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Lattice points in unbounded point sets 1 ) 

by 

C;G. Lekkerkerkef 
.. ,, 

zw 1957-013 

1. Intr3auttio~. In ~he 1.$.;st _two v91u~k\~ ·of the} 1'.~m11t:'i6\:in:Mflt~e
matical Monthly 4', in the department .of 1'Advanced Problems and 

Solutions 11 , the following two problems concerning divergent inte
grals and series were proposed by K.L. Chung and G.R. MacLane 
respectively 2 ). 

Problem A. If f(x) is continuous and non-negative in [o,"'-') and 

_("°r(x)dx=== 0v, then there exists an x > O such that ::=:1 f(nx)= = . 
Problem B. Find a function f(x), upper semi-continuous 3) and non

negative on [o,=), bounded on each finite interval (O,T), such 

that j' 00r(x)dx= "'° and· z-=~:1 f(nx) < o-:-.l for every x > O. i 

~roblem A is itself a generalization of the following problem, 
proposed in the same periodical by D.J. Newman and W.E. Weissblum 4): 
Problem C. Given an unbounded set of positive reals. Prove that there 
exists a reai number such that infinitely many integral multiples 
of it lie in the set. 

Solutio~s to Problems C and A have also been published 5 ). In 
this report we shall deduce slightly more general properties and 
also derive some results of a related type. Next, we shall give 

appropriate exte::nsions for n-dimensional, integrals. Hert the concept 

1) This r0port is the fruit of discussions with Prof.de Bruijn, Mr. 
K2sten and Prof. Koksma, who contributed much to the results 
expos0d (see also footnote 6)). 

2) See problem 4670, Am.Math.Monthly, 63, 47 and 190 (1956); problem 
4727, ibidem, 64, 117 (1957). 

3 ) 1 _ e • 1 im sup f ( x ) 5 f ( a ) 
X .....4 a 

for every a. 
\. . 

4) See problem 4605, Am. Math. Monthly, 61, 572 (1954). 

5) Same journal., 62, 738 (1955); 64, 119-120 (1957). 
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of set of the multiples of a positive number will be replaced by 

the more general concept of a lattice inn-dimensional space and 

use will be made of some results in the field of the geometry of 

numbers. In particular, we shall apply Siegel's refinement of the 

Minkowski-Hlawka theorem. 

2. Results for onedimensional sets and integrals. In the following 

V will always be a set of non-negative reals. It is always assumed 

that Vis Lebesgue measurabl2; sometimes we shall require that V 

be even Jordan measurable. We shall denote by ,M V the (Lebesgue, 

c.q. Jordan) measure of V. Now, for given V, we nre interested in 

the sets w1 ,w2 .,-\1J3 of the nunbers x>O sntisfying resp.the requirement 
{1) kx E. V for infinitely many positive integers k that 

C2) kx f V only for finitely many positive integers k 

{3) kx ~ V for no positive integer k. 

There are four theorems, which run as follows: 

Theorem 1. If/-' V ~ c-v, then (2) holds for almost all x. 
Theorem 2. If,/.) V= c--:i and V is Jordan measurable, then there is at 

least one number X>O for which (1) holds, 

Theorem 3. There exists a Jordan measurable set V (consisting of an 

infinite sequence of disjoint intervals) with _,<AV= o-:,, such that 

(2) holds for almost all x and, moreover, (3) holds on a set of 

infinite measure. 

Theorem 4. If O < f '- 1 and if V has density Jct° on each of an 

infinite sequence of intervals of length 1, then (1) holds for al

most all x in (0,1). 
The first two of these theorems can be generalized to state

ments involving an arbitrary function. Let f(x) be any non-negative, 

measurable function on the interval [O,CA.-,) and put 
c..:, 

F ( x) = 2__= f ( nx) . 
n=1 

Then the following two theorems P"'2ld: 
Theorem 1'. If ;-·N f(x)dx "- ,xi , then F(x) .c: c--::, for almost all x. 

Q rN 

Theorem 2'. If f(x) is Riemann integrable and ( f(x)dx=o::i, then 
..I 

there exists an x > O with F( x )= c,.:;;, • 0 



If in th~se th8orums on~ takLs for r(x) the ch~ract~r1et1c function 
•')'' ~, s,·.,t r, (m,""r:,:.:,r:c1r)l .,..., ..-i.,, ,.,(,,,., o,. r ·"'·~·-"E , a J")"d''n) t\1'-"' \. _l --· · . " •"-:::.~, . .,;.~4. .. ,., ......... ~.t..ii \..,1,i,..;,.· .:• :,A1,,,.;!...: .,! .1....:~;.;:'~}~;;.::!if.:1..t ,;, C • {• \.i -<:.:l, j { \.;,'.1..1 

on~ gets back the theor·~ms 1 and 2. So we n~ed only to prov~ th~ 
~,I ?I 3 Ar•j' 4 6 ) thtiorc:ms . ,~ , ..... . 

&,fore giving th., proofs of thc:k th,::or,,,ms w1c: dra\"I some 

conclusions ;:rnd make som,c additionnl r\;mar1G3, TheoN:ms 2 and 4 d0al 

with tht.: l:Hit W.~ of nun:b1.:rs x > O possessing property (1) ,:ind nsscrt 
I 

that, undor c~rtain conditions, this set is nonempty, c.q. cov~rs 

th(- whole 1rit,~rval :_o,,,.::,) 2:part from ::i ~1et of me:nsuri.: zt,1•0. Theor•1;;;m 

