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Lattice points in unbounded point sets 1)

by
C.G. Lekkerkerkeﬁ":”"
1. Introduction, In” the last two volumes of the,. "American Mathe—
matical Monthly”, in the department of ”Advanced Problems and

Solutions", the following two problems concerning divergent inte-

grals and series were proposed by K.L. Chung and G.R. MaclLane
regpectively 2)

Problem A, If f(x) is continuous and non-negative in {O,cw ) and

(,\3
e f(nx)=ov
Problem B. Find a function f(x), upper semi-continuous 3) and non-
negatig& on [0,00), bounded on each finite interval (0,T), such

that‘/ (x)dx=co and ‘5 e f(nx) < oo for every x> 0.

! o0
jr £(x)dx= o> , then there exists an x >0 such that ._

groblem A dis itself a generalization of the following problem,
proposed in the same periodical by D.J. Newman and W.E. Weissblum
Problem C. Glven an unbounded set of positive reals, Prove that there
exists a real number such that infinitely many integral multiples
of 1t lie in the set.

Solutions to Problems C and A have also been published 5). In
this report we shall deduce slightly more general properties and
also derive some results of a related type. Next, we shall give
appropriate extensions for n-dimensional, integrals. Here the concepq‘

G M WS S G AL NG W o P N e e o

1) This rcport is the fruit of discussions with Prof.de Bruijn, Mr.
Kesten and Prof. Koksma, who contributed much to the results
exposcd (see also footnote 6)).

2) See problem 4670, Am.Math.Monthly, 63, 47 and 190 (1956); problem
4727, ibidem, 64, 117 (1957)

3) i,e. lim sup f(x); f(a)

X—» 2 ' K
for every a, o |
4) See problem 4605, Am. Math. Monthly, 61, 572 (1954).

5) Same journal, 62, 738 (1955); 64, 119-120 (1957).



of set of the multiples of a positive number will be replaced by

the more general concept of a lattice in n-dimensional space and

use will be made of some results in the field of the geometry of

numbers. In particular, we shall apply Siegel's refinement of the
Minkowski-Hlawka theorem,

2. Results for onedimensional sets and integrals, In the following
V will always be a set of non-negative reals. It is always assumed
that V is Lebesgue measurable; sometimes we shall require that V
be even Jordan measurable. We shall denote by « V the (Lebesgue,
c.q. Jordan) measure of V. Now, for given V, we nre interested in

the sets wﬂ’WZ’NB of the numbers x>0 satisfying resp.the requirement
(1) kx € V for infinitely many positive integers k that
{(2) %x € V only for finiltely many positive integers k

(3) kx ¢ V for no positive integer k.

There are four theorems, which run as follows:
Theorem 1, If uV < oo, then (2) holds for almost all x.
Theorem 2. If « V=co and V is Jordan measurable, then therc is at
least one number x >0 for which (1) holds.
Theorem 3. There exists a Jordan measurable set V (consisting of an
infinite sequence of disjoint intervals) with _« V=ceo , such that
{2) holds for almost all x and, moreover, (3) holds on a set of
infinite measure.
Theorem 4. If O < p <1 and if V has density z p on each of an
infinite sequence of intcrvals of length 41, then (1) holds for al-
most all x in (0,1).

The first two of these thecorems can be generalized to state-
ments involving an arbitrary function., Let f(x) be any non-negative,

measurable function on the interval [0,c0) and put
oo

F(x) = ZE; £(nx).

Then the following two theorems hpld: :
Theorem 11, IfJ/ﬁ\f(x)dx < eo , then F(x) «eo for almost all x,
0

SO0
Theorem 2', If f(x) is Riemann integrable and / f(x)dx=co , then
there exists an x >0 with F(x)=co ., 0
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If 1In these theorems one takes for f(x) the characteristic function
~of a set V (measurable in thc sensc of Lebesgue, c.q. Jordan), then
one gets back the thecorums 1 and 2., So we need only to prove the
theorems 1',2',3 and 4, 6)

Before giving the proofs of thesc thcorums we draw some
conclusions and make some additional remarks. Theorems 2 and 4 deal
with the set W, of numbers x> O possessing property (1) and asscrt
that, under certain conditions, this set 1s nonempty, c.q. covers
the whole interval {O,uo) apart from a sct of mecasurc zero, Theorem

3 says that, under the conditions of theorem 2, the set W, may well

be a sct of measure zero. Further, theorem 3 learns that ;n theorem
2 one cannot omit the condition that V be Jordan measurable, For,
deleting from a set V satisfying the conditions of thuorem 3 a
suitably chosen set of measure zero, one retains a Lebesgue measur-
able set V1 of infinite measure, such that no real number x>0
possesses property (1).

