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MATHEMATICS

ON THE PROPAGATION OF A DISCONTINUOUS ELECTRO-
MAGNETIC WAVE
BY

BALTH. VAN DER POL { axp A. H. M. LEVELT

(Communicated by Prof. J. F. Koksma at the meeting of January 30, 1960)1)

1. Introduction

In 1909 SoMMERFELD [1] found mathematical formulae describing the
electromagnetic field of an infinitesimal electric dipole oscillating harmonic-
ally in the plane separating two homogeneous half spaces of different
refractive indices. The axis of the dipole is perpendicular to the plane.
Sommerfeld’s method of solution can be found in several textbooks on
electromagnetic theory and mathematical physics ([3], [4]).

Some years ago a variant of Sommerfeld’s problem has been introduced
([2]): the oscillating dipole is replaced by a dipole, having moment 0 for
t<0, and moment 1 for £>0. In [2] the problem was translated into the
operational form, and several special cases were explicitly solved there.
The present paper deals with the general case. A solution will be given
in terms of complete elliptic integrals (section 4).

In section 2 a part of the results of [2] are given, being the starting
point for the further analysis. Section 3, containing the solution of the
mathematical part of the problem, is almost identical with the preliminary
report [6]. Another solution can be found in an earlier version of that
report ([5]).

2. Sommerfeld’s solution and the mathematical formulation of the discontin-
uous problem

Let the dipole be placed at the origin of a system:of Cartesian
coordinates z, y,z, the axis of the dipole coinciding with the z-axis.
We put g=Va2+y2, R=Va2+y2+22. The subscript 1 is attached to
quantities of the first half space z>0 (air), the subscript 2 to those of
the second, denser, half space z2<<0 (earth). So for the dielectric constants
we have ez>e. We assume that the conductivities o1 and o2 vanish,
and that the magretic permeabilities x; and w2 are both equal to 1. The
electromagnetic field is uniquely determined by the so called Hertzian

1) The deplored death of Professor VAN DER PoL on October 6, 1959, put an
abrupt end to our fruitful co-operation. As a result this paper contains only a part
of what might have been achieved if he had lived. To have worked with this great
scientist is a privilege for which I am most grateful. .. ~ A H.M.L.
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vector . In Sommerfeld’s solution JJ is always parallel to the z-axis,
and the z-component is denoted by T]i and TJz in the first and second
half space respectively. The solution is

o0

, Jo(Ag)e 3V -kPAd]
9. gt QL2 for z >0,
(2.1) IIi=e ks !k,sy’p‘_klxw}.klsw_a.ﬁ,kﬂﬁ

7 JolAo)yer VA ~ks* JdA
9.9 - p-iot O 2 olAg)erV R for z <0,
( ) Hﬂ ¢ t Jk.']/lﬁmh’%'kl‘yl’*ksﬂ
where
Re Vi2~k2 >0 , Re VA~k? > 0

and

w W
klm—c'l/l-:‘; ) kﬂmz &3.

As usual o is the angular frequency, and ¢ is the propagation velocity
in free space.

With Sommerfeld’s solution as starting-point it was shown in [2] that
the Hertzian vector T]* of the discontinuous problem satisfies

ke o0
- Jo(}.g)g—l ey id
2.3 ~o T (G de =2 /
(2.3) ?f’;! € Hl @ & :')[ ea}/A2 +erc2ptte JIE FegctpP

for z>0 and p>0,

o 00
- Jo(Ag)er VA +ee™ 0 1)
2.4 e~ P TTx () dt =2e
( ) pJ Hl ( ) 16”5! ).’+810—’P3+€1 V13+£20—.p2

for z< 0 and p> 0. These formulae can also be derived from (2.1) and (2.2)
in the following heuristic way. The Hertzian vector for the oscillating
dipole has a singularity of the type

(2.5) [=See (=12

in the origin. The dipole jumping from moment 0 to moment 1 at t=0
has a singularity in the origin of the type

0 for ¢t < 0.

