
STICHTING

MATHEMATISCH CENTRUM
2e BOERHAAVESTRAAT 49

AMSTERDAM

AFDELING ZUIVERE WISKUNDE

An ALGOL-60 Algorithm for the verification of a
✓
combinatorial conjecture on a finite Abelian group·.

by

P. van Emde Boas

December 1969

ilU,AOTHl:H. MATHEMATISCH CiNTRUM
AMSTERDAM

z

Pun.te.d a.t: .the. Ma.the.ma.tic.al. Ce.n.bte., 49, 2e. Boe.Jtha.a.vu.tJta.a.t, Am.6.te.Jtdam.

The. Ma.the.ma.tic.al. Ce.n.bte., 6ou.n.de.d .the. 11-.th 06 Fe.bJr.ua1ty 1946, -i./2 a n.on.­
p1to 6il .{,n,o .ta.u.;ti_o n. Mm.{,n,g a.t .the. p1tomotio n. o 6 pu.Jte. ma.the.matiC-6 and ,i,,v.,
a.pp.u..c.a.tioM. I.t -i./2 .ti p0Mo1te.d by .the. Ne..theJl.i.a.n.d.ti Gove.Jtn.me.n.t .th1tou.9h .the.
Ne..theti.1.an.d.ti 01t9aMza.tion. 601t .the. Adva.n.c.e.me.n.t 06 Pu.1te. Rue.a1tc.h (Z.W.0),
by .the. Mu.n.{,upa.ldy o 6 Am6.te.1tdam, by .the. UMveJv.iily o 6 Am.6.te.Jtdam, by
.the. Fne.e. UMveJv.iily a.t Am6.te.Jtdam, a.nd by .{,Yl.dM.t/t.{.eo.

§1 Introduction.

This report describes an Algorithm which verifies the following

conjecture:

Let S be a sequence of length 18 of elements from the Abelian group

c7 $ CT such that S contains no non-empty subsequence of length.::_ 7
with sum zero. Then S consists of three distinct elements each taken

6 times:.

This conjecture is the formulation for p = 7 of a general conjecture

which c:an be formulated for all primes:

Let S ·be a sequence of length 3p - 3 of elements from C $ C such
p p

that S contains no non-empty subsequence of length .::_p with sum zero.

Then S consists of three distinct elements each taken (p-1) times.

This statement describes a condition on a prime p which we denote by

(C) • SEie [i] , § 5. It is shown there that a C $ C -sequence of length
p p

> 3p - 3 always contains a subsequence with length.::_ p and sum zero.

For explicite definitions of the used notations see [1].

The main problem in this field of research can be described in the

following way:

Let G be a finite Abelian group. There exists an unique representation

of Gin the form:

The integer A(G) = d1 + d2 + •.. +~ - k clearly is an invariant of the

group G. Another invariant A(G) is defined the following way:

A finite sequence of elements from G (G-sequence) is called primitive

if it contains no non-empty subsequence such that the sum of the

2

elements of this subsequence is zero (zero-subsequence).

We define A(G) to be the maximal length of a primitive G-sequence. If

w(G) is the order of G then we have always the inequalities:

A(G) ~:l(G) ~ w(G) - 1~

There are many groups for which A(G) = A(G), £or example all p-groups

(where w(G) = pn for some prime p) and all groups of the.type C i Ck.
a av

It was proved in 1969 that this equality is not generally true; for

example A((c2)4 i c6) ,:_ A((c2)4 i c6) + 1 (see [1]).

The condition (C) is used to prove the equality A= A for groups G of

the types:

where n is the product of powers of primes satisfying (C) and either
r s

m1 = 1, m2 €~or m1 = p, m2 = p for some prime p. These are the

types V and IX as described in [i] § 1 and [2] § 1.

Condition (C) is trivially true for p,= 2 and 3. For p = 5 verification

by hand is possible but the verification was performed also by the

computer using some preliminary form of the described ALGOL-60 program.

This program which was designed to perform the verification for both

p = 5 and p = 7 proved to be too "slow" for p = 7. Therefore a special­

ised program was written for p = 7. This latter program is discussed

in this report.