A sct V which certainly satisfles the condition imposed on V
in thcorem 4 is c.g. obtained in the following way. Let v, be an
1 and let Vm=m \Y

gatisfics the con-

arbitrary subset of [0,c0) of positive measurc ««V
(m=1,2,...). Then, as is casily scen, V= \_/ v,
ditions of theorem 4, Onc can even prove = that the complement of
V, say W, satisfics the relation

/‘

lim e (W (t,t4p)) = O for each p: 0,

t oo

We further remark that our theorems give the solutions of
problems A and B mentioned in the introduction. Actually, theorem 2°
solves Problem A, even for Riemann integrable, non-negative functions,
Next, 2 solution to Problem B is obtained from theorem 3 in the
following way. Let V be the union of infinitely many disjoint inter-
vals, such that wV=ec. and (2) is valid for almost all x, Without
rcstriction we may suppose that these intervals are all closed.
Further let W, be the set of numbers X fEF which (1) holds, Then
.xquzo andﬁfo therc exisEs an open set W,l of finite measure which
contains é;g kwq.‘Then V=V/w: is a closed set of infinlte measure,and

- . - - - -

6) Theorems 1 and 4 were obtained by Prof.J.F. Koksma, theorem 2' is
due to Prof.N.G. de Bruijn, whereas the example leading to
theorem 3 was given by Mr H. Kesten,
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no number xv¥® posscsses property (1). Now the characteristic
function of a closed sct clearly is upper semi-continuous, It follows
that thc characteristic function of V “satisfies the assertions of
problem B, .

Next we shall indicate a more special class of sets V, for
which sharper conclusions hold. To this end we refer to a theorem
in the field of diophantine approximation, proved by Koksma [1]
and Cassels [2} 7). This thcorem can be formulated as follows:
Theorem 5. Let ¢ (q) bc a monotonely decreasing function of the
integer variable g > 0, which tends to zcro for g--e-. Let L= 2:2;1@(q).
Then one has
a) If L=ow, then for almost all <. » 0 there are infinitely many

pairs of positive integers p,q with lgx-pl < ¢(q)
b) If L <eo, then for almost all « >0 there are only finitely many
pairs (p,q) with {ge-p! < p(q).

From this result one can deduce the following
Theorem 6. Let @ (g) be a monotonely decreasing function of the
integer variable g » 0, which tunds to zero for q -+ 2, Let V be the
union of the intervals (g- ¢ (q), a+¢(q)), where g runs through the
positive integers. Then onc has

=) If wV=oo, then almost all numbers x ~ O possess the property

(1)

A3) If w#V<eo, then for almost all numbers x >0 (2) holds.

In fact, let 5ﬂ(q) be a function of the type considered and let
L and V be defined as above. Let a be an arbitrary positive number
and suppose that V=¢> , Then also L=cs , Now apply a) to the
function a ¢(q) instead of ¢ (qg). This learns that for almost all
= >0 one has
(5) la=-pf<aw(q) for infinitely many pairs (p,q).
A fortiori, (5) holds for almost all o > a., Hence, dividing through
by «x and putting ;:=x, one sees that for almost X with O<lX‘i% it is
true that
(6) la - pxi{ < @(q) for infinitely many pairs (p,q).

This means that for almost all x with 0+« x cg-the set V defined in

the theorem contains infinitely many multiples of x, Since a 1is
arbitrary, this proves = ).

— - » G0 Mt - o

7) Sece also Cassels [3| , Ch.VII, Théorem I.
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Next suppose that «V <« oo, Then also L < eo. Then, by b), if
a >0 1s arbitrary, one has for almost all =« > O

(7) lqg-pl < a ¢(q) only for finitely many pairs (p,q).

It follows that for almost all x>-§. it is true that

(8)  fa-px! < ¢(a) only for finitely many pairs (p,q).

From this, since a is arbitrary, ,3) follows.

Koksma {1] and Casscls [2} also generalized theorem 5 in the
sense that they admitted g to take only certain sets of positive
integral values. Thus they arrived to a statement of fthe following
form

For a wide class of scquences of distinct positive integers

{}qf it is true that the inequality

¥'>\qfx pl< ¢(a),

where g?(q) ig any monotoncly decreasing function, has an infinity
of integer solutions p,q >0 for almost all or almost no = >0
according as  ¢(q) diverges or convirges,
This statement leads to an analogous generalization of theorem 6,
We do not carry this out. We rather draw attention to a peculiarity
established by Cassels |2 1. Cassels showed namely that there arc
s¢quences {>q} of distinct positive integers (e.g. increasing
sequences) with the following property

There is a monotonic function ¢ (q) decreasing to zero such
thatj{jz;q‘ﬁ(Q)= =~z but that for each a >0 the 1nequalilty

(9) 0 =2 -p=agla)

has an infinity of solutions for almost no <,

Now for any such sequence {\ﬁq} and a corresponding function <f(q)
take V to be the union of the intervals (\q,%q+<p(q)). Further let

W be the set of numbers « >0, such that, for all a >0, the in-
equality (9) has an infinity of solutions, Then it follows from the
above property that «W=0. Next, «~V=eo, Filnally, by a reasoning

as in the above deduction of theorem 6, one sees that W is precisely

the set of numbers x >0 possessing property (1).

e - -~ 1

8; Se& Koksma [1] , Théorime U4; Cassels (2], Theorems III and IV.
See Cassels {2} s Theorem VII., The segquences £ having the
property discussed can be specifled explicitly.
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The above set V satisfies the assertions stated in theorem 3
except possibly for the last one. But the proof given in the next
section will be of a simpler nature, On the other hand, for suitable
{}q} and ¢(q), the set V constructed here is the union of a
sequence of (disjoint) intervals which in their natural arrange-
ment are of steadily decreasing length.