(2.6) I = 3

G
7 for ¢t > 0,

If we try to get JI;* by superposing solutions J; with different o’s,
such that the singularity in the origin is given by (2.6), our choice will be

oo +id
‘ 1
@7 M=-5 | L
~004-id

where 8> 0. Putting w=1w, we see that (2.7) is the complex inversion
of the Laplace integrals (2.3), (2.4) respectively.
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3. Solution of the mathematical problem

A slightly generalized version of the mathematical problem of section 2
is how to find a function A(t), such that the given function

= e~V +a*p* Jo(ox)xde
- g 0).
(3.1) f(p) J c/EtapE+d ) Lo pe (p>0)

is the Laplace transform

(3.2) f(p) =‘p2f°e‘p‘ h(t)di

of h(t). Here g, 2, a, b, ¢, d are positive constants and a+#b. Substituting
y=p-1Va?+a2p?, we deduce from (3.1)

e poVF—ahydy
(3.3) /) = f T s
By the well-known formula
1
. _ _1_ eizs
(3.4) Jo(x) = = fl s s,

we then have

¢ = vy dy eispoVii—af a’
3.5 = :
(3.5) 2 f y+dl/m”f = ¢

Replacing s by the new wvariable ¢

(3.6) t = zy—ips V2 —a?,
we obtain
oo
(3.7) () = Iclyff oy, t)dt,
a L

where ¢(y, t) is defined by

P e—t
(38 wh = Vez(yz—a2)+(zy;yt 2(cy+d)y2+bE—a?)

The ¢-integration contour in (3.7) is a line segment L connecting
zy—igVy2—a? and zy+ioly?—a® (fig. 1). If y varies from @ to oo, the
points zy —ioVy% — a?and zy + ip) 52— a2 describe a branch H of a hyperbola
in the complex ¢-plane. If y is fixed, the function

e~ vt
Ver(y? —a?) +(2y —1)?
of t has no singularities in the region @ to the right of H, and is O(e-#t)
if ¢t - co. We therefore have

(3.9) If Py, t)dt = If o(y, t)dt+ é Py, t)dt,
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Fig. 1. The t-plane.

where the sign of V2(y2—a2)+ (zy—t)2 has to be chosen in such a way
that the square root is asymptotically equal to ¢ if ¢ — oo, t € @. The
countours I and IT are parts of H as is shown in fig. 1, and have parametric
representations

SI:t:tl(u) zu-i—nguz a,u > a;

3.10
( ) eII:t=t2(v)=zv——zgl’v2——a2,v>a.

From (3.7), (3.9) and (3.10) we deduce

dyIIq» dt+fdyf¢(y,

(3.11)

I

8 9%8

dy [ oy, t1(u)) o' (w) du + J dyf p(u, t2(v)) 82’ (v) dv =

8%@

o]

\ = — [t'(u)du f oy, tu(w)) dy + ftz'(’v)dv f P(y ta(v)) dy.

a

The integrations may be interchanged, as is justified in the following way.
If t; eI we have

§ lo22 —a2) + ey —11)?] =

(3.12)
( = [t~ ey +ioVy—a)|[t— (ay—i0 VIE—aB)| > |ru—2y| |20 ViF—et.

We also have

(3.13) |t (w)| = |z +
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From (3.12) and (3.13) it follows that

1

V‘)QZ I/ y2 _..a2

RS

So there is a constant C (independent of y) with

t(w) b’ (w)] d z
f"”y’ (W) /()] du < ﬂcy+dVy4+bzva2

y2 e~y

C L
(cy +aVy>+b% —a?) (y* —a2)¥s’

p(y) <

Since cy+dVyE+02—a2>db>0 if y>a, and since a0, p>0,2>0, we
have

fq) (y)dy < oo.

The integral over II can be dealt with similarly. If « ranges from a to
oo, t1(u) describes a contour Wi, which is the part of H above the real

Fig. 2. The t-plane.

axis (fig. 2). If ¢t € Wy, the corresponding value of » will be given by
(3.14) ult) = Z=teVE- If;_.af_m.

From now on we cut the ¢-plane along the real axis from —aR to aR,

taking V2 — a?R? positive if t>aR. Similarly, if » ranges from a to co, t2(v)
describes a contour W,, the part of H under the real axis, and now

(3.15) o(t) = EERVEZCR e ).



o
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Hence (11) can be written as

u(t) v(t)

(3.16) (p) = *u{ dt | fP(y,t)der’;f dtaf o(yt)dy.

From now on y will also assume complex values. Let (1 be the region
bounded by W1 and the part of the positive real axis from az to co. First
we define

(3.17) g() = [ oyt dy,
W)

for t e Gy in the following way. Gy is conformally mapped onto a region
Gy’ of the y-plane by y=u(t) ((3.14)). G1" is also bounded by the positive
real axis, and a hyperbolic arc, which is the image of the part of the
real axis t>aR (fig. 3).

