MB'b is a direct summand of V. If we leave away all

*
those direct summands from V, then we are left with a submodule V of

*
W— , V being a submodule of the direct sum of aunumber.of M 's, which

A

contains no MB'b as a submodule.

B'b

* *
et S be the smallest non-trivial submodule of V in a composition
* *
series of V . Then it follows from the Jordan-HGlder theorem that S 1is
there

— *
KA-isomorphic to some module M As S 1is not equal to any M

B'b’ B'b '’
must exist at least two different cosets B'b and B'b* such that the
KK—projection S of §* into MBW3C>MM'b* is a subdirect module of
MB,b@MB,b* C W, and is not equal to MB'b@MB'bﬁ . S is an irreducible
module, as S* is irreducible. The progection m(8) of S into MB'b is for
that reason a KK—isomorphism.

Now, let (Ai,ui) and (xi,yi) be vectors in S such that the conditions
of the lemma hold true. This means that there exist two different vectors
. . %7 * .

. = sa
in S, viz (Ai,ui) and () 2, %5 Eaijyj) (Ai,z aijyj)’ having same
projection in w(8), viz. (Ai,O). This is however impossible on account

of the isomorphism between S and MB'b'

Theorem 2. The module WG is irreducible if the conditions of lemma 4

with respect to the KA-module WK are satisfied.




Proof. Lemma 3 and lemma 4.

Corollary 1. Let G = A 1B, then WAz B = W is irreducible if not all the
matrices of the irreducible matrix representation of A afforded by M

have a characteristic value equal to 1.

Proof. We have A = Il Ab. Let S be an irreducible subdirect KA-submodule

of MB'b C)MB,b* , then take for (Ai,ui) € S a vector (l,ui). Such a

vector exists in S as the projection of S in MB’b is onto. Take

(x;,5,) = (1,u)), (a ) =1 (identity matrix), (ajj) # 1. We have that
i

*
2 aij uj = uj only if (a:j) has a characteristic value equal to 1.

Corollary 2. If the degree of the irreducible representation of A
afforded by M is equal to 1, then theorem 2 gives:

WG is irreducible if for every pair of different cosets B'b and B'b*
there exists an element a € A such that for the entries a and o*

(a,a* ¢ K) corresponding to the modules MB'b and Mqu* in the diagonal
representation of A afforded by W— , the inequality o # o* holds.

A
Remark. The question whether the condition of theorem 2 is also a

necessary condition for the irreducibility of W, has to be answered in
%)

the negative (see theorem 3 below). This conditgon is however necessary
in the following case. Let K be algebraically closed, and let A and B be
both finite cyclic with order n and m, respectively. Assume that nm is

not divisible by the characteristic of K. Then take for G the metacyclic

groups G/A € B. The module W, is in this case isomcrphic to the induced

module Mgw (proposition 2). i simple calculation shows that in this case
the condition of corollary 2 is equivalent to (the sufficient partcof)
the irreducibility criterion for Mg, as has been derived in [2], §47.
This condition however is also necessary (loc.cit.). It is likely that

the condition of corollary 2 is also nrecessary if we take for G

metabelian groups (A and B abelian, G/A € B).
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Theorem 3. Let A and B be finite, K algebraically closed. Assume that
the characteristic of K does not divide the order of A1B. Let B' = {1}.

Then W is an irreducible KA1 B- module if M is an irreducible KA-module.

1
Proof. We have W = Mﬁ B (proposition 2). The assumptions of the theorem

permit us to apply an irreducibility criterion for induced modules
([2], §45) . According to this theorem, we have only to show that for

every b € B the irreducible KIl A, -modules Mb are not KIIAb—isomorphic.

b
This follows however immediately from the fact that every A acts

b’
trivially on M, if and only if b # b'.

b
The only if part of the theorem follows from proposition 3.
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