3. Proofs of theorems 1',2',3,4.

Proof of theorem 1', Let O <a «b and let p be a positive integer with

pa » b, Then, for any positive integer n, we have

b kb
2 R ,
f i f(kX)dX = /. / f(X)dX
a k=1 k:ﬂ a
o pka o (m+1)a
S5 4 / (x)dx = > ST 1/ £(x)dx
Tz K fi=1  wim,pkom k.
- ka B =0 ma
<2, <m+/]) s
< 2 log p 7 / f(x)dx = 2 log p / f(x)dx,
m=1 g a

Hence, if we put // f(x)dx=y (so that y <9, we have

0 0

/' S f(kx)dx = 2) 1log p for each positive integer n,
= ’

10), since f(x)z 0,

b o2

Then, by a property of L%besgue integrals
b_nﬂ ; b
1im 7 f(kx)dx = | 1im 7 £ (kx)dx =] 2 f(kx)dx
k=1

A A A

n _.,w} r J, nses B

CND

a
and moreover, Z;'V—ﬂ f(kx) is finite for almost all x in the inter-
val (a,b). Hence, since a and b are arbitrary, the last sum 1is

finite for almost all x>0, This proves the theorem.

Proof of theorem 2', Let O<«<a «b and let N be a large positive
integer. We have

Kb
(o f)ax = - L1 e(t)at
a - ka
o - .\
AR 1O T - I
)y l1:keN,ka= t,kbzt"

— " . W O

10) See E.C. Titchmarsh, Theory of functions, Oxford 1939, assertion
(1) of theorem 10,82, Compare also footnote 13).



[Na
J t/osk=t/a

Now, for fixed a and b, there is a positive number to such that

-

~

&L e 1 1

> = b 2 o~
t/btk=t/a ¥ 2 108 5 1f T2t

Then, for Nz to/a,

b N Na
/ LN _b ra
/D flkx)dx- % log = [ f(t)dt,
2 k=7 A
0
The last integral tends to -~ for N-==-, by the hypotheses of the

theorem. So we may conclude that for each pair of posiltive numbers
a and b with b=a we have

PN
(10) lim | > f(kx)dx =0,

|

RSN "..‘—.-._
N -» 3 k="

We now consider the sets Vm defined by
[2S)

(11) Vm.:{x'{z_ f(kx)<m} (m=1,2,...).
k=1 ‘
We shall show that each set Vm 1s nowhere dense, i1.e. that, for
arbitrary m, each interval on the positive real axis contains a sub-
interval which 1is disjoint with Vm‘ Suppose the contrary is true,
Then, for some m,a,b, the set Vm is everywhere dense in the inter-
val (a,b). Put W=meW(a,b). Then W is a subset of (a,b), which is
everywhere dense in (a,b), whereas

ST f(kx) « m for x ¢ W.
!...‘k=,‘
A fortiori, if N 1s any positive integer,
N
> f(kx)«m for x ¢W,
Hence, since f(x) is Riemann integrable,
b N
[ > f(kx)dx :m (b-a)
L k=

for each positive integer N, This contradicts (10) and so proves
that each set Vm is nowhere dense,
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Consequently, by a well-known property of nowhere dense point

sets, the union of the sets Vm does not cover the whole interval
) 11). In other words, there 1s a number x > O not belonging to

:i;;jq f(kx)=e> , This proves the

i:o s (]
any set Vm. So, for this number x,
theorem.

Proof of theorem 3. We consider an arbitrary sequence of positive

numbers & (k=1,2,...) satisfying

(12) 0 <& <1, ST & <o
K Loya K

For any such sequence {Ek}'we can find a sequence of positive Iinte-
gers n, (k=1,2,...), such that

p—OD n
‘—;‘ < k
(/IB) nk> nk_,] + 1 N é"k=2 Lk log-ﬁm:\f\'}‘

Now let V be the union of the intervals Vkm given by

n n, +¢
k k' 'k )
(%) T = (0 255/
- nk
where m:’!,E,...,, W ]; k=1,2,...(no=o),
vl

For fixed k the intervals Vkm’ with m £0,, are disjoint, because
O < Ek«iﬂ. Further, if k,m and m' are positive integers with

Wléﬂk/(nk_1+1) , m’:énk+1/(nk+1) s

then 0 +& . "
k' k k+1 . k41

(‘n’f‘/]: =
m K IRTACH DY

and so, for fixed k, those intervals (14) for which -m has one of the
assigned values are lying to the left of those with index k+1 instead
of k and one of the corresponding values of the index m. Hence the
intervals Vkm’ which together constitute V, are mutually disjoint.
Conseqgquently,

K
&= P/ (0 4+ , & 0,
MV = E = v S & log e ,
e R moogp kK Bqt

and so, by (13), V= oo,

11) Actually, the complement of this union is everywhere dense,
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We next prove that V has the remaining properties desired. Let
us denote by V™ the union of the intervals (nk,nk+€k) (k=1;2,...) and
by w,},we,w3 the sets of numbers x >0 possessing the properties (1),
(2), (3) respectively. It is clear, from the construction of V, that
x¢w2, i,e. xewq, if and only {f infinitely many multiples of x belong
to V™. Next, by (2), «V"=2 , . & <co, Then it follows from theorem
1 that w,l has measure zero. This proves that almost all x>0 possess
property (2).