Fig. 3. The y-plane.

Vi2+b2—a is defined as follows.
I. If a<b, we cut the y-plane along the interval

S [—iV2=a2, iV —a?]

on the imaginary axis.
II. If a>Dh, the real axis is cut along the interval

T:[—Va2=02, Va2—02).

In both cases the square root is positive for large positive values of 4.
W(t) is a simple curve in the y-plane. Starting in a, W(t) encircles wu(t)
in positive direction, ending in @ again without leaving G:’. Evidently,
if ¢ is fixed in G1, only the root u(t) of p2(y2—a2)+ (zy—1t)2=0 is in G’

On W(t) we define the function Ve2(y2—a2)+(zy—t)2 by analytic
continuation, taking the value t—za at the initial point y=a of W(t).
If W(t) satisfies the above conditions, the integral on the right of (3.17)
is independent of W(t), and g(¢) is uniquely defined on 1. One can easily
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prove that g(f) is analytic on G4. In fact, g(¢) can be analytically continued
to the boundary of G, the point {=Ra being excluded. If ¢ is fixed and
t# Ra, the conformal mapping y=wu(t) can be cxtended across the cut
(—aR, aR), and the roots of p2(y%—a?) + (zy —t)2=0 are separated. If u(¢)
is on the boundary of G1', we can take a contour W(¢), which leaves Gy’
only in a small neighbourhood of u(t), but which apart from that satisfies
the above conditions. In case II it may occur that w(t) €7'; then
V25 b2 —a? has to be continued analytically along W(t) across the cut 7'.

Finally we need an estimate of |g(¢)] if { € G4 and t — oco. It is not
difficult to see that there exists a constant k>0 so that

K L '
(3.18) PO Yo g < (yed').

We can deform W(¢) into the line-segment
(3.19) y=oa+wit)—a)s (0<s<]l).
Then, (3.17), (3.18) and (3.19) imply

—pRet lu(t) —alds
S'g t)|< S f Via —u(®)][1 —slla(1 —s) +ult) (1 +s) —(2t2/R?)] <

(3.20) ]
? < 2ple pRet‘/"ltl + @,

if |¢| is sufficiently large (I is independent of ¢).
If w(¢) is on the real axis and >a, then

u(t)

gt) = J oy, t) dy,

which can be proved by deforming W(¢) into the interval [a, u(f)]. Hence
we get for the first term on the right-hand side of (3.16)

ut)
(3.21) —Jdt [ oy t)dy=—3% [ g(t)dt
Wy a W,
Now, by (3.20) and since ¢(f) is analytic in G1 we can replace W, on the
right of (3.21) by the contour ¥V, of fig. 2.
Hence
u(t)

(3.22) — [dt I Py, t)dy = — f dt | ¢y, 1)

w, v, wit)

The second term on the right of (3.16) can be transformed in exactly
the same way. We introduce here a contour W'(¢) surrounding the point
v(t). W'(t) is the image of W(¢) in the real axis. Hence

(8.23) fp)=—1% f dt [ ey, t)dy+4% [ dt | oy, t)dy

wit) Va w(t)



ult)=v(t

Fig. 4. The y-plane.

Fig. 5. The y-plane.

Adding the contours W(t) and W'(f) in the y-plane, we either obtain
a contour C; (fig. 4) (if az<t<aR), or a contour Oz (fig. 5) (if t>aR).
From (3.23) it is clear, that the function

1 ydy
24 ) = =— ,
(3.24) h(t) i ) (ey+d ViR +b2—a?) V g(y? —a?) + (zy —1)2

where t=1 if az<t<aR,1=2 if t>aR and A(t)=0 if t<az, satisfies (3.2).
(Both roots in the denominator of the integral are >0 if y=a).

It is possible to put the solution A(f) of our problem in the form of
complete elliptic integrals over intervals of the real axis. This can easily
be done if we start from the formulae deduced above. We again
distinguish the two cases I and II.
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I. Ifa<band t~Ra we deform the integration contour (' into the
contour shown in fig. 6, taking into account the residue at y=oco. After
some caleulations we find

VW
(3.28) A(t) = + s — — J’a xd)b ot zde
' T eFHR T w {le? -~ dt)x? 4-d2(b? at)} | — Rixt+ Ziate +£ -gla?