§2 contains a detailed description of the used "forbidden region"­

algorithm. §3 contains the text of the program and its output. The

lay-out of the program has been provided by the ALGOL-editor program.

See [3].

3

§2 The forbidden-region Algorithm.

In this Algorithm the group c7 $ c7 is treated like the 7 x 7-chess­

board which is given in diagram 1 below. Diagram 2 gives an enumeration

of some elements of c7 $ c7 which is used in the program.

1~] [~] [~] [~] [~] [~] [~ 29 30· 31 32

[~] GJ [~] [;] ~] [§] [~] 25 26 27 28 33 34

[~] [~] [~ [,] [t] [~ [~] 22 23 24 4 14 18

[~] GJ [~] rnJ ljJ [;] [~ 36 20 21 3 10 13 17

[~] [~] [~] ~] [~] [~] [~] 19 2 7 9 12 16

[~] CJ [~] [f] [~] CTJ [1] 35 1 5 6 8 11 15

[~] [6] [~] I~ [6] [6] [~

diagram 1 diagram 2

The Algorithm choses~ sequence S which contains no short zero-sub­

sequence (a zero-subsequence of length~ 7), If the length is 18 the

sequence is printed by OUTPUT. When the length is< 18 the Algorithm

seeks whether or not there exists a group element by which Scan be

extended. If there exists no such element the last element of Sis

discarded and replaced by the next element in the enumeration of the

group given in diagram 2 (if present). This way the program considers

all possible sequences in a lexicographical order. The sequences them­

selves are ordered in such a way that the place of an element in the

enumeration is not decreasing. This way out of any class of sequences

which can be transformed into each other by permutation only the first

in the lexicographical order is treated. After the last sequence has

been discarded the Algorithm stops.

4

We now treat the details of the algorithm and the simplifications

which are presupposed in the ALGOL-60- -program.

2a: The forbidden region.

The elements by which the program permits S to be extended are

numbered 1 upto 36 as is shown in diagram 2. The justification of this

restriction will be given in section 2b treating the starting positions.

The elements can be reconstructed from their numbers by means of the

arrays p and q which give the first resp. the second coordinate 6f the

corresponding elements; then-th element thus becomes IPt~l Lqtnjj ·

The meaning of the array r is described in 2c.

A new element A must be chosen in such a way that no short zero-sub­

sequences can be constructed from A together with elements already

contained in S. This means that the element - A should not be the sum

of a subsequence T of S of length.::_ 6.

These restrictions are implementated in the program by the creation of

a "forbidden region" which describes at each moment the situation.

This forbidden region is stored in the array k which is the one­

dimensional implementation of a three-dimensional array

K [o; 6, 0: 6, 4: 21] . The correspondence between K and k is given by

K[a,b,~ = k[ai,+ 7 •~ b +' 49 ~ c]

The array K has to be considered as the union of c7 t c7-chessboards

for c = 4 upto 21. For every j = 4 ••• 21 K[-, -, jJ describes the

restriction by the first j elements.

The integers K[x, y, jJ are determined by the minimal length v of a

subsequence of _s with sum [+:;]. For v > 6 we take K[x, y, jJ = O;

else we take K[x, y, jJ = 7 - v. If there exists no subsequence of S

with sum [+:~ we take also K[x, y, jJ = O.

5

The restriction contained in the field K[x, y, j] should be read as

follows:

"The element [;] should not be reached in less than

K[x, y, .[I steps"

or more explicitely:

If Tis a sequence which contains a subsequence of length.::_ K[x, y, jJ

with sum [;] then S u T contains a short zero-subsequence.

This means for example that K[O, O,

If K [x, y, jJ > 1 extension, of S by

the program.

for every j.

impossible and forbidden in

This property of the program is used in the elaboration of case B.

Then we sometimes put K[x,~ jJ = 1 artificialy in order to prevent

the choice of the element l:1• This trick has no influence on the

recursive definition of K[x, y, jJ in terms of K[-, -, j-1] which we

describe next.

Let S be extended by ap j..th element say[:;] then we define:

K [x, y , 3J : = max{ K [x, y , j-1] , K [v , w , j- -0 - 1 }

where v = x + a1 and w = y + a2 (mod 7).