Further, x¢w3, if and only if some multiple of x belongs to V .,
Now consider an arbitrary interval (a,b), where b >a > 0. The set of
numbers x >~ 0O, which belong to (a,b) and have a multiple in an assigned
interval (nk,nk+&k), has measure =

3 > i < (2 + log g

P —_ ) o,
K mb ¥n ., masn K

Kt
Hence the set of numbers x -0, which belong to (a,b) and have a
by <77

)

D
multiple in'v*, has measure < (2+log 7)) L pen fk' So we have

; by <o &
,xl(wafw(a,b))> b-a-(2+log g)hi.k=1 S

Here the right-hand member can be made arbitrarily large by a suitable
cholce of a and b. Hence /uw3=cvu This completes the proof of theorem

3.

Proof of theorem 4., For p=1,2,... let Up be defined by

U = {X | 0-x <1, kx €V for k>p}'.
Suppose that Cj Up):'O. Then there is a positive integer p with
,uUpv>O. Then the?gqare a number ¢ with 0 <c <1 and a number < >0,
such that the density of Up on each interval wh;ch contains the point
¢ and is itself contained in the interval (c-/, c+d ), 1s greater
than 1-k p 12),
Now choose a positive integer k with
ko >1, k>p

and take a positive number A >k such that V has density =2 [ on the

- " - -

12) See e.g. J.F. Koksma, Diophantische Approximationen, Berlin Sprin-
ger 1936, Satz 31, p.4¥ and Bemerkung IV, p.45.



-10-

interval (A,A+1). There exists a positive integer 1 with A <lc < A+1,
since O<c <1, Then 1>k, because 1 >1c » A >k, Hence 1« >, hence

1(c- <)« A< A+ < 1(c+ ).

Thus we find that ¢ belongs to the interval (A/1, (A+1)/1) and that
the last interval is contained in (c-¢ , c+d/). )

In virtue of the last fact, and by the choice of ¢ and of, the
density of U, on the intcrval (A/1, (A+1)/1), hence also the density
of 1 Ub on (BA,A+1), is at least 1—%f>. Further, by the choice of A,
the density of V on this interval is at least Qo Since 1 Ub and V
are disgjoint, if 1 >p , this 1s a contradiction. Hence we must have
__.u(g_;:/1 U,)=0. This means that almost no x in (0,1) has only finitely

many multiples in V, and so proves the theorem.

4, Generalizations for n-dimensional point sets., In the following

n is a fixed integer z 2 and V is an arbitrary Lehesgue measurable
n)'
We shall use vector notation. Further, n points x "),x(2 ,...,x(n) in
R will be called independent 1f they do not lie in an (n-1)-dimensional
hyperplane through the origin O.

Our aim 1ig to generalize the theorems 1-4, In doing this, instead

set in the n-dimensional Euclidean space Rn of points x=Sx1,x2,...,X

of the set of multiples of a number x >0, we shall have to do with
the set of all points x of the form

X = u1x<1) + u2x<2) + ... t u x(n) R
where -{x(q),x<2>,...,x(n); is any system of n independent points and
u,l,ue,...,un take all inftegral values. In other words5 we shall have
to do with lattices /\ , with an arbitrary basis {x(q ,x(g),...,x(n)} .
We adopt the following notations:
U
X

It

lattice of the points with integral coordinates

matrix with columns x(q),x(z),...,x(n), or also the affine

transformation of Rn determined by this matrix.

Then the lattice /\ with basis {x(1>,x(2),...,x(n)§ can be written
in the form A=XU. |

For what follows we have to define measure and integration in
the set of lattices. This was done by Siegel [4} in the following
way. Let {1 be the set of all nonsingular nxn matrices and let I be
;the set of all integral unimodular matrices in {1 , Two lattices
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A1=X?i and A2=Y71, where X,Y ¢/1, are 1dentical, if and only if
there exists a matrix C ¢ ™ such that X=YC. Hence the set of all
lattices can be identified with the factor group {1/l . As a funda-
mental region of {1 with respect to |' one can take the set of matrices
X ¢, for which sp X 0 and the positlve quadratic form with coef-
ficient matrix S=X'X 1s reduced in the sense of Minkowskl. Let us
denote this region by G, and by G” the set of matrices X £¢) with X £G,
idet X!=1. The Euclidean metric in the nz—dimensional space of all
nxn matrices X induces a measure in G. Further, if G is the set of
matrices X ¢ ) with X e G, [det X! ¢ 1, then the (n2—1)—uple integral
of some function F(X) over G is given by

Yo

(15) | F(x) ax = ng’/ F(laet x| -1 %) ax.
G

The 1ntegrals in (15) can be interpreted as integrals over certain
sets of lattices. It now has a sense to make "almost all" or "almost
no" statements about lattices., Siegel proves that the (ng—ﬂ)-dimension-
al volume of G™, given by the integral (15), if one takes F(X) =1, has
a finite value, v say (the quantity v can be computed explicitly).

