STICHTING
 MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49
AMSTERDAM
AFDELING ZUIVERE WISKUNDE

ZW 1969-013

Archangelskii's Solution of Alexandrov's Problem
by
I. Juhász
$\sqrt{M C}$
october 1969

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam, The Netherlands.

The Mathematical Centre, founded the 11-th of February 1946, is a nonprofit institution aiming at the promotion of pure mathematics and its applications; it is sponsored by the Netherlands Government through the Nethereands Organization for the Advancement of Pure Research (Z.W.O) and the Central Organization for Applied Scientific Research in the Netherlands (T.N.O), by theMunicipality of Ansterdam, by the University of Amsterdam, by the Free University at Amsterdam, and by industries.

Archangelskii's Solution of Alexandrov's Problem

Introduction

The purpose of this paper is to present the proof of a conjecture of P.S. Alexandrov, namely that every first countable compact T_{2} space has at most $2^{K_{0}}$ points. This conjecture is nearly fifty years old and only very recently has it been solved by A.V. Archangelskii (see [i]).

Although the proof we give here is slightly more general and somewhat simpler than Archangelskii's, all the main ideas - or rather tricks that we use belong to Archangelskii. Thus this paper can be regarded as a quick translation of $[1]$ for those whose knowledge of Russian is not sufficient to read the original.
1.1. Definition. The transfinite sequence $\left\{p_{\xi}: \xi \leqslant \mu\right\}$ of points of a space X is called a free sequence if for each $\xi_{0} \div \mu$

$$
\left.\left.\overline{\left\{\mathrm{p}_{\xi}\right.}: \overline{\xi_{0}}\right\} \cap \overline{\left\{\mathrm{p}_{\xi}\right.}: \xi_{0} \leq \xi<\mu\right\}=\varnothing .
$$

1.2. Main Lemma. Suppose X is an arbitrary topological space, α is an infinite cardinal and $|X|=2^{\alpha}$, and that moreover the following two conditions hold:
(i) If $A \subset X,|A| \leq \alpha$ then $|\bar{A}| \leq 2^{\alpha}$.
(ii) If $A \subset X,|A| \leq \alpha$ then $X \backslash \bar{A}$ can be written as a union of at most 2^{α} closed subsets of X (or what amounts for the same $\psi(\bar{A}, X) \leq 2^{\alpha}$, where $\psi(H, X)$ denotes the minimal cardinality of a system of open sets in X, whose intersection is H).

Then X contains a free sequence of length α^{+}(i.e. the successor cardinal of α).

Proof. We shall construct a ramification system in the sense of [2], Lemma 1, by defining sets $R\left[\rho_{0}, \ldots, \rho_{\xi}\right]$ and points $p\left[\rho_{0}, \ldots, \rho_{\xi}\right]$ for certain sequences of ordinals where $\rho_{\eta}<2^{\alpha}$ and $\xi<\alpha^{+}$.

First we put $R_{0}=X$ and $p_{0} \in R_{0}$ arbitrary; here 0 stands for the empty sequence. Suppose now that $\xi<\alpha^{+}$and for all $n<\xi$ the sets $R\left[\rho_{0}, \ldots, \rho_{n}\right]$ and points $p\left[\rho_{0}, \ldots, \rho_{n}\right]$ have been defined for each $\left[\rho_{0}, \ldots, \rho_{n}\right] \in S_{n+1}$, where S_{V} denotes the set of sequences of type v of ordinals < 2^{α}.

Let us choose now a sequence $s \in \boldsymbol{S}_{\xi}$ and put

$$
R_{s}^{\prime}=\cap\left\{R_{s \mid n+1}: n+1 \leq \xi\right\}
$$

where $s \mid \eta+1$ denotes the initial segment of s of type $n+1$. Now we distinguish two cases, a) and b):
a) $\left|R_{s}^{\prime}\right| \leq 2^{\alpha}$. In this case we put $R[s, \rho]=R_{s}^{\prime}$ for all $\rho<2^{\alpha}$; here $[s, \rho]$ denotes the sequence $\left[\rho_{0}, \ldots, \rho\right]$ of type $\xi+1$ obtained by augmenting s by ρ. The points $p[s, \rho]$ can be chosen arbitrarily.
b) $\left|R_{s}^{\prime}\right|>2^{\alpha}$. Since $\xi<\alpha^{+}$, applying (ii) and putting
 where the $F_{\rho}^{(s)}$'s are (not necessarily distinct) closed subsets of X. Next we put

$$
R_{[s, 0]}=R_{s}^{\prime} \cap F_{\rho}^{(s)}
$$

for each $\rho<2^{\alpha}$ and choose any element of $R[s, \rho]$ as $p[s, p]$ if $R[s, \rho] \neq \emptyset$. Otherwise $p[s, 0]$ can be chosen arbitrarily.

