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MA THEM A TICS 

ON THE PROPAGATION OF A DISCONTINUOUS ELECTRO-
~ 

MAGNETIC WAVE 

BY 

BALTH. VAN DER POL t AND A. H. M. LEVELT 

(Communicated by Prof. J. F. KoKSMA at the meeting of January 30, 1960) 1) 

1. Introduction 

In 1909 SOMMERFELD (l] found mathematical formulae describing the 
P,lectromagnetic field of an infinitesimal electric dipole oscillating har'inonic­
ally in the plane separating two homogeneous half spaces of different 
refractive indices. The axis of the dipole is perpendicular to the plane. 
Sommerfeld's method of solution can be found in several textbooks on 
electromagnetic theory and mathematical physics ([3], (4]). 

Some years ago a variant of Sommerfeld's problem has been introduced 
([2]): the oscillating dipole is replaced by a dipole, having moment O for 
t < 0, and moment 1 for t > 0. In (2] the problem was translated into the 
operational form, and several special cases were explicitly solved there. 
The present paper deals with the general case. A solution will be given 
in terms of complete elliptic integrals (section 4). 

In section 2 a part of the results of (2] are given, being the starting 
point for. the further analysis. Section 3, containing the solution of the 
mathematical part of the problem, is almost identical with the preliminary 
report (6]. Another solution can be found in an earlier version of that 
report ( [5]). 

2. Sommerfeld's solution and the mathematical formulation of the discontin­
uous problem 

Let the dipole be placed at the origin of a system · of Cartesian 
coordinates x, y, z, the axis of the dipole coinciding with the z-axis. 

We put e=Vx2+y2, R=Vx2+y2+z2. The subscript 1 is attached to 
quantities of the first half space z> 0 (air), the subscript 2 to those of 
the second, denser, half space z< 0 (earth). So for the dielectric constants 
we have e2>e1. We assume that the conductivities a1 and a2 vanish, 
and that the magnetic permeabilities µ 1 and µ2 are both equal to 1. The 
electromagnetic field is uniquely determined by the so called Hertzian 

1) The deplored death of Professor VAN DER PoL on October 6, 1959, put an 
abrupt end to our fruitful co-operation. As a result this paper contains only a part 
of what might have been achieved if he had lived. To have worked with this great 
scientist is a privilege for which I am most grateful. A.H. M. L. 
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vector Tl In Sommerfeld's eolution TI is a.lwa.ys parallel to the z-a.xis, 
and the i-oomponent is denoted by TI1 and Ils in the first and second 
ha.If spa.oo respectively. The solution is 

(2.1) 

(2.2) 

where 

&nd 

As usual oo is the angular frequency, and c is the propagation velocity 
in free spaoo. 

With Sommerfeld's solution as starting-point it was shown in [2] that 
the Hertzia.n vector fl"' of the discontinuous problem satisfies 

(2.3) 

for z>O and p>O, 

(2.4) 

for z<O and p>O. These formulae can a.lso be derived from (2.1) and (2.2) 
in the following heuristic way. The Hertzia.n vector for the oscillating 
dipole has a. singularity of the type 

(2.5) IT a, -•-' 1='jfe (j= 1,2) 

in the origin. The dipole jumping from moment O to moment 1 at t= 0 
ha.s a singularity in the origin of the type 

~ 0 for t < 0. 

(2-6) n; = ( ~ for t > 0, 

If we try to get n,· by superposing solutions II, with different w's, 
such that the singul&.rity in the origin is given by (2.6), our choice will be 

00+~ 

(2.7) II;·= -1.., f n,am 2,n w ' 
-OOH~ 

wheN <l>O. Putting w=iw, we see that (2.7) is the complex inversion 
of ~ La.pl&.00 integrals (2.3), (2.4) respectively. 