The program must perform addition modulo 7. This addition is stored in

the array o where we have o [a + 7 * fil = a + b (mod 7) for O .::_ a,b .::_ 6.

See START.

2b: The starting position.

By pure mathematical reasoning much information on the possible

sequences Scan be gathered. This knowledge is used to simplify the

Algorithm.

6

A line in CT I CT is a ~ori .trivial ,cyclic subgroup -~f :.c1 ,-i c1 ... There are

exactly 8 lines in CT$ CT.

A "base" for CT$ CT can be chosen by first chosing two distinct lines

and next chosing in each of these base lines a non zero element. These

two elements now may be represented by [~] and [~] •

The most important simplification presupposed in the program is the

assumption that nearly always the elements in S taken from the base

lines are equal. To see why this assumption is correct we consider

first only CT-sequences.

Two CT-sequences are considered equivalent if they can be transformed

in each other by premutation of the elements and/or multiplication

(mod T) of all elements by a fixed integer k (1 ~ k ~ 6) • For example

the sequences (1,3,5) and (1,2,3) are equivalent by multiplication by

3,

Below in table 1 we give representatives T of all equivalence classes

of primitive CT-sequences. Next to them we write (if possible) another

sequence T' of the same length and consisting of equal elements. For

T' the following holds:

"If a is the sum of a subsequence U' c T' then a is also the sum of a

subsequence Uc T. Furthermore the length of such a sequence U is at

most the length of U'."

Let S be a sequence containing a subsequence U of type T of elements

within our line. If we replace U by the sequence U' consisting of

equal elements of the corresponding type T' we get a new sequence S'.

Our claim is that if S' contains a short zero-subsequence then S

contains a short zero-subsequence also. This can be derived as follows:

Let V' be a short zero-subsequence of S' and put W' = V' n U'. Now

there exist a subsequence W c U such that the sum of Wis equal to the

sum .of W' and such that the length of Wis at most the length of W'.

Now V = (V', W') v W is a short zero-subsequence of S.

7

Table 1. Types of primitive c7-seguences.

· Type T Type T'

length 2 1

2

3

4 (eg_. 2) 4 4

5 (eg_. 3)

length 3 1

2 1

1 3 1

1 4 4 4 4

2 2 (eg_. 1 4) 1 1 1

1 2 3 1

3 5 (eg_. 2 3) 5 5 5
1 4 4 (eg_. 1 2) 4 4 4

4 5 (eg_. 2 3) 4 4 4

5 5 (eg_. 1 1 3) 5 5 5

length 4

2 1

3

1 .' 2 2 1
\,
-.

4 4 (eg_. 1 1 2 2) 4 4 4 4

length 5 1 1

2

length 6 1

8

This makes it possible to perform the algorithm in two steps. First we

search for the sequences~s1 containing no short zero-subsequences with

the property that all subsequences in S1 of elements within one line

are of one of the types T'. Afterwards we search for each of the pro­

duced sequences S', from which sequences S S'.could be derived.

The latter step will be found superfluous as all the accepted sequences

S' will prove to ~onsist of three elements each taken six times. As

the only primitive c7-sequences of length 6 consist of a generator of

c7 taken 6 times we conclude that S' can not be derived from a sequence

S :/: S'.

From table 1 we see that each collection of elements within one line

which forms a primitive sequence of a type T has a corresponding

sequence of type T' consisting of equal elements with only one exception.

This exception is the case that Tis of type (1,3) or (1,5), i.e. S

contains exactly two elements within a line say x and y which satisfy

a relation x = y + y + y or y = x + x + x.

Now let S be a c7 t c7-sequence of length 18. As c7 t c7 contains 8
lines it follows that one of the following cases is present:

CASE A1: There are two lines each containing at least three elements.

We may assume (as indicated above) that these elements are

equal. We chose them as base elements and we conclude that
1 1 0 0 S contains a subsequence (0) (0) (1) (1).

CASE A2: There exists one line containing at least 4 elements and

there exists another line containing two elements in a

situation of the type 1 1, 1 2 or 1 4.

Again we may replace this sequence by a sequence in which

these elements are equal and again we have a subsequence
1 1 0 0

(0) (0) (,) (,).