Ve

where the roots are positive if x==0. It is not difficult to see that A(t)
assumes only real values.

If t< Ra the contour Cg can be shrunk to wu(t)=1v(t), and so A(t)=0
in this case.

D i Vbl-a?

a4

\J/

0

T
L
N—

-Val-b? a‘-b

- Vb2-aZ

Fig. 6 " Fig. 7

II. Ifa>b, we consider first the case ¢t > Ra. We deform the integration
contour (; into the contour shown in fig. 7. Proceeding as in the case
a<b we find

VT

n 1 f zd)a?—b2 —xide
(c+d)R = ‘{(cz —d?)a? +d¥at~bY)} ) Rext — 2zt + 1 —gtal
- {aﬂ_b

(3.26) h(t) = +

where the roots are non-negative.

Next we look at the case t< Ra. Then we have to take C; in (3.24).
It may happen that w(f)=wv(t) ¢ 7. This will be the case, if the greater
root y=u; of g(y2 —a2)+ (2y—1)2=0 is greater than Va?—b%. A necessary
and sufficient condition is: either Rb>pa or Rb<ga and t<zVa®—b2 + gb.
C1 can be shrunk to u(t)=1v(t), hence A(t)=0. However, if Rb<pa and
zlm-«j@b <t< Ra, then C; can be deformed into the contour shown
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in fig. 8. A simple calculation yields

r zd ) a—b2—xdx

J {(c2 —d?) 22 +d?(a® —b%)} | R2a® —2ztw +12 —02a® ’

u

l/ 202 — 2 .
where u = ﬁ@—%——t— and the roots are non-negative.

-Val-b? ¢ 202

Fig. 8

4. Results and discussion
Applying the formulae of section 3 to (2.3) we find at once

(4.1) TI=o if t<§l/e—,
Vea—e, d
eq 2e1 82 s (e2 —&1) —s2ds
4.2 ¥= - =
( ) Hl (e1+e) R m(ea—e1) J. {(e1+e2) 82+ 12} V_ste +20zcts + 0212 —¢; 02

— V&

ift > chV;‘ The square roots are >0 if s=0.

The situation in the second half space is more complicated. Application
of the formulae (3.26) and (3.27) yields

) -

\ TI¥ =0 if ¢t <RVe; and either Jg > ‘/:—j

(4.3) - =
or g < ‘/z—i and ¢t <z Ves—e1+0Var;

(4.4) It =-— —ae s Viea—er) —s°ds

lea—er) a;[) {(e1+e2) 8% —£92} Y R2s% + 2zcts + 12 —gles

where

8(t) = R2{—zct+oVR2%e — t2¢c2},
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if Rjp < Vesler and 212~y + 0l a1 et Rl iy

Ve ,
# ey 2oy 9 8 | {eg 1) —atda
(45) TI2 - = : :
{#y "f"‘i)” aleg 1) ‘v {{ry -+ ea)a? e‘gt}‘ K18 4 Dacts +o242 glatg
A T

if et~ R} ez

In fig. 9 a plane through the z-axis is drawn, and the wave fronts 1, I1,
and III are indicated. B is the Brewster cone, defined by sin szik;;’sg.

z

Fig. 9

In the air there is only one spherical wave front I, which follows from
(4.1) and (4.2). In the ground there are two wave fronts: a spherical
wave front II, which can be deduced from (4.3) and (4.5), and a conical
wave front ITI, tangent to II along the Brewster cone. I and III intersect
the plane z=0 along the same circle. All these facts follow from the
formulae (4.3) and (4.4). The shape of III can be explained by the
assumption that part of the electromagnetic disturbance travels through
the plane z=0, and enters the second medium in a direction parallel to
the Brewster cone. This is the quickest way for a disturbance to reach
a fixed point in the second medium outside the Brewster cone.
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Finally, the problem being solved, a shorter way to our result is opened.
It can be verified, that

u = (R2824 2zcts 4 c262 — p2¢j)~}
satisfies the wave equation

5 02U
Au;—_fl_
c? d2

TI* is a solution of this equation satisfying certain boundary conditions,
which will not be specified here. One can try to get solutions of the form

= Ps(s)ds
? ey V R2s2 +2zcts +c212 —gg; ’
i

where the function ¢;(s) and the complex contour W; have to be chosen
in such a way, that J];* satisfies the boundary conditions.

Mathematisch Centrum, Amsterdam
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