Next, he proves

Theorem 7. Let f(x) be a bounded, Riemann integrable function on R,
vanishing outside some finite region. For arbitrary X€ {1, let

F(X)= »_ f£(Xu). Then one has
ue
(16) f' F(X) dX = v)/ £(x) dx.
o™ R

n

From (16) one can immediately derive a similar relation for the
integral of F(X) over @ or tG, where t>0. If, for t >0, we put

f(ty) = g(y) , 2. e&(Xu) = 6(X),

ueu
then we have
[ txax =" [ a(y)ay, a(x) = #(ex),
Rn Rn
n2—1
]( F(X)dX = t ][ a(v)ay.
G~ G

Hence, applying (16) to g(y), we get
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Hence,

’ 2 3 2
(161) f F(X)ax =/ s? P71 gg v/ £(x)dx = —5— t° '“/ £(x)dx.
A . n--n
tG 0 Rn Rn
We now can state and prove the following generalization of

theorem 1':

Theorem 8. Let f(x) be a non- negative Riemann integrable function,

defined on Rn Suppose that'/’ Jdx <o, Then for almost all lattices
A one has » f(x) ceco.

A 1']

xe
Proof, Let N be a large positive number and let t be a positive number.
Let Ixl = maxfxil, if x=(x1,x2,...,xn),and put

{A f(x)dx =)y (so that y <oe),
R

n (%) ( £(x) 1if [xt = N
R A R T P R ,
Fy(X) = u>¢~u £ (Xu) (xe)).

In virtue of the relation (16'")

/' Py (X)X = —— t“g"“/ £ (%) dx

n -n :
tG Ry
2 2
¢ 2 P ‘“[ £(x)dx = y F—t7 7,
n2—n R n -=n
n

Now FN(X) is a steadlly increasing function of N. Hence we have

2
lim [ By (X)ax : y—— t" 7,
N-20 " = " n“-n

e

where the 1limit on the left exists. Next, in virtue of the monotony
of the sequence S FN(X)j and a well-known property of Lebesgue inte-

1 (.

grals 3), )
[ Nl_linc\) Ry (X)dx =N;'Lin:\7 ) Py (X)AX.
tG tG

- . . W o - g - -

13) Cf.e.,g. A.C. Zaanen, Linear Analysis, Amsterdam Groningen 1953,
Ch.3, §3, Theorem 2 (p.43).
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It follows that 1lim FN(X) = F(X) is finite almost everywhere in tGQ.

Since > f(x) E /2\ f(¥u) = F(X), if A= XU, and t >0 is arbltrary,
this p%%@és the ué%ﬁeorem. .

Next, we generallze theorem 2'. Here our considerationé will
involve a reasoning similar to a reasoning of Davenport and Rogers
(5] 1in their work on the theorem of Minkowski-Hlawka '
the following
Theorem 9. Let f(x) be a non-negative, Rlemann integrable function,
defined on Rn' Suppose that_/' f(x)dx= co , Then there is a lattice

). We have

/A with determinant 41 such that

Proof. We can cover Rn by finitely many cones with vertex at O and
gilven semi-angle < /2., Further, the conditions and the assertion of
the theorem are not affected if one applies a linear transformation
to x. Then 1t 1s no loss of generality to suppose that f(x) vanishes
outside a cone

f—,ﬁgxg

. 2 2 2
e-X + X +o-$ +Xn_1 Y, n.’

1 2

where /32 i1s some positive number. This cone intersects each hyper-
plane x =a (2 >0) in a bounded set, viz. a circle with radius <a.
Now consider the integral

v [l e e

o . xn~qé4 a

f(xq,xz,...,xn_q,a)dquxg...dxn_q.

By the theory of Riemann integrals, if A is any positive number, this
integral exists for all a with O<a <A, except for a set of Jordan
measure zero.qB) Thus, by (17), the quantity V(a) is defined for all
a >0, apart from a certain exceptional set S, which on each finite
interval has Jordan measure zero. It is convenient to put

(173) V(a) = 0 if a & 8.

The function V(a), thus defined, is 2 O for all a>0. Also, by the
theory of Riemann integrals, this function is Riemann integrable and

" g, -y o o S - .

14) The subsequent formula (19) is analogous to lemma 1 in the paper
cited,

15) See E.W. Hobson, The theory of functions of a real variable, vol.I
3d ed., Cambridge 1927, pp.509-516.
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we have q5)
7 .
j//:, “J f(xq’xz".‘,xn_q,xn) ax d%,...dx _,dx
'Xn; a

= [/'. .. .:/ f(xq,xg,...,xn_q,xn)dquxe...dxn_qun
102 2 ' 2 2. 2
XS TR X < /3 X,
P X, €8
=/ vi{y)dy (a>0).
0

Then, in virtue of our hypotheses, the last integral tends to infinity

for a —s o>, In other words,

(18) _/‘MV(y)dy = .
0

We now consider an arbitrary (n-1)-dimensional lattice L 1in the
hyperplane x =0, of determinant d(L). We put cx=(d(i))'1 and denote
by g any point of the form g=(g1,g2,...,gn_q,ax). We shall show that
we can choose g 1in such a way that, if A is the lattice generated by

J. and the point g,

(19) 2 P(x) 2k o V(mx),
Xé/\,xn¥o m="

where V(a) is defined by (17) and (17') and where it is asserted that
the sum on the left is infinite if the sum on the right is infinite.

If we apply a linear transformation to the variables KysKps e oo s Xy g
then the inequality (19) goes over in an inequality of the same form.
Hence 1t is sufficient to prove (19) in the case that L is the lattice
of points 1in Xn=0 with integral coordinates. Then «=1 and the gcneral
point of A is (uq+mg1,u2+mg2,...,un_1+mgn_1,m), where UqsUoseeesly oo
m are integers. Hence, since f(x)=0 for X, <0, the sum on the left of
(19) is

S(gq’gg"'-’gn_q) = P ~ f(uqﬁngq,u2+mg2,...,un_q+mgn_4,m\

Next, V(m)=0 or



V(m) = jié é'// , . f(Xq,Xz, ,xn_q,m)dx1dxg...dx 4
KT T s (ms)
o0 O p o
_0[[;\3 —.C\D
m m m
~1n+1 >
=m /‘ ... P f(u1+g1,u2+g2,...un+gn_1,m)
0 0 o YqetpreeesUy g
dg..dg,...d48
4 7 1 . 17=2 n-1
= / > f(u,+ng, ,u,+mg u._,+mg m)
J o] - A8 U ME s v o v Upy 4 FME 4T
0 0 0 12727 n-1

dg,}dgg...dgn_1 .

‘Denoting the sum in the last member Dby Sm(gq,gg,.

.8 ), we have
Py ’©en-177
S(gq,gz,...,gn_q) =) Sm(gq,gz,,..,gn_q). Hence, taking the lower

m="1
integral of S(gﬂ,gz,...,gn_q) over the unit cube, we have 16)

o\

1 1

—
ﬁ/ ./, ean /ﬁ S(qugg""’gn_q)dqugg"‘dgn-q ;i%EW v(m),
O O

0

no matter whether the expressions on the left and the right are finite
or infinite. This proves (19).

The proof of the theorem 1s now easily completed. The function
V(a) was shown to be non-negative and Riemann integrable and to satis-
ﬁfy (18). Hence, in virtue of the corresponding theorem for the one-
~dimensional case, viz. theorem 2, there 1s an « >0 such that
zz:;:1 V(ma)= co . Hence, if £ is any lattice in the hyperplane x =0,
of determinant d(L£)=1/x , then, for a suitable point g=(gq,g2,...,gn_q,ao,

we have
<

j;: f(x) z 2 £(x) =0,
XEA x €N ,x _#0

This proves the theoren,

We now come to the analogues of theorems 3 and 4., It turns out
that Cassels' consilderations mentioned at the end of section 2 are well

- -

16) Though S(gq,gg,...,gn_q) may be infinite for one or more sets
(gq,gz,...,gn_q), this lower integral is defined without ambiguity,
since we have to do wilth non-negative functions only.
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suited in order to generalize theorem 3., We shall prove
Theorem 10, There exists a Jordan measurable set V in Rn’ of

infinite measure, which has the property that almost all lattices
have only finitely many points in V.

Proof. Let {fkm} be any ascending sequence of positive integers,
and let A denote the number of fractions j/hm (0 «J <'xm) which
are not of the form k/™ , g<m. Now, as Cassels proved, we can

choose the sequence {')m} in such a way that 18

(20) 3 /oy = 6(M) as M oo,

Further, for any such sequence {:hm}’ there exists a sequence of
positive numbers /(m) decreasing to zero such that » -~f(m) is
divergent, but

y7
2. 5= y(m)
m

is convergent. We now consider the set V in Rn which is the union
of the parallelepipeds

v ='%m e(n) + P (m=1,2,...),

where e<n) is the nth unit vector (0,0,...,1) and P 1s the set of
points yz(yq,yg,...,yn) with

vyl g1 (1=1,2,..0,0-7) lyn\ < y(m).

Then Vm has content 2n§V(m), and so V is of infinite content. We
shall prove that almost all lattices have only finitely many points
in V.

Let A be an arbitrary lattice, with basis {E(q),f(g),...,f(n)}.
By permuting, 1f necessary, the points i(i we may obtain that

aet (x1), %), z(n=1) (0)y 4o,

Then there are a positive number r and n-1 neighbourhoods
Nﬂ’NZ"“’Nn—ﬂ of 2(1)’E(2)’._.,§(n_1) respectively, such that
det (x(q),x(e),...,x(n'q),e(n)) £ 0 if x(1)e Ny (1=1,2,...,n=1)
and even for all systems {x(ﬂ),x(Q),,.,,x(n‘q)} with,x(i)ENi, the
parallelotope consisting of the points
X=ﬁqx(1)+ﬁex(2)+...+ﬁn_1x(n_q)+ﬂ%e(n) ( 1231471 for 1=1,2,...,n)

contains the sphere

2 2 2 2
____________ X1 +X2 +...+Xn sr .,

18) See Cassels [2] , theorem VI and lemma 7.
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Further let a be an arbitrary positive number and let H denote
the set of lattices A=X%, with basis {x(q),x(g),...,x(n)}, such
that '

x(1) ¢ N, (1=1,2,...,0-1),
det {x(q),x(g),,..,X(n'q),x(n

)
det (X(q),x(g),...,X(n—ﬂ),e(n))

= with a s f‘;2a.