3 snys that., undc:r th(, cor:d 1 t ions of th1::orem 2, th0 S\:.'t W 1 may wc::11 

b~ a s0t of m8aaur~ z,:ro. Further, th~orem 3 l~arns that in th~or~m 

2 on~ cannot omit thLl condition th3t V bc.: Jordan m~asurable. For, 

dcl~ting from a set V satisfying th~ conditions of thuor~m 3 a 

a bl,, :-:i-::t V 1 of inf:ini tc nk~ ouc(,, such that no r~,::i l number x ,. 0 

pose~ssts property (1). 
A set V which c,:1°tn:Lnly Jetisfi-:~3 th;_: condition imposcod on V 

in th0or0m 4 is ~.g. obtatn~d in th~ following way. Let v1 b~ an 

arbitraPy subsc:t of :o, '"")) of oo;.,it:Lv,.: mc.:asur,; ,.o v1 and l,;t V =m v,1 ~ \..,. l ~. • < m 
( 2 ) I'•,)' f h m=1, , •... Th1...,n, os is (:asily seem, V= '-' Vk s::itis i1;s ti:: con-

1 ffi=1 ditions of theorem 4. 01 ~ can ~vcn provL that tht compl~mont of 

1 1 (<' ., ,. I- )) ('\ ... m . « \ w r \ , t,, · .... +p = ~1 for each p :c O • 
t ,,, .... ~"!''· (N 

w~ further rumark that our th0or~ms give the solutions of 

probl~ms A and B mcntion~d in th~ introduction. Actually, theorem 2 1 

solves Problem A, 8Ven for Riemann integrable, non-negative functions_ 

Nuxt, a solution to Problt.m Bis obtain~d from thtorem Jin th0 

following way. Lc·t V bt th.__: un:lon of 1nfinit1;.;;ly many disjoint inttJr

vn ls, such that ,,uV= ,·.--" 'lnd (2) is valid for almost all x. Without 

rcE1triction w~ may suppos~ thot these intervals ar~ all clos8d. 

Fur•thc;:1:• lt:t w1 bu thl:! sut of numbers x for which { 1) holds, Then ... /~w1~o and so ther~ exists an open set w1 of finite measure which 

con ta ins £1 kW1 • Then ·v:v /w.; is n closed set of infintte measure ,and 

6) Theorems 1 and 4 vwr,: obta int.:d by Pr-of .J .F. Koksma, th1;;01•0m 2' is 
due to Prof.N.G. de Bruijn, whcreas the example leading to 
theorem 3 was given by Mr H. Kesten. 
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no number x-,o possess0s property ( 1). Now th8 characteristic 

function of a closed sut clearly is upper semi-continuous. It follows 
¾ 

that th0 characteristic function of V satisfies the assertions of 

problem B. 
Next we shall indicate a more special class of sets V, for 

which sharp8r conclusions hold. To this end we refer to a theorem 

in the field of diophantine approximation., provt;d by Koksma 111 

and Cassels 12 7 7 )"_ This theorem can be formulat~d as follo~s; 
~ J 

Theorem 5. Let f(q) be a monotonely decreasing function of the 
,- ~--.;;• ( ) 

integer variable q > O, which tends to zuro for q-•• <7'.:>. Let L= "~-q=1cp q • 

Then OD(.; has 

a) If L= c-:), then for almost a 11 c:,1. ·.., 0 there a rt: infinitely many 

pairs of positive: integers p,q with \q,x-p) < i.p(q) 

b) If L ::. ,;,-;,, then for almost all c><. ·'.':- 0 th(;re arc: only finitely many 

pairs (p,q) with lq~-pl 'f(q). 
From this result one can deduce the following 

Theorem 6. L~t 9(q) be a monotonely ducr8asing function of th~ 

integer variable q ::--0, which t0nds to zero for q ... -.,c,-::,. Let V be thG 

union of the intervals (q-<p(q), q+rp(q)), whi:::rE: q runs through tho 

positive integers. Then on0 has 

o<) If _µV= rx,, ths::n almost all numbers x -:,, 0 possess thE:: property 

( 1) 

/3) If,~V<=, then for almost all numbers x>O (2) holds. 

In fact, let 'f (q) be a function of the type considered and let 

Land V be defined as above. Let a be an arbitrary positive number 

and suppose that /oV= c-:, • Then also L= G-.l • Now apply a) to the 

function a 'f'(q) instead of 'f(q). This learns that for almost all 

<-,( .> O one has 

(5) !qo(-PI < a cp(q) for infinitely many pairs (p,q). 

A fortiori, (5) holds for almost all c:i< .. >a. Hence, dividing through 

by o< and putting : =X., one sees that for almost x with O ·<'.. x <: it is 

true that 

(6) Jq - px I ~ cp(q) for infinit8ly many pairs (p,q). 

This means that for almost a 11 x with O <.: x <- ~ the set V defined in 

the theor~m contains infinitely many multiples of x. Since a is 

arbitrary, this proves c:-J..). 

7) See also Cassels f3l ., Ch.VII, Th~orem I. - ., 
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Next suppose that ~.{V ~ <:-..::i. Then also L < c-o. Then, by b), if 
a >O is arbitrary, one has for almost all ,::1, > 0 

(7) I q c-; -pl <:. a <p(q) only for finitely many pairs (p,q). 

It follows that for almost all x~-1 it is true that a 

(8) lq-pxl .:: t(q) only for finitely many pairs (p,q). 

From this, since a is arbitrary, ;3) follows. 
Koksma [1 J and Cassels [2·] also generalized theorem 5 in the 

sense that they admitted q to take only certain sets of positive 
integral values. Thus they arrived to a statement of the following 
form 8 ): 

For a wide class of s0qu~nces of distinct positiv~ integers 
~·~\it is true that the inequality . qJ 

l>, O( -p I<. cp(q), q 

where cp (q) is any monotone;ly decreasing function, has an infinity 
of integer solutions p,q :;- O for almost all or almost no ex~ O 
according as ~ ~-1 (q) diverges or convC;rges. 
This statement leads to an annlogous generalization of theorem 6. 
We do not carry this out. W0 rather draw attention to a peculiarity 
established by Cassels [2j. Cass8ls show8d namely that there ar~ 
sequences { >. } of distinct positivt! integ8rs (e.g. increasing 
sequences) wifh the following prop8rty 9 ): 

There is a monotonic function ~(q) decreasing to zero such 

that'?:~:1 cp(q)= :;,..;J but that for each a ~o the inequality 

( 9) 0 ;; \q'·'" -p c:, a <p ( q) 

has an infinity of solutions for almost no K. 