9

CASE B: There exists.one line containing at least 4 elements and all

other lines contain either one element or two elements in a

situation of the type 1 3 or 1 5.

By a suitable choice of a base we have a subsequence
1 1 1 1 0 0

(0) (0) (0) (0) {1) (3).
Further in the algorithm the choice of an element x as a

member of S makes it possible to exclude as possible candidates

for next choices the elements x, 2x and 4x.

CASE A1 and CASE A2 give the same starting position. CASE B gives

another starting position but also a restriction by which the algorithm

can be simplified.

In diagram 3 and 4 we design the starting positions as they are defined

explicitely by the program at the places labeled START resp. CASE B.

Integers outside the square diagrams indicate the number of the fields

in the array k where the information is stored.

6 0 0 0 0 4 5 238 244 6 0 0 2. 3. 4 5 336 342

5 0 0 0 0 3 4 231 237 0 0 0 0 0 0 0 329 335

0 0 0 0 0 0 0 224 230 6 0 0 2 3 4 5 322 328

0 0 0 0 0 0 0 217 223 5 0 0 1 2 3 4 315 321

0 0 0 0 0 0 0 210 216 0 0 0 0 0 0 0 308 314

0 0 0 0 0 0 0 203 209 0 0 0 0 0 0 0 301 307

7 0 0 0 0 5 6 196 202 7 0 0 3 4 5 6 294 300

Diagram 3. CASE A Diagram 4. CASE B

10

2c: The choice of the next element.

The algorithm considers the sequences in a lexicographical order.

Mathematical reasoning makes it possible to discard an important

collection of sequences as being equivalent to some sequence already

considered. The leading principles are distinct in CASE A and CASE B.

CASE A.

In this case the elements 33 and 34 are impossible as they are already

in the forbidden region at the start of the algorithm.

There is symmetry with respect to mirroring the main diagonal (i.e.

interchanging of the two base elements). The elements are numbered in

a way that 1 - 4 are on

mirror images: if 5 ~ j

the main diagonal and 5 - 18 and 19

~ 18 and [~] + j then [!] + j + 14.

- 32 are

This makes it very easy to transform a seq_uence Sin its mirror image

S. In order to prevent the work of treating both Sand S the algorithm

contains a procedure, defined by the ALGOL text after the label KAPKAP

which rejec:ts a priori, if they are distinct, the sequence with the

largest munber of elements in 19 - 32.

The r-value of an element (array r) describes whether or not an element

is on the main diagonal (r=O), on the right side (r=1) or on the left

side (r=-1} of the main diagonal. The variable sim counts the sum of

the r-values of the elements in S. The r-value of the candidate new

element is stored in the variable h.

KAPKAP performs the following steps:

If sim + h > 0 the sequence is accepted for further tests.

If sim + h < 0 the sequence Sis rejected.

We can reject this situation as we know that the mirror image will be

accepted if it shows up. We reject at the same time all possible

extensions which are justified as these extensions should have sim-

11

values< 0 anyhow, for all the elements by which extension is possible.

are in 19 - 36.

If sim + h = 0 there are two possibilities:

i) All elements are from 1 - 4. Now the sequence is accepted

(if y = j + 1 then goto TEST).

ii)There are as many elements from 5 - 18 as from 19 - 32 in S • . ,
Now Sis compared with its mirror image S lexicographically; Sis

~ N

accepted if S precedes Sand Sis rejected if S precedes S.

In this comparison the markers y and z are used; y marks the first

element in S from 5 - 18 and z marks the first element in S from 19 - 32.

If this comparison gives no result on the old elements of Salone the
• • • N • new candidate element is given the lowest value such that Sis not

preceding S.

The markers y and z are changed if needed. If S contains no elements

from 5 - 18 y is made length(S)+ 1. Analoguous z = length (S) + 1 if

S contains no element from 19 - 32. (See the statements after NEXT,

CONTINUE and COUNT.)

CASE B~
In this case we exclude all repetitions of elements as the corresponding

sequences can be supposed to be treated already in CASE A. After having

chosen the element x in S the elements x + x and x + x + x + x can be

excluded also (see §2b).

This restriction explains the differences between the statements in

CASE A and CASE