By transfinite induction on v we can easily show that

$$
\left.X=U_{\left\{R_{s}^{\prime}\right.}: s \in S_{\nu}\right\} \cup U\left\{G(s): s \in S_{\nu}\right\}
$$

holds for each $v<\alpha^{+}$. Next we claim that there exists a sequence $t \in S_{\alpha^{+}}$ such that

$$
\left|R_{t \mid v}^{\prime}\right|>2^{\alpha}
$$

holds for each $\nu<\alpha^{+}$. Indeed, let us put

$$
\tilde{S}_{v}=\left\{s \in S_{v}:\left|R_{s}^{\prime}\right| \leq 2^{\alpha}\right\}
$$

and

$$
S=V\left\{S_{v}: v<\alpha^{+}\right\}, \quad \tilde{S}=U\left\{\tilde{S}_{v}: v<\alpha^{+}\right\} .
$$

Then $|\tilde{S}| \leq|S| \leq \sum_{v<\alpha^{+}} 2^{|v| \leq \alpha^{+}}$. $2^{\alpha}=2^{\alpha}$, hence we have, by (i) and the
choice of \tilde{S}

$$
\left.\left.\mid \mathbf{U}_{\{G}^{(s)}: s \in S\right\} \cup \cup_{\left\{R_{s}^{\prime}\right.}: s \in \tilde{S}\right\} \mid \leq 2^{\alpha} \cdot 2^{\alpha}+2^{\alpha} \cdot 2^{\alpha}=2^{\alpha} .
$$

Now if x_{0} is an arbitrary point in the complement of the above set we can find a sequence $t \in S_{\alpha^{+}}$such that

$$
x_{0} \in R_{t \mid \nu}^{\prime}
$$

holds for each $v<\alpha^{+}$. Indeed, if t is a maximal sequence such that $x_{0} \in R_{t \mid \nu}^{\prime}$ holds for each v < length of t, then the length of t must be α^{+}. Because of the choice of x_{0}, however, we have $t \mid v \in S_{\nu} \backslash \mathbb{S}_{v}$, hence $\left|R_{t}^{\prime}\right| \nu \mid>2^{\alpha}$ for each $\nu<\alpha^{+}$,

Let us put now $t=\left[\rho_{0}, \ldots, \rho_{\xi}, \ldots\right]$ and

$$
\left.p_{\xi}=p_{t \mid \xi+1}=p_{\left[\rho_{0}, \ldots, \rho_{\xi}\right]}\right]
$$

for all $\xi<\alpha^{+}$. Then for arbitrary $\xi<\alpha^{+}$we have

$$
\begin{aligned}
& \overline{\left\{p_{n}: n<\xi\right\}}=G(t \mid \xi) \text { and } \\
& \left\{p_{n}: \xi \leq n<\alpha^{+}\right\} \subset\left\{\overline{\left\{p_{n}: \xi \leqq n<\alpha^{+}\right\}} \subset F_{\rho_{\xi}}^{(t \mid \xi)},\right.
\end{aligned}
$$

which shows that $\left\{p_{\xi}: \xi<\alpha^{+}\right\}$is a free sequence, because ${ }_{G}(t \mid \xi) \cap_{F_{\xi}}^{(t \mid \xi)}=\emptyset$, by definition. This completes the proof.
2.1. Definition. A space X is called $\alpha-L i n d e l o ̈ f ~ i f ~ f r o m ~ e a c h ~ o p e n ~ c o v e r i n g ~$ of X we can select a subcovering of power $\leqq \alpha$.
2.2. Lemma. Assume X is an α-Lindelöf T_{1} space, $A \subset X,|A| \leq 2^{\alpha}$ and A is closed in X, moreover that $\psi(p, X) \leq 2^{\alpha}$ holds for each $p \in A$. Then

$$
\psi(A, X) \leq 2^{\alpha}
$$

holds as well.