Now for any such sequence { ·;,\q} and a corresponding function tp (q) 

ta k€: V to be the union of the intervals ('\q ,"\q + <P( q)). Furthc:r let 
W be the set of numbers (X ;:, O, such that, for all a.,. O, the in
equality (9) has an infinity of solutions. Then it follows from th0 
above property that .. PW=O. Next, _.,/./V==. Finally, by a reasoning 
as in the above deduction of theorem 6, on~ sees that Wis precisely 

!~~-~~!-~~-~~~ers x > 0 possessing property ( 1). 

98) SeefKoksma [1.J._., Theoreme 4; Cassels [2J, Theorems III and IV. 
) See Cassels L2J , Theorem VII. The sequences{\} having the 

property discussed can be specified explicitly. 
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The above set V satisfies the assertions stated in theorem 3 
except possibly for the last one. But the proof given in the next 

section will be of a simpler nature. On the other hand, for suitable 

{ "\q} and ,p( q), the set V constructed here is the union of a 

sequence of (disjoint) intervals which in their natural arrange
ment are of steadily decreasing length. 

3. Proofs of theorems 1 1 ,2 1 ,3,4. 

Proof of theorem 1 1 • Let O ~ a <- b and let p be a positive integer with 

pa., b. Then, for any pooitive integer n, we have 
kb 

1 /' 
K / f(x)dx 

ka (m+1 )a 

~ ~ / f(x)dx 
ktm, pk.,-m ·' ma 

,, (A,) 

2 log p j f(x)dx. 
ma a 

.. C0 

Hence, if we put / f(x)dx= y (so that y <. c~)' we havr:.; 

,b n 0 

j' ; ·- f ( kx ) d x _;. 2 J log p for each positive integer n. 
, 1:c;~-1 . 
a 

Then, by a property 
b n 

of Lebesgue integrals 10 ), since f(x)~ 0, 
.b n b = 

1 im / :·r= f ( kx ) d x 
n --· "' ·"><> ) k= 1 a 

= f 1 im L f ( kx ) d x = f ·· "> - f ( kx) d x , 
./ D •-':>c,_-, k=1 k~ a a 

<::::;-- C'<:., 

and moreover, L_k='1 f(kx) is finite for almost all x in the inter-
val (a,b). Hence, since a and bare arbitrary, the last sum is 
finite for almost all x > 0. This proves the theorem. 

Proof of theorem 2 1 • Let O •"- a <~ b and let N be a large positive 
integer. We have 

b N N 

.( ·7:-· f(kx)dx = 
· K,;;1 

.. -~----
kb 

1 / 
k) 

ka 

f ( t )d t 

8 Nb 
I 
I 

=) 
a 

f ( t) ~- ________________ ,___________ 1 l d t 
L1 ;:i k ;;; N., ka ~ t, kb _;;; t .K j 

10) See E.C. Titchmarsh, Theory of functions, Oxford 
(i) of theo~em 10.82. Compare also footnote 13). 

1939, assert ion 



(Na 

~: _) f ( t ) 2 fc 
t /b ~ k ~ t / a ' 

dt . 
a 

Now, for fixed a and b, 
·, -
' ,, 
/ 

t_ --·-·--

t/b ·f k ~2 t/a 

Then, for N 1 t 0 /a, 

/.b N 

'1 -. l k .- 2 

,~ {~~ f ( kx ) d x 

th8re 

b log a 

. .!~ log 2 
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is a positive number to such that 

if t --· to 

Na 
b ( 

I f(t)dt • 
a j 

t 
0 

The la st integra 1 tends to , ... <.• for N c, -x-, by the hypoth8s es of the 

theorem. So we may conclucJe that for each pair of positive numbers 

a and b with b;:, a we hav,:..: 

(10) 

(1'1) 

b 
N I 

lim / .,') f ( kx ) d x 
k~-1 

:::; t :---:,1 • 

N ---~-,"':':l .i 
cl 

We now consider the sets V 
N m 

={x [L. f(kx)<m} 
k=1 

defined by 

(m= 1., 2, •.. ) . 

We shall show that each set V is nowhere dense, i.e. that, for 
m 

arbitrary m, each interval on the positive real axis contains a sub-

interval which is disjoint with V . Suppose the contrary is true. 
m 

Then, for some m,a,b, the set V is everywhere dense in the inter
m 

val (a,b). Put W==V n (a,b). Then W is a subset of (a,b), which is m 
everywhere dense in (a,b), whereas 

~- · ,~-.:., f ( kx ) ,: m for x E- W . 
_/_ ·k='1 

A fortiori, if N is any positive integer, 
N -,::_-·- f ( kx) ._ m for X t W. ,, 

/ __ k=1 

Hence, since 

b 
/ 

j 
a 

f(x) is Riemann integrable, 

N 
;:-· f(kx)dx -; m (b-a) 
1-c;;,i 

for each positive integer N. This contradicts ('10) and so proves 

that each set V is nowhere dense. 
m 
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Consequently, by a well-known property of nowhere dense point 

sets, the union of the sets V does not cover the whole interval 

Co,o~)) 11 ). In other words, t~ere is a number x>0 not belonging to 
'·- "'"·- C'-.;) 

any set Vm. So, for this number x, / ___ k= 1 f(kx)== c.'-) • This proves the 

thPorem. 

Proof of theorem 3. We consider an arbitrary sequence of positive 

numbers tk (k=1,2, ... ) satisfying 

(12) 

For any such sequence { ck} we can find a sequence of positive inte

gers nk (k=1,2, ... ), such that 

( 13) 
-= nk 

k= 2 tk 1 og n +1 = c:---:, • 
k-1 

Now let V be the union of the intervals Vkm given by 

(14) ) , 
I 

where 
nk -

m= 1 , 2 , • • • , ,- 1 / ; k= 1 , 2 , . . • ( n = 0 ) • 
- nk-1+ -· o 

For fixed k the intervals Vkm, with mink, are disJoint, because 

O < tk "-1. Further., if k,m and m' are positive integers with 

then 

3 nd so, for fixed k, those intervals ( 14) for which -m has one of the 
nssigned values are lying to tho left of those with index k+1 instead 

of k and one of the corresponding values 

1ntervals Vkm, which together constitute 
C on::H~quently, 

m 

and so., by (13), /AV= c<:i. 