2fifl 

3. Solution of the mathematical problem 

A slightly generalized version of the mathematical problem of section 2 
is how to find a function h(t), such that the given function 

(3.1) (p > 0). 

is the Laplace transform 

(3.2) 
00 

f (p) = pf e-Pt h(t)dt 
0 

of h(t). Here (!, z, a, b, c, d are positive constants and a# b. Substituting 

y= p-1 V x2 + n2p2, we deduce from (3.1) 

(3.3) 

By the well-known formula, 
1 

(3.4) I J eixs 
Jo(x) = - v- ds, 

n l -s2 
-1 

we then have 

(3.5) 

00 l 

/( )
1 f e-zvPydy I J ei•PaV;;.=-;ii d p - p --:-:-;===:::;:== - I s. 

cy+dVy2+b2-a2 n j l -s2 
a -I 

Replacing s by the new variable t 

(3.6) t = zy - i(!8 V y2 - a2, 

we obtain 
00 

(3. 7) /(p) = J dy f rp(y, t)dt, 
a L 

where <p(y, t) is defined by 

(3 8) cp(y' t) = P_ -:,========y=e=--v:--t--:-:-:;==;;:=== 
m Ve2(y2-a2) +(zy-t)2 (cy+d Vy2 +b2 __ a2) 

The t-integration contour in (3. 7) is a line segment L connecting 

zy-ieVy2 -a2 and zy+ieVy2 -a2 (fig. 1). If y varies from a to =, the 

points zy- ie Vy2 - a2 and zy + i(! Vy2 - a2 describe 11 branch H of a hyperbola 
in the complex t-plane. If y is fixed, the function 

e-vt 

Ve2(y2 -a2) + (zy -t)2 

of t has no singularities in the region G to the right of H, and is O(e-P1) 

if t • oo. We therefore have 

(3.9) f <p(y, t)dt = J rp(y, t)dt+ J <p(y, t)dt, 
L I Il 
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Fig. 1. The t-plane. 

where the sign of Ve2(y2 -a2 ) + (zy- t)2 has to be chosen in such a way 
that the square root is asymptotically equal to t if t -+ oo, t E G. The 
countours I and II are parts of Has is shown in fig. I, and have parametric 
representations 

(3.10) 

( ;-
) I: t = t1(u) = zu+ievu2 -a2, u > a; 

( II: t = t2(v) = zv-ieVv2-a2, v > a. 

From (3.7), (3.9) and (3.10) we deduce 

00 00 

f (p) = f dy f rp(y, t)dt + J dy J rp(y, t)dt = 
a I a II 

oo V 0000 

(3.11) = f dy f rp(y, t1(u))ti'(ii)dii + f dy f rp(u, t2(v))t2'(v)dv= 
a oo a v 

00 U 00 1' 

= - J t1'(u) du f rp(y, ti(u)) dy + f t2'(v) dv f rp(y, t2(v)) cly. 
a a a a 

The integrations may be interchanged, as is justified in the following way. 
If t1 E I we have 

We also have 

(3.13) 
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From (3.12) and (3.13) it follows that 

00 

. (z + f!Y ) J e-P•u d 
Vy2-a2 Vu-y u. 

II 

So there is a constant O (independent of y) with 

'f/J(Y) < C y2e-P•11 
(cy+dVy2+b2 --a2) (y2-a2)3/4 

Since cy+dVy2+b2 -a2;;..db>0 if y;;..a, and since a,60, p>O, z>O, we 
have 

00 

I 1/'(y)dy < =· 
a 

The integral over II can be dealt with similarly. If u ranges from a to 
=, ti(u) describes a contour W1, which is the part of H above the real 

Fig. 2. The t-plane. 

axis (fig. 2). If t E W1, the corresponding value of u will be given by 

(3.14) tz-ie Vt2-a2R2 
u(t) = R2 . 

From now on w,e cut the t-plane along the real axis from -aR to aR, 

taking Vt2-a2R2 positive if t > aR. Similarly, if v ranges from a to =, t2(v) 
describes a contour W2, the part of H under the real axis, and now 

(3.15) tz +ie Vt2-a2R2 
v(t) = R2 
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Hence ( 11) can be written as 

u(/) v(t) 

(3.16) f(p) = - J dt J rp(y,t)dy+ J dt J rp(y,t)dy. 
w, " w, a 

From now on y will also assume complex values. Let G1 be the region 
bounded by W1 and the part of the positive real axis from az to oo. First 
we define 

(3.17) g(t)= fq;(y,t)dy, 
W(tl 

for t e G1 in the following way. G1 is conformally mapped onto a region 
G1' of the y-plane by y=u(t) ((3.14)). Gi' is also bounded by the positive 
real axis, and a hyperbolic arc, which is the image of the part of the 
real axis t>aR (fig. 3). 