Proof. Let us choose for each $p \in A$ a system of open neighbourhoods of p, say v_{p}, such that $\cap v_{p}=\{p\}$ and $\left|v_{p}\right| \leq 2^{\alpha}$. Now, if x_{0} is an arbitrary point of $X \backslash A$ then for each $p \in A$ there is a $V_{p} \in V_{p}$ such that $x_{0} \notin V_{p}$. Since $\left\{V_{p}: p \in A\right\}$ is a covering of A and X (and A) are α-Lindelöf, there is a subcovering $u_{x_{0}} \subset\left\{V_{p}: p \in A\right\}$ such that $\left|\nu \chi_{x_{0}}\right| \leq \alpha$. But $x_{0} \notin \cup u_{x_{0}} \supset A$, which shows that

$$
\psi(A, X) \leq \mid\left\{u: u \subset \bigcup_{p \in A} v_{p} \text { and }|v r| \leq \alpha\right\} \mid \leq\left(2^{\alpha}\right)^{\alpha}=2^{\alpha}
$$

since $\left|\bigcup_{p \in A} U_{p}\right| \leq 2^{\alpha} \cdot 2^{\alpha}=2^{\alpha}$.
2.3. Lemma. Suppose X is a T_{2} space and $X(X)=\sup \{X(p, X): p \in X\} \leq \alpha$. (Here, as usual, $\chi(p, X)$ denotes the minimal cardinality of a neighbourhood basis of p in X. .) Then $A \subset X,|A| \leq \alpha$ imply $|\bar{A}| \leq 2^{\alpha}$.

Proof. Let $p \in \bar{A}$, then there is a Moore-Smith sequence converging to p on an index set of power $\leq \alpha$ whose terms are elements of A. Since X is T_{2}, for different points these sequences must also be different. Since the number of all such Moore-Smith sequences in A is $\leq 2^{\alpha}$, we have $|\overline{\mathrm{A}}| \leq 2^{\alpha}$.
2.4. Definition. We define $\mathscr{L}(X)$ as the smallest infinite cardinal such that X is α-Lindelöf.
2.5. Theorem. For each T_{2} space X we have

$$
|x| \leq 2^{\mathscr{L}(X) \cdot x(X)}
$$

Proof. Let us put $\alpha=\mathscr{L}(X) \cdot x(X)$. By 2.3. and 2.2., respectively, the conditions (i) and (ii) of 1.2. are satisfied. So, by 1.2. , if $|X|>2^{\alpha}$ held, there would exist a free sequence $S=\left\{p_{\xi}: \xi<\alpha^{+}\right\}$in X. Since X is α-Lindelöf there is a point $y \in X$ such that for every neighbourhood V of $\mathrm{y}|\mathrm{V} \cap \mathrm{S}|=|\mathrm{S}|=\alpha^{+}$holds. Indeed this is true in every α-Lindelöf space for every set of power α^{+}.

On the other hand, since $x(y, x) \leq \alpha$ obviously there is a subset $A \subset S,|A| \leq \alpha$ such that $y \in \bar{A}$. Now, since α^{+}is regular there is a $\xi_{0}<\alpha^{+}$such that

$$
A \subset\left\{p_{\xi}: \xi<\xi_{0}\right\}
$$

hence $\quad y \in \overline{\left\{p_{\xi}: \xi<\xi_{0}\right\}}$
Since S is free we have $\mathrm{y} \notin\left\{\mathrm{p}_{\xi}: \xi_{0} \leq \xi<\alpha^{+}\right\}$which is in contradiction to the choice of y. This completes the proof.
2.6. Corollary. If X is a first countable Lindelöf T_{2} space then $|X| \leq 2^{\text {no }}$.

References

[1] A.V. Archangelskii, On the cardinality of first countable compacta (In Russian), Dokl. Akad. Naask. SSSR, 187 (1969), No. 5, 967-968.
[2] P. Erdös, A. Hajnal and R. Rado, Partition relations for cardinal numbers, Acta Math. Acad. Sci. Hung., 16 (1965), 93-196.