-------------

of the index m. Hence the 

V, are mutually disjoint. 

11) Actually, the complement of this union is everywhere dense. 
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We next prove that V has the remaining properties desired. Let 

us denote by v"' the union of the intervals (nk.,nk+f1c) (k=1_,2, ••• ) and 

by w1 ,w2 ,w3 the sets of numbers x >0 possessing the properties (1), 

(2), (3) respectively. It is clear; from the construction of V, that 

x1W2 ,~ i.e. xEW 1 , if and ~::.;- ~ infinitely many multiples of x belong 

to V • Next, by (2), ,.ov = L-=-·-k= 1 tk <-<-,.::>, Then it follows from theorem 
1 that W 1 has measure zero. This proves that almost a 11 x > 0 possess 

property ( 2) . 

Further, x~w3 , if and only if some multiple of x belongs to V ~. 

N0w consider an arbitrary interval (a,b), where b >a-;, O. The set of 

numbers x > O, which belong to (a, b) and have a multiple in an assigned 

interval (nk,nk+tk), has measure~ 

'>-
mb ~ nk, ma,~ nk+Ek 

Hence the set of numbers x ,, 0, which belong to (a,b) and have a 
lit multiple in V, has measure 

b "----- ... •°'v 

<::. ( 2+log a) .::·--k=1 fk. So we have 

_,M(W3n(a,b))> b-a-(2+log ~) ;, i:1 ~-
Here the right-hand member can be made arbitrarily large by a suitable 

choice of a and b. Hence /'WJ=(~. This completes the proof of theorem 

3 . 

Proof of theorem 4. For p=1,2, •.• let UP be defined by 

UP = f x j O - x <- 1, kx f V for k > p } • 

c.,-, 
Suppose that _Ji( l) U ) > O. Then there is a positive integer p with 

P=1 p 
.uv :, 0 Then there a re a number c with O <. c e:..1 and a number J > 0. . p • , 

such that the density of U on each interval which contains the point 
p -

c and is itself contained in the interval (c- ,J, c+J), is greater 

than 1-} [' 12 ) . 

Now choose a positive integer k with 

kd ..,. 1 ., k::--p 

and take a positive number A;, k such that V has density ?. f on the 

· 12) See e.g. J.F. Koksma, Diophantische Approximationen, Berlin Sprin
ger 1936, Satz 31., p.4~ Dnd Beu,erkung IV, p.45. 
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interval (A,A+1). There exists a positive integer 1 with A <1C·"'-A+1, 

since O, c < 1. Then 1 > k, because 1 ~· le .~A> k. Hence ld > 1, hence 

l(c- cl)-= A" A+1 4 l(c+ c/). 

Thus we find that c belongs to the interval (A/1, (A+1)/1) and that 

the last interval is contained in (c- cf, c+d). 

In virtue of the last fact, and by the choice of c and J, the 

density of Up on the interval (A/1, (A+1)/1), hence also tl1e density 

of 1 Up on (A.,A+1), is at least 1-½p . Further, by the choice of A, 

the density of Von this interval is at least f. Since 1 l~ and V 
are disjoint, if 1 >p , this is a contradiction. Hence we must have 

(·• ... ) 

u(~ Up)=O. This means that almost no x in (0,1) has only finitely 
many multiples in V, and so proves the theorem. 

4. Generalizations for n-dimensional point sets. In the following 

n is a fixed integer ? 2 and Vis an arbitrary Lebesgue measurable 

set in then-dimensional Euclidean space Rn of points x=(x 1 ,x2 , ... ,xn). 
We shall use vector notation. Further, n points x( 1 ),x( 2 J, ... ,x(n) in 

Rn will be called independent if they do not lie in an (n-1)-dimensional 
hyperplane through the origin O. 

Our aim is to generalize the theorems 1-4. In doing this, instead 
of the set of multiples of a number x > 0, we shall have to do with 
the set of all points x of the form 

(1) (2) (n) x ~ u 1x + u2x + ... + un x , 

where J x(-1) x( 2 ) x(n) ! is any sy·stem of n independent points and I.. ' , ••• , ; 

u 1 ,u2 , ... ,un take all integral values. In other words{ we shall have 
to do with lattices /\, with an arbitrary basis {x( 1J,x( 2 ), ... .,x(n)} • 

We adopt the following notations: 

U = lattice of the points with integral coordinates 
X = matrix with columns x( 1 ) ,x( 2 ), ... ,x(n), or also the affine 

transformation of Rn determined by this matrix. 

Then the lattice A with basis { x ( 1 ) ,x ( 2 ), ... ,x ( n)} can be written 

in the form /\ ==X ?A • 

For what follows we have to define measure and integration in 
the set of lattices. This was done by Siegel [4} in the following 
way. Let()._ be the set of all nonsingular n x. n matrices and let I' be 

~he set of all integral unimodular matrices in fl . Two lattices 
t,a 
k~ 



/\ 1=X1l and A2=Y'll, where X,Y t,J1., arE: identical, if and only if 

there exists a matrix C ( r such that X=YC. Hence the set of all 
lattices can be identified with the factor group 11;r·. As a funda

mental region of Cl.. with respect to :' one can take the set of matrices 
X E-. [)_ , for which sp X? 0 and the positive quadratic form with coef-

ficient matrix S=X'X is reduced in the sense of Minkowski. Let us 
.,,., 

denote this region by G, and by G the set of ma trices X ~- ()_with X E. G, 

!det Xl=1. The Euclidean metric in the n 2-dimensional space of all 
n x: n ma trices X induces a measure in G. Further, if G is the set of 
matrices XE. n with XE-. G, I det X f :;; 1, then the (n 2-1)-uple integral 
of some function F(X) over G i-. is given by 

J F(X) dX = n2 J 
GN G 

(15) F( I det XI - 1/n X) ax. 

