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Archangelskii's Solution of Alexandrov's Problem
Introduction

The purpose of this paper is to present the proof of a conjecture

of P.S. Alexagdrov, namely that every first countable compact T, space

has at most 2 O points. This conjecture is nearly fifty years oid and

only very recently has it been solved by A.V. Archangelskii (see [1]).
Although the proof we give here is slightly more general and some-~

what simpler than Archangelskii's, all the main ideas = or rather tricks =

that we use belong to Archangelskii. Thus this paper can be regarded as

a quick translation of D] for those whose knowledge of Russian is not

sufficient to read the original.



1.1, Definition. The transfinite sequence {p £ < u} of points of a

£

space X is called a free sequence if for each io <y

{p, + & - ao}("a{pg PEy L& <ul =0,
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1.2. Main Lemma. Suppose X is an arbitrary topological space, o is an

infinite cardinal and ‘X[ > 2“, and that moreover the following two
conditions hold:

(i) If AcX, |A| < o then |A| < 2%.

(ii) If ACX, |A| < o then X\A can be written as a union of at
most 2% closed subsets of X (or what amounts for the same y(A,X) < 2%,
where y(H,X) denotes the minimal cardinality of a system of open sets
in X, whose intersection is H).

Then X contains a free sequence of length a+ (i,e. the successor

cardinal of o).

Procf. We shall construct a ramification system in the sense of Bﬂ,
Lemma 1, by defining sets R[Qoa""pij and points p[po,..‘,pgj for
certain sequences of ordinals where pn < 2% and ¢ < o,

First we put R

= X and pOGZR arbitrary; here 0 stands for the

0 0
+

empty sequence. Suppose now that £ < a and for all n < £ the sets

R[po’,n.,pn] and points P[po,..‘,pn] have been defined for each

[po,ﬂ,,,p61628n+], where Sv denotes the set of sequences of type v of

ordinals < 2 .

Let us choose now a sequence sg€S, and put

g

"= N Do+l <
Rs JLRs|n+1 nl o< gl

where s|n+1 denotes the initial segment of s of type n+1. Now we dis—

tinguish two cases, a) and b):

a) |R;[ < 2% In this case we put R 5.0 = R, for all p < 2%
— H]
here [s, J denotes the sequence [bo,...,g] of type £+1 obtained by

augmenting s by p. The points P[? d] can be chosen arbitrarily.
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b) |Ré| > 2%, Since £ < oc+, applying (ii; and pl(J.t’ging
_ ~(8) . (s) _ s) | o
{psln'ﬂ n+1 < g} =G we can write X\G U{Fp s p <2},

where the Fps)'s are (not necessarily distinct) closed subsets of X.

Next we put

(s)
- = R F
RI:SQQJ S(\ P

o .
for each p < 2  and choose any element of R[s,p] as p[s,pj if Rl:s,p] # 0.
Otherwise p[s p] can be chosen arbitrarily.
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By transfinite induction on v we can easily show that
X =U{R:'s : seSv}UU{G(S) : séSv}

holds for each v < o . Next we claim that there exists a sequence t€Sa+
such that N
L > 2

|Rt[\)!

+
holds for each v < a . Indeed, let us put

~ a
= . 1
8, {sésv : |RS| <27}
and
=~
S

S=U{SV:\)<0¢+},§=U{\) v<a).

Then |§| < |8] < § oIV < o .2% = 2%, nence we have, by (i) and the

. o V<o,
choice of S

U{G<s) : s&S}UU{R' s s8] < 2%.0% + 2%, 0% = 0%,
s

Now if X is an arbitrary point in the complement of the above set we
can find a sequence tesa+ such that
o~ D1
XOC Rt l\)
+ . . .
holds for each v < o . Indeed, if t is a maximal sequence such that
XN € R%lv holds for each v < length of t, then the length of t must be
o~

o, Because of the choice of XO’ however, we have tlvc—:S\)\ Sv’ hence

1
R}

| > 2% for each v < o',
[v

Let us put now t = [po,...,ps,...:[ and

Pe T Pelgnt TP, 0,



+ . +
for all £ < o . Then for arbitrary £ < a we have

{p, s n<tls= ¢*18) ana
{p :€<nc< a+}C.{p D E << u"’}CF(tlE) i
n - n pg

g £ <o} is a free sequence, because
= ¢, by definition. This completes the proof.

which shows that {p
G(t‘ﬁ)npét|€>
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2.1. Definition. A space X is called o-Lindeldf if from each open covering

of X we can select a subcovering of power < o.

2,2, Lemma. Assume X is an a-Lindeldf T1 space, ACX, |A| < 2% and A is

closed in X, moreover that y(p,X) < 2% nolds for each peA. Then

v(a,x) < 2%

holds as well.

Proof. Let us choose for each p€ A a system of open neighbourhoods of

p, say 'U'p, such that ﬂ"fp = {p} and [Up| < 2%, Now, if x_ is an arbitrary

0
eV :

p €V, such that 3':O¢-Vp
Since {Vp : peA} is a covering of A and X (and A) are a-Lindeldf, there
is a subcovering 'U—XOC {VP : peA} such that Iblxol < a. But xoé UUXODA,
which shows that

P(AX) < [{U: ucpkeJA Up and |V] < o} < (2™)% = ga,

point of X\ A then for each pe A there is a V

. 0 S0 _ 0
since 'pLeJAUpli—z 20 = 2n,

2.3. Lemma. Suppose X is a T, space and x(X) = sup{x(p,X) : peX} < o.
(Here, as usual, x(p,X) denotes the minimal cardinality of a neighbour-
hood basis of p in X.) Then ACX, |A| < o imply |A| < 2°,

Proof. Let psl, then there i1s a Moore-Smith sequence converging to p
on an index set of power < a whose terms are elements of A. Since X is
T2, for different points these sequences must also be different. Since
the number of all such Moore-Smith sequences in A is < 2“, we have

A] < 2%

2.4, Definition. We define £(X) as the smallest infinite cardinal

such that X is oa=Lindeldf.

2.5, Theorem. For each '1‘2 space X we have

x| < o &(X)x(x)



Proof. Let us put o = £L(X).x(X). By 2.3. and 2.2., respectively, the
conditions (i) and (ii) of 1.2. are satisfied. So, by 1.2., if |X| > 2%
held, there would exist a free sequence S = {p€ 1 g < o"} in X. Since
X is o=-Lindeldf there is a point y&X such that for every neighbourhood
Vofy |vns| = |s| = o holds. Indeed this is true in every a-Lindeldf
space for every set of power 0L+.

On the other hand, since x(y,X) < a obviously there is a subset
AcCs, [A| < o such that yé.K.. Now, since a+ is regular there is a

£y < o’ such that

AC{pg £ < EO} R

hence yea{pE 1 €< E;O} .

+ . .. o L.
Since S is free we have yqé{pE : £ < & < a } which is in contradiction

0
to the choice of y. This completes the proof.

2.6. Corollary. If X is a first countable Lindel®f T, space then x| <2

He,
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