Fig. 3. The y-plane. 

]/ y2 + b2 - a2 is defined as follows. 
I. If a<b, we cut the y-plane along the interval 

S : [ -i \lbL- a2, i Vb2 - a2] 

on the imaginary axis. 
II. If a> b, the real axis is cut along the interval 

T: [ - Va2 -b2, Va2-b2]. 

In both cases the square root is positive for large positive values of y. 
W(t) is a simple curve in the y-plane. Starting in a, W(t) encircles u(t) 
in positive direction, ending in a again without leaving 0 1'. Evidently, 
if tis fixed in G1, only the root it(t) of e2(y2-a2)+(zy-t)2=0 is in 0 1'. 

On W(t) we define the function Ve2(y2 - a2) + (zy- t)2 by analytic 
continuation, taking the value t-za at the initial point y=a of W(t). 
If W(t) satisfies the above conditions, the integral on the right of (3.17) 
is independent of W(t), and g(t) is uniquely defined on G1• One can easily 
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prove that g(t) is analytic on G1. In fact, g(t) can be analytically continued 
to the boundary of Ch, the point t = Ra being excluded. If t is fixed and 
t =I- Ra, the conformal mapping y = il(t) can be extended across the cut 
( -aR, aR), and the roots of r,12(y 2 -a2) +- (zy- t) 2 ~~ 0 are separated. If il(t) 
is on the boundary of G1', we can take a contour W(t), which leaves Gi' 
only in a small neighbourhood of u(t), but which a,part from that satisfies 
the above conditions. In case II it may occur that 'U(t) ET; then 

Vy2 + b2 -a2 has to be continued analytfoally along W(t) across the cut T. 
Finally we need an estimate of lg(t)I if t E G1 and t -> oo. It is not 

difficult to see that there exisfa, a constant k > 0 so that 

(3.18) I y I< k 
cy+d Vy 2 +b2 -a2 

We can deform W(t) into the line-segment 

(3.19) y = lH-(it(t)-a)s (0 < s < l). 

Then, (3.17), (3.18) and (3.19) imply 

( lg(t)i ._;; 2Pk e-pRet J1 
lu(t)-alds < 

(3 _20) 

1
, :n O V1a-u(t)lll-slla(l--s)+u(t)(l+s)-(2tz/R2)1 

< 2pl e-JJRetv~ + a 
:n R ' 

if ltl is sufficiently large (l is independent of t). 
If u(t) is on the real axis and > a, then 

u(t) 

g(t) = 2 f rp(y, t) dy, 
a 

which can be proved by deforming W(t) into the interval [a, u(t)]. Hence 
we get for the first term on the right-hand side of (3.16) 

U(t) 

(3.21) - J dt J rp(y, t) dy = - ½ J g(t) dt. 
W1 a 

Now, by (3.20) and since g(t) is analytic in G1 we can replace W1 on the 
right of (3.21) by the contour V1 of fig. 2. 
Hence 

u(t) 

(3.22) - J dt J rp(y, t) dy = - J dt J rp(y, t) dy. 
JV, a v, JV(t) 

The second term on the right of (3.16) can be transformed in exactly 
the same way. We introduce here a contour W'(t) surrounding the point 
v(t). W'(t) is the image of W(t) in the real axis. Hence 

(3.23) f(p) = -½ J dt J rp(y,t)dy+½ J dt J rp(y,t)dy. 
V, W(t) V, W 1 (t) 
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Fig. 4. The y-plane. 

Fig. 5. The y-plane. 

Adding the contours W(t) and W'(t) in the y-plane, we either obtain 
a contour 01 (fig. 4) (if az < t < aR), or a contour 02 (fig. 5) (if t > aR). 
From (3.23) it is clear, that the function 

(3.24) 

where i= 1 if az<t<aR, i=2 if t>aR and h(t)=O if t<az, satisfies (3.2). 
(Both roots in the denominator of the integral are > 0 if y = a). 

It is possible to put the solution h(t) of our problem in the form of 
complete elliptic integrals over intervals of the real axis. This can easily 
be done if we start from the formulae deduced above. We again 
dietinguish the two cases I and II. 
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I. If a, b and t-:,. Ra Wl" deform th<' integration contour C2 into thf> 
contour shown in fig. 6, taking into a<'connt tht' t't'8idue at y = oo. After 
llOme calculations we find 

where thf:' roots are po8itive if x = 0. It is not difficult to see that A(t) 
assumes only real values. 

If t<Ra the contour 01 can be ahrunk to u(t)-tl(t), and so h(t)-0 
in this cue. 

Jb2-a2 

s 
T 

0 0 
-~ ~ 

-i~ 

Fig. 6 ' Fig. 7 

II. If a> b, we consider first the case t> Ra. We deform the integration 
contour Os into the contour shown in fig. 7. Proceeding a.s in the case 
a <b we find 

where the roots are non-negative. 
Next we look a.t the ca.se t<Ra. Then we have to take 0 1 in (3.24). 

It may ha.ppen that u(t) = v(t) ~ T. This will be the case, if the greater 

root y = V1 of e2(y1 - a8) + (zy- t)2 = 0 is grea.ter than Ya*-b!. A necessary 

and sufficient condition is: either Rb>ea or Rb<ea and t<zYa1 -b2+eb. 
01 can be shrunk to u(t)=v(t), hence lt(t)=0. However, if Rb<ea and 

zVa1 -bll+(lb<t<Ra, tht-n 01 e&n be deformed into the oontour shown 
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in fig. 8. A simple ea!culation yit'lds 

(3.27) 

Va'-b' 
:l • xcZVci2 -b2 -x2 dx 

h(t) = +; J {(cL-d2)x2+d2(a2-b2)} VR2x2 -2ztx+t2 -Q2a2 ' 

" 

zt-H1 VR2a2-t2 . where u '"' R2 and the roots are non-negative. 

_Ja2-b2 
T 0 u 

Fig. 8 

4. Results and discussion 
Applying the formulae of section 3 to (2.3) we find at once 

(4.1) 

if t > ~ \lei. The square roots are > 0 if s = 0. 
C 

The situation in the second half space is more complicated. Application 
of the formulae (3.26) and (3.27) yields 

\Ill= 0 if ct <RVE; and either~> v* 
(4.3) ·.. _ 

1 or ~ < V ~ and ct < z V e2 - e1 + e Ve;:; 
{, Q e1 

(4.4) 

where 
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Y-.-,, 
(4 6) n· ~- lk1 - 2-1,, I 

' ll •·• (t1+1l)R :r(t1· rt) {(r1 +,2)•' 

- y,.- ., 
if cl>R~ ;;. 

In fig. 9 a plane through the .::-axis iH drawn. and the wave fronts I, 11, 

a11d III a.re indicated. Bis the Brewster cone, defint•d by sin Ood€1/tz. 

z 

Fig. 9 

In the air there is only one spherical wave front I, which follows from 
(4.1) and (4.2). In the ground t,here are two wave fronts: & spherical 
wave front II, which can be deduced from (4.3) and (4.5), and a conical 
wave front III, tangent to II along the Brewster cone. I and III intersect 
the plane z = 0 along the same circle. All these facts follow from the 
formulae (4.3) and (4.4). The shape of III can be explained by the 
a.ssumption that part of the electromagnetic disturbance travels through 
the plane z = 0, and enters the second medium in a direction para.llel to 
the Brewster cone. This is the quickest way for a disturbance to reach 
a fixed point in the second medium outside the Brewster cone. 



Finally, the problem being solved, a shorter way to our re,mlt is opc•ned. 
It can be verified, that 

il = (R2 .s2 +2zcts-1-c2t2-e2s1)-l­

sittisfies the wave equation 

IT/ is a solution of this equation satisfying certain boundary conditions, 
which will not be specified here. One can try to get solutions of the form 

IIt= f <p1(s)ds 
VR2 s2 +2zcts +c212-g2s1 ' 

wi 

where the function <p1(s) and the complex cont,our W1 have to be chosen 
in such a way, that TL* satisfies the boundary conditions. 

M athematisch Centrum, Amstenlrun 
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