The integrals in (15) can be interpreted as integrals over certain 
sets of lattices. It now has a sense to makE; "almost all" or Halmost 

no" statements about lattices. Siegel proves that the (n 2 -1)-dimension

al volume of a*, given by the integral (15), if one takes F(X) -:::::1, has 

a finite value, v say (the quantity v can be computed explicitly). 
Next, he proves 

Theorem 7. Let f(x) be a bounded, Riemann integrable function on Rn 
vanishing outside some finite region. For a rbi tra ry XE_ f1 , let 

F(X)= )_ f(Xu). Then one has 
U E, 1~ r F(X) 

G~ 
(16) dX = V / f ( x) dx. 

P. 'n 

From (16) one can immediately derive a similar relation for the 

integral of F(X) over G or tG, where t>O. If, for t>O, we put 

then we have 

.J f(x)dx 

Rn 

f F(X)dX 
· ta* 

f(ty) = g(y) , .2~ g(Xu) = G(X), 
ueu 

= tn ( g(y)dy, G(X) 
_) 

Rn 
2 

= tn - 1 f G(Y)dY. 

G* 

= F( tX), 

Hence, applying (16) to g(y), we get 
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( F(X)dX g(y)dy 
.,,ta~ 

Hence, 

( 16 1 ) 
I 

;ta 

t 

F(X)dX ~' 

2 
f(x)dx = -f- tn -n j f(x)dx. 

n -n Rn 

We now can state and prove the following generalization of 

theorem 1': 
Theorem 8. Let f(x) be 3 non-negative, Riemann integrable function, 

defined on RJ:}_· Suppose that f f ( x) dx <" c-,_:, • Then for almost a 11 lattices 
/\ one has > f ( x) ::. c"-."J. R 

L.,____ n 
XE:/\ 

Proof. Let N be a large positive number and let t be a pos:ttive number. 

Let !xi = maxix11, if x=(x'1,x 2 , ... ,xn),and put 

f(x)dx =}' (so 

( f(x) 
fN(x) = ~ 

L 0 

that / < 1..,--..,,,), 

if ! X l ?!: N 

if l XI > N , 

(XE[)). 

In virtue of the relation (16 1 ) 

f FN(X)dX ~ --;f-- tn2 -n ( fN(x)dx 

tU n -n Rn 
2 

,;:. v tn -n f -=--2-
n -n Rn 

2 
f(x)dx = y + tn -n 

n -n 

Now FN(X) is a steadily increasing function of N. Hence we have 
2 

1 im ( F N ( X ) d X i "( + t n - n , 
N --• t-o "ta n -n 

where the limit on the left exists. Next, in virtue of the monotony 

of the sequence 
grals -1 3 ), 

I _N~=~C-J 
tG 

\ ·1 l FN(X)) and a well-known property of Lebesgue inte-

'13) Cf.e.g. A.C. Zaanen, Linear Analysis, Amsterdam Groningen '1953, 
Ch. 3., (S 3, Theo rem 2 ( p. 4 3 ) • 

:; 
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It follows that lim FN(X) = F(X) is finite almost ev8rywhere in tG. 
N - • ,o,:,, 

Since) f(x) = ;-- f(Xu) = F(X), if l\= X'U., and t:-,Q is arbitrary, 

t11is pt8f'es the 111q'hcorem. 

Next, we generalize theorem 2 1 • Here our considerations will 

involve a reasoning similar to a reasoning of Davenport and Rogers 

[5] in their work on the theorem of Minkowski-Hlawka 14 ). We have 

the following 

Theorem 9. Let f(x) be a non-negative} Riemann integrable function, 

defined on Rn. Suppose that f f(x)dx= co • Then there is a lattice 

Rn 
/\ with determinant 1 such that 

~ 
L'~ f ( X ) = 0v • 
XE:/\ 

Proof. We can cover Rn by finitely many cones with vertex at O and 

given semi-angle~ tr/2. Further, the conditions and the assertion of 

the theorem are not affected if one applies a linear transformation 

to x. Then it is no loss of generality to suppose that f(x) vanishes 

outside a cone 

where ;:i 2 is some positive number. This cone intersects each hyper

plane Xn=a (a> 0) in a bounded set, viz. a circle with radius /38. 

Now consider the integral 

By the theory of Riemann integrals, if A is any positive number, this 

integral exists for a 11 a with O «: a .-. A, except for a set of Jordan 

measure zero. 15 ) Thus, by (17), the quantity V(a) is defined for all 

a> O, apart from a certain exceptional set S, which on each finite 

interval has Jordan measure zero. It is convenient to put 

( 17 1 ) V(a) = 0 if a c S. 

The function V (a), thus defined, is ~ 0 for a 11 a > 0. Also, by the 

theory of Riemann integrals, this function is Riemann integrable and 

14) 

15) 

The subsequent formula (19) is analogous 
cited. 
See E,W. Hobson, The theory of functions 
3d ed., Cambridge 1927, pp.509-516. 

to lemma 1 in the paper 

of a real variable, vol.I 
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(a>O). 

Then, in virtue of our hypotheses, the last integral tends to infinity 

for a --• c-:-....,. In other words., 

(18) r=v(y)dy = Cv • 

~'o 

We now consider an arbitrary (n-1)-dimensional lattice f in the 
hyperplane x =0., of determinant d (oC). We put oz=( d (.-[)) - 1 and denote n 
by g any point of the form g= ( g 1 .,g2 ., .•• ,gn-'1' .~) . We sha 11 show that 
we can choose gin such a way that, if A is the lattice generated by 

J: and the point g, 

(19) ,?_ I f(x) 
XE/\ , X ;cO n 

V(m ·;.), 

where v(a) is defined by (17) and (17 1 ) and where it is asserted that 

the sum on the left is infinite if the sum on the right is infinite. 

If we apply a linear transformation to the variables x1 ,x2 , ... ,xn-~ 

then the inequality (19) goes over in an inequality of the same form. 

Hence it is sufficient to prove (19) in the case that J.. is the lattice 

of points in xn=O with integral coordinates. Then o<=1 and the general 

point of /\ is (u1 +mg 1 ,u2 +mg 2 , ••. ,un_1 +mgn_ 1 ,m)., where u 1 ,u2 , ••. ,un_ 1 , 

mare integers. Hence, since f(x)=O for xn <O, the sum on the left of 

(19) is 
c ..... 1 

Next, V(m)=O or 
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v(m) 

O'O = ,- ,:--..~ 

= ff . . j 
-<X> -C'-") -OI;) 

m m m 

:::: m-n+1 r r . J' ., 
0 0 0 

1 1 1 

= f J ··-I 
·o o o 

Denoting the sum in the last member by Sm(g1 .,g2 , ... ,gn-'1), we have 
,(~ 

S(g1,g2,···,gn-'1) = 2 Sm(g1 ,g2 , ... ,gn-'1). Hence, taking the lower 
m=1 

integral of S(g1 ,g2 , ••• ,gn_ 1 ) over the unit cube, we have 16 ) 

1 1 

1· .! / C,'.:I 

S(g1,g2, .. '.,gn-1)dg1dg2 ... dgn-1 ~) V(m), 
in= 1 

0 0 0 

no matter whether the expressions on the left and the right are finite 

or infinite. This proves (19). 

The proof of the theorem is now easily completed. The function 

V(a) was shown to be non-negative and Riemann integrable and to satis

fy (18). Hence., in virtue of the corresponding theorem for the one

dimensional case, viz. theorem 2, there is an o<.. >Osuch that 
~- C-0 

L-m='1 V(mci):= C',..., • Hence, if ,.f: is any lattice in the hyperplane xn=O., 

of determinant d(ct')=1/~., then, for a suitable point g=(g 1,g2 , ... ,gn_1 ~<-><), 
we have 

>- f (x) ~ r f(x) = 0-!l • 

-xE7\ x £ /\ , x /.0 n 

This proves the theorem. 

We now come to the analogues of theorems 3 and 4. It turns out 

that Cassels' considerations mentioned at the end of section 2 are well 

16) Though S(g1 ,g2 , ... ,gn_ 1 ) may be infinite for one or more sets 
(g 1 ,g2 , .•. ,gn_ 1 ), this lower integral is defined without ambiguity, 

since we have to do with non-negative functions only. 
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suited in order to generalize theorem 3. We shall prove 

Theorem 10. There exists a Jordan measurable set Vin Rn' of 
infinite measure, which has the property that almost all lattices 

have only finitely many points in V. 

Proof. Let {l\m} be any ascending sequence of positive integers, 
and let D denote the number of fractions j/il ( 0 c. j <- A ) which 

..1 m m m 
a re not of the form k/">- , q .cm. Now, as Cassels proved, we can 
choose the sequence f Aqt in such a way that 18 ) 

" mJ 

( 20 ) ) p />. = 6 ( M) a s M ---'7 ~ • 
ni~M mm 

Further, for any such sequence { Ii 1, there exists a sequence of ,. m .. , 
positive numbers y-(m) decreasing to zero such that L -f(m) is 
divergent, but 

Om 
,.~ y(m) 

m 

is convergent. We now consider the set Vin Rn which is the union 

of the parallelepipeds 

V =·A e(n) + Pm (m=1,2, ... ), 
m m 

where e(n) is the nth unit vector (0,0, ... ,1) and Pm is the set of 

points y=(y1 ,y2 , ... ,yn) with 

/ y i ) ~ 1 ( i= 1 , 2, •.. ., n -1 ) , \ y n \ ~ ·y,- ( m) . 

Then Vm has content 2n"f'(m)., and so Vis of infinite content. We 
shall prove that almost all lattices have only finitely many points 

in V. 
/\ S -( 1 ) -( 2) -( n )} Let be an arbitrary lattice, with basis 1 x ,x , •.. ,x • 

By permuting, if necessary, the points x(i) we may obtain that 

det (x( 1 ), x( 2 ) , ... .,x(n-1 ), e(n)) f 0. 

Then there are a positive number rand n-1 neighbourhoods 
N1,N2 , ... ,Nn_ 1 of x( 1 ) ,x( 2 ), .•• ,x(n-1 ) respectively, such that 

det (x( 1 ),x( 2), ... ,x(n-1 ),e(n)) IO if x(i)E Ni (1=1.,2, ... ,n-1) 

and even for all systems {x( 1 ),x(2), .•. ,x(n-1)} with x(i)£Ni, the 
parallelotope consistine of the points 

x~~1x( 1 )+~2x( 2 )+ ••• +~n-1x(n-1 )+11ne(n) ( l'>]1 li1 for i=1,2, ..• ,n) 
contains the sphere 

2 2 2 2 ____________ x 1 +x2 + •.• +xn a r • 

18) See Cassels [2] , theorem VI and lemma 7. 
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Further let a be an arbitrary positive number and let H denote 

the set of lattices A=X'U., with basis { x('1) ,x( 2 ), ••• ,x(n)}, such 

that 
(1) x E.N1 (i::;::::1,2, •.. ,n-1), 

det (x( 1 ),x( 2 ), ... ,x(n-'1),x(n)) ___ 10 . with a ;;;: t ?a;_ 2a . 
det (x( 1 ).,x( 2 ), ... ,x(n- 4 ),e(n)) 

Here the point x(n) may be chosen, in a unique way, such that we 

have a relation of the following form: 

(21) te(n)= 61 x(1)+ 82 x(2)+ ... +ci1-1 x(n-1)+ x(n), 

with O ~ ei < 1 (1=1,2, ... ,n-1). For fixed x('l) ,x( 2 ) , ••• ,x(n-·1), we 

shall denote by Q=Q(x( 1 ),x( 2 ) , •.. ,x(n-1 )) the parallelotope of 

points x ( n), such that ( 21) holds and /\ belongs to H. Further, we 

shall write ; =/3, so that 2: § 1/3 ~; • 

Next, if J\ =X 'U belongs to H, we denote by ·y· (X) the number 
flm 

of points U= ( u 1' u 2 ., ••• , un) e U for which 

Xu= u1 x('1) + u2 x( 2 ) + ... + un x(n)E Vm 

and the fraction u //\ is not of the form v /Ak' k "'m. Finally, we n m 
put 

We wish to derive an estimate for 

for arbitrary /\EH, an estimate for 

gral vector u with Xu CV . We have 
m 

( rM(X)dX. First, we deduce, 

H the components of any inte-

u x( 1 )+u x( 2 )+ +u x(n-'l)+u x(n)= A e(n)+y 
1 2 ··· n-1 n m ' 

2 2 2,. 
where yE:Pm. Further., Pm is contained in the sphere x 1 +x2 + ••• +xn i:n, 

and so yE.P can be written as 
m 

Y - VD (P x(1)+ v7 x(2)+ + '? x(n-1)+ ·r7· e(n)) 
- r (1 2 • • • n-1 n ' 

where I ·?1 \ ~ 1 for i='1, 2, •.. ,n. Hence, by ( 21), 

u x( 1 )+u x( 2 )+ +u x(n-'l)+u x(n) 
1 2 • • · n-1 n 

= ( A /3 8 + Vn n d e + Vn Y) ) x ( 1 ) + . • .• 
m 1 r (n 1 1 r £1 

+ (/\ A0 .-1+ \In}) /3 e ,1+ \In '7 ,1) x(n-1 )+ (t- + Vn ')'7 ) 13X(n). 
ml - n- 1 r rn n- 1 r n- 1 m r n 1 
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Hence 

and so 

( a +1 ) v;; 1 + ( a +1 ) \I~ - ra /ui <.-a )\m - ra (i·-,, 2 n-,,) ..__ -1, 3•••!1 I J 

1 (" vn) 1 ( Vn) ~ ✓\-- :.U -:::- l\+-c:a m r - n -- a m r • 

Next, let ·xm(x) be the characteristic function of Vm. Then, 
¾-

~(m ( X) = 2 --·----- Xm(Xu), 
u1, u2, ... , un 

where the asterisk indicates that the summation is extended only 
over the integral vectors u=(u1 ,u2 , •.. ,u11 ) for which the fraction 

u11 /J\m is not of the form v /\k, k < m ( so that u11,io). For fixed u1 
with un,10, we have 

Hence 

1· Xm(Xu)dx(n) = /.Xm(u1x( 1 )+u2x( 2 )+ .•. +u11x(n))dx(n) 

Q Q 

Q 

<- ~-¾,1..1. 1· n (2 ?\ = ,,__ __ ·u a m 
u n n 

f Xm(Xu )dx(n) 
Q 

. 2\/n a·+1 
Now, in the last sum., the number of terms is < a"'r + ~ ,Pm, and 
further /...'.l..; ~ 28 + o(~), where the constant in the 0-term does 

un ),.m '\ic: 
not depend on m. So we find 

f J/ ( X) d x ( 11 ) ~ ~- 411 ( a +1 )( _,,<A + O ( 1) ) (;} + O (." 1 2 ) ) } yr( m) . 
m L m m m · 

Q 

,f(m)) , 
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where the constants in the 0-symbol only depends on the numbers a and 

rand the contents of N1 ,N2 , ... ,N11 _ 1 , but not on,.M. 
Consequently., by the choice of the y/(m), j l...,M(X)dX is bounded 

by a constant not depending on M. Let M ~end to Hinfinity. Then it 
follows that almost all lattices /\=X'IA in H contain only finitely 

many points Xu such that, for some m, Xu€- V and u /A is not of the , m n m 
form v ("lk., k ~ m. Here, if for a given lattice /\ =~y[, the number ;3 

is defined by ( 21), then u satisfies j /3 A -u !1 ~ 1' n /3. If /3 is n ;- m n r, 1 

irrational., then a given value of u /~ corresponds to at most a n m 
finite number of solutions of this inequality. Further, for fixed m 

and u, there are only finitely many integral vectors n 
with Xu EV • We may conclude that almost all lattices 

m 

u= ( u 1 , u 2 , ••• , un) 
/\ in H have 

only finitely many points in V. 
By the arbitrariness of the points x(i) and the number a, the 

assertion of the theorem now follows. 

For the generalization of theorem 4 we need the following 

Lemma. Let C be the cube lxil i 1 (i=1,2., ... .,n) and let/\ be a 
lattice which has a basis contained in C. Then each cube of the form 

(i=1,2, ... ,n), 

where ai are arbitrary real numbers, contains a point of ;\ • 

Proof. We use some well-known concepts from the geometry of numbers. 

In particular, we consider then successive minima of the cube C with 

respect to the given lattice i\ , say \ 1 , '>2 , ••• , -:-\1 • Thus ":\ is the 
smallest positive number such that ~ 1c contains at least i linearly 
independent points of /\ ( 1=1, 2, ... , n) . Next, we consider the in
homogeneous minimum of C with respect to /', , say :,,- ; it is the 

smallest positive number such that for each g f Rn the cube o C+g 

contains a point of /\ . We can easily obtain an estimate for (;-. 

First, since C contains a basis, 
independent points of /\ , the numbers 
Secondly, by a well-known result 19), 

and so a set of n linearly 

\ 1, -;\ 2 , ••. , \ n a re a 11 ;; 1. 

G' i ½ ( ~\1 + i\2 + • · • + 11 n) • 

Hence, G ~ n/2. This implies the truth of the lemma. 

19) See H. Minkowski, G~ometrie der Zahlen, Leipzig Berlin 1910, 
Kap.V, or Jarnfk [6J. 
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We now prove 

Theorem 11. Let V be a Lebesgue weasurable set in R , Let Ebe the 
n 

e.ube O ~ x 1 ~ 1 ( 1=1, 2, ... , n). Let (' be a positive number < 1 and 
suppose that there are infinitely many disjoint cubes g(k)+E 
(g(k) E. Rn) on which V has density ~ f . Then almost all lattices 
have infinitely many points in V. , 

Proof. Let C be the cube lx1 1 ~ 1 (1=1~2, •.. ,n). We consider the set 
Hof all systems of n points [x( 1 ) ,x( 21 , •.. ,x(n)} (or matrices with 
columns x('1) ,x( 2 ) , ••• ,x(n)) for which 

det (x( 1 ),x( 2 ) , ... ,x(n)) IO, x(i) ( C (h=1,2, •.• ,n). 

We use the natural measure in H considered as a set in n2-dimensional 

space. Further, we arrange in some order the points u=(u1,u2 , •.. ,un)(Lt 
(1) (2) denoting them in this order by u ,u , .... Next, for p=1,2, ... , 

we denote by W the set of all Xf H for which p 

Xu(q)J, V for q >p. 

We first prove that the sets W sre measurable. For fixed u, 
let Z(u) be the set of all X E.H with Xu=u1x( 1 )+u2x( 2 )+ ••. +unx(n)E. V. 

Here Vis a measurabl8 set in R and the set of the X for which Xu n 
is a fixed point in Vis the intersection of Hand a certain (n 2-n)-

dimensional plane of given direction. Hence Z(u) is measurable. Hence 
W = /\ (H/Z(u(q))) is measurable. 

p q.,. p 
Now suppose that . .uW > O, for some p. We shall show that this 

leads to a contradict;on.PFor fixed x( 1 ) ,x( 2 ), .•. ,x(n-'1), let 
S=S(x('1) .,x( 2 ) ., ... .,x(n- 1 )) denote the set of points x(n)f W with 

{x( 1 ) .,x( 2 ), ..• .,x(n)} f W . Since W is measurable, this set is 
measurable for almo-st ail x( 1 ) .,x(~), •.. ,x(n-1 ). Further, since } 
/iAWP > O., we have /AS >0 on a set of systems { x( 1 ),x( 2 )_, ••. ,x(n-1 ) 

of positive measure. Hence we can choose n-1 linearly independent 
points x('1) ,x( 2 ) , .•. ,x(n-'1)E Win such a way that 

1) the subset s(x( 1 ),x( 2 l, ... ,x(n- 4 )) of W has a positive 

Lebesgue measure 
2) the distances of the given points g(k) from the (n-1)-dimension-

31 hyperplane through O, x('1),x( 2 ), ••. ,x(n-'1) are not bounded. 

Next, as in the proof of theorem 4, in virtue of 1)~ there 
exist a point x(n)=(a 1 ,a 2 , •.• ,an) f. W and a postive number d" with 
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the following properties: 

a) the cube lx1-o 1 \ ~ ,( (i=1,2, ... ,n) is contained in Wand for 

each point x in this cube det(x('1) ,x( 2 ) , ... ,x(n-'1),x)/0 

b ) on ea ch cub c bi <:;- xi ~ c i ( i= 1 ., 2 , ... , n ) with a i - c.,r ie bi §:. a i ~ c 1 ~ 3 1 td'-

( • 0 ) t s(-(1) -(2) -(n-1)) l=1,~, •.. ,n he set x ,x , ... ,x has density 
l -n 

?: 1-·2 n f . 
/-\ ., -( 1 ) -( 2) -( n ) } Let. be the lattice with basis ~ x ,x , .•• ,x • Consider 

thf, cubes g(k)+nE. On each of the;se cubes, in virtue cf our hypotheses, 
-n the set V has density 1 n f. Further, by the lemma, each of these 

cubes contains a point of A. Thus, for k=1.,2, ... , let g(k)+nE con

tc1in the point Xu(l)=u11x( 1 )+u21x( 2 )+ •.. +un 1x(n), where 1 depends on 

k, say l= ~(k). In virtue of 2), the sequence of numbers unl 

(1= f(k); k=1,2, •.. ) is not bounded. Hence the values l= f/k) also 

a re not bounded. 

Now choose k such that 1 > p and u 1cf -;, n. If x(n) describes the 
I · ,,, ( ( • ) .. n . -( 1) -( 2) cube ix 1-ai1 -~ <, l=1)2, ... ,n , then the point X=u11x +u21x +- ••• + 

+u /\ 1x(n-1 )+u 1x(n describes 8 cube, whose center lies in g(k)+nE 
n- 1, n , (k) · 

and whose edges have length unl .2ci > 2n, and so covers g +nE. Conse-

quently, x describes the cube g(k)+nE, if x(n) varies in some cube 

P:b1 iX1 a ci (i=1,2, ... ,n) contained in )x 1-ail 5'. cr(i=1,2, .•. ,n). 
) (-( 1) -( 2) -( n -1) ) i: n virtue of b , the set S x ., x , . • . , x ha s dens it y 

J. -n l1-2 n f on this cube. Also, the set of points 

1;1ith x(n)E P/'""\S(x( 1 ),x( 2 )_, ... ,x(n- 1 )), which is contained in g(k)+nE, 

has density ~ 1-½n-n I on g(k)+nE. Further, by the definition of WP 

and s(x( 1 ) ,x( 2 )., ... .,x(n-'1)) and the relntion 1 > p, this set is dis

joint with V. But V has density ~n-n(' on g(k)+nE. This is a contra

diction. 

The above contradiction shows that PW =0 for all p. Hence . p 
,,,u(L W )=0. This means that for almost all XE:H there is an in-

finS'.tj of points u E u. with Xu E. V. The same result can be proved., if 

instead of C we work with oec, where ot.. is a positive number. Hence, 

for almost all systems X of n linearly independent points there is an 

infinity of points Xu in V. Since the set of all lattices can be 

identified with a certain subset of the set of these systems X in~ 

luding the metric used, this proves the theorem. 
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