Here the point x(n) may be chosen, in a unique way, such that we
have a relation of the following form:

(21) fe(n) (1)+ 0, X(2)+"'+GE—1 (=1 ,(n)

3

with 0 £ 6, <1 (i=1,2, 3 1). For fixed x() (2) ..,X(n-ﬂ)’ we
shall denote by Q=0(x ( (2) X (n 1)) the parallelotope of
points x(n , such that (21) holds and /\ belongs to H. Further, we
shall write l-:/ﬁ, so that é%—;ﬂ3§-§ .

Next, if A =XU belongs to H, we denote by Xﬁ(x) the number
of points u=(u1,u2,...,un)é'w for which

_ (1) (2) (n).
Xu = u,I X + u2 X + ... + un X € Vm

and the fraction un/%m is not of the form V/Ak, k «m, Finally, we

put -— )
!M(X) = mA;M ym(x) (M=1,2,...).

We wish to derive an estimate for /> PM(X)dX. First, we deduce,
for arbitrary /A€H, an estimate for H the components of any inte-
gral vector u with Xu € Vm' We have

uqx(1)+u x(2)y ..+un_1x(n’1)+unx(n)='%me(n)+y,

where y erf Further, Pm is contained in the sphere x12+x22+...+x 2

and so Yy QP can be written as

= (e DB 0Dy e ()

LT

3

where }’Vil <1 for i=1,2,...,n. Hence, by (21),

U1X(1)+uzx(2)+...+u x(n‘1)+unx(n)

n--1

o e

= ()m/aaﬁ-YE.ﬁ /384—!: 71)(1)+..

v (A, 38, 4+ \/“7/09 1+L’7n 1)X(n My (\A+\/ ”’Z)?X( n),
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Hence i Vn , vn

Uy = ARG Ae + 0 (=1,2,...,0-1)

\ s
o vy,
Yn = (Am+ T Vn)/g’
and so
a+1)Vn 1 - a+1)Vn .
- L‘Fé')'_"<ui “a Am * L—r_‘é)———_ (i=1,2,...,0-1),

1 » \/’1:; p 1
7w Vo ) % sg (ph )

Next, let “Xm(x) be the characteristic function of Vm' Then,

V(X)) = Z_h_.- : Xm(Xu):

u,lJUleo-’

where the asterisk indicates that the summation 1is extended only
over the integral vectors u=(u1,u2,...,un) for which the fraction
un/>\m is not of the form V/Rk, k<m (so that un¥0), For fixed u,
with un¥0, we have

R B
Q Q

(1) (2) (n)ygx(n)
< %i A (ugxt usxd =Ly x )ax
n
g n
= i;“ﬁ . 2y (m)
n
. e 2K T
Hence j/ )}nﬁx)dx(n) = > J[:{m(Xu)dx(n)
5 Uy UqsUgses-sly g o
e Y n o
< ST (A 4 2 V0 )T o0y(n),
— 'u a 'm ra
u n
n
Now, in the last sum, the number of terms is <.%¥; + égl,ﬂ”m, and
r 11 . 2a
’ =

further |- = = + O(§£§), where the constant in the O-term does
m

not depend on m. So we find
_f }ﬁ(x)dx(n)
Q

This gives

(22) [H C(X)ax = o(f;/I % V(m))

1IN

[40(a4n) (ory + 0(1) (5 0(<25)) fm).

. m m
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where the constants in the O-symbol only depends on the numbers a and
r and the contents of NW’NE""’ND~1’ but not on M.

Consequently, by the choice of the y/(m), J/ TM(X)dX is bounded
by a constant not depending on M. Let M tend to Hinfinity. Then 1t
follows that almost all lattices A=XU in H contain only finitely
many points Xu such that, for some m, Xué{Vm and un/km is not of the
form v/, k <m. Here, if for a given lattice A =x/3¢1, the number ,3
is defined by (21), then u_ satisfies | a% —u | <28, If 3 is
irrational, then a given value of un/?.m corresponds to at most a
finite number of solutions of this inequality. Further, for fixed m
and U s there are only finitely many integral vectors u=(u1,u2,...,un}
with Xu € V. We may conclude that almost all lattices /A in H have
only finitely many points in V,

By the arbitrariness of the points f(i) and the number a, the

assertion of the theorem now follows.

For the generalization of theorem 4 we need the following
Lemma. Let C be the cube lxi] < 1 (i=1,2,...,n) and let A be a

lattice which has a basis contained in C. Then each cube of the form

a,<X.2a, +n (i=1,2,...,n),

where a, are arbitrary real numbers, contains a point of A,
Proof, We use some well-known concepts from the geometry of numbers.
In particular, we consider the n successive minima of the cube C with
respect to the given lattice A, say Nq,lg,...,\n. Thus Wi is the
smallest positive number such that ‘\iC contains at least 1 linearly
independent points of /\ (i=1,2,...,n). Next, we consider the in-
homogeneous minimum of C with respect to /', say 5 ; it is the
smallest positive number such that for ecach g ERh the cube 6 C+g
contains a point of N, We can easily obtain an estimate for ¢ .
First, since C contains a basis, and so a set of n linearly
Independent points of /v, the numbers )1’—A2""’.kn are all = 1.
Secondly, by a well-known result 19),

¢ 3 %(7\1+ X2+...+?n).

Hence, G ¢ n/2, This implies the truth of the lemma.

19) See H. Minkowski, Geometrie der Zahlen, Leipzig Berlin 1910,
Kap.V, or Jarnik i
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We now prove
Theorem 11, Let V be a Lebesgue measurable set in Rn. Let E be the
eube O £x, £ (1=1,2,...,n). Let p» be a positive number <1 and
suppose that there arc infinitely many disjoint cubes g<k)+E

(g(k)e,Rn) on which V has density gz /> . Then almost all lattices
have infinitely many points in V. 4
Proof. Let C be the cube (Xi) (1-1 2,...,n), We consider the set
H of all systems of n points fx(q) (2 3,...,)((n } (or matrices with

1) (2)

columns x( ,x( ,...,x(n)) for which

det (x(q),x(e),f..,x(“)) £ 0, «(1) ¢ ¢ (i=1,2,...,n).

We use the natural measure in H considered as a set in ng-dimensional
space. Further, we arrange in some order the points u_(uq,uz,...,un)elk
denoting them in this order by u( ) (2) ... . Next, for p=1,2,

we denote by Wp the set of all X€ H for which

Xu(Q)g;V for g >p.

We first prove that the sets Wp are measurable., For fixed u,
let Z(u) be the set of all X ¢H with Xu:uqx(q)+uzx(2)+...+unx(n)€ V.
Here V is a measurable set in R and the set of the X for which Xu
is a fixed point in V 1is the 1nteroectlon of H and a certain (n -n)
dimensional plane of given direction. Hence Z(u) 1s measurable. Hence

W = /ﬁ\(H/Z(u(Q))) is measurable.
P q>p
Now suppose that {zwp 0O, for some p. We shall show that this

leads to a contradiction. For fixed x(ﬂ) (2 ) .o (n 1) let
S=8(x (1) (2) .. (n 1)) denote the set of points x( )6 W with
{ (1) ( . _}6 w . Since W, 1s measurable this set is
measurable for almost all x(q) I%) 5o 03X (n- 1). Further, since
,Adwp->o, we have 8 >0 on a set of systems {x(q),x(g),..f,x(nnq)}
of positive measure. Hence we can choose n-1 linearly independent
points x(q) z(2) ..”—(n—ﬂ)( W in such a way that

1) the subset S(X (1) ( ) ...,i(n-q)) of W has a positive

Lebesgue measure

2) the distances of the given points g(k) from the (n-1)-dimension-
al hyperplane through O, x(q) —(2) .. —(n 1)

Next, as in the proof of theorem 4, in virtue of 1), there
exist a point f(n)=(aq,a2,...,an)€'w and a postive number < with

are not bounded.
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the following properties:

a) the cube [xi-ail; J (41=1,2,...,n) is contained in W and for

each point x in this cube det(i< §(2>,...,X(n 1),x)¥0

) s} <X, 2c¢c. (1=1,2,... ~c oz
b) on each cube by sxy € cy S%q;,ng) ,0) w%ghq%l S ebycagse,satd
(i=1,2,...,n) the set 3(X‘ ’,x*°/,..., ) has density
;1—%n_np .

Let N be the lattice with basis | E("),'i(g),...,i(“)} . Consider
the cubes g(k)+nE. On each of these oﬁbes, in virtue ¢f our hypotheses,
the set V has density z,n"nf>. Further, by the lemma, each of these
cubes contalins a point of KJ Thus, for k=1,2,..., let g(k)+nE con-
tain the point Kh(l)=u41§(1)+u21§(2)+...+unlf(n), where 1 depends on
k, say l= (k). In virtue of 2), the sequence of numbers uq
(1= ¢(k); k=1,2,...) is not bounded. Hence the values l= ¢/k) also
are not bounded.

Now choose k such that 1> p and un10’ > n, If X(n) describes the
cube Ixi—a ‘é (1= 152,...,n), then the point x=u, X (1)+u21 2y

U, _ -1, 1% ) describes a,cube, whose center ll?i)in g( )+nE
and whose edges haVQ length u nl: .20 > 2n, and so covers g +nE. Conse-
quently, x describes the cube g(k>+nE if X(n) varies in some cube
Pib, 2%, 5 ¢y (i=1,2,...,n) contained in < (i=1,2,...,n).

Tn virtue of b), the set S(X (1 ) (2),..., i(n 1 has den81ty
;1~%n"nﬁ on this cube. Also, the set of points

X = u11§(1)+u21§(2)+...+un_1,l§(n"1)+unlx(n),
with x(") e p s SZ(“,SZ(E),...,SE(““”), which is contained in g(k)mE,
has density n~ /7 on g(k)+nE Further, by the definition of wp
and S(E(q),i( b e (n 1)) and the relation 1 >p, this set 1s dis-
Joint with V. But V has density zn nr’ on g(k +nE. This is a contra-
diction.

The above contradiction shows that /JszO for all p. Hence
(A" W _)=0. This means that for almost all X ¢ H there is an in-
fin?%§ o? points u € U with Xu €V. The same result can be proved, 1if
instead of C we work with «C, where o is a positive number. Hence,
for almost all systems X of n linearly independent points there 1s an
infinity of points Xu in V. Since the set of all lattices can be
identified with a certain subset of the set of these systems X in-

écluding the metric used, this proves the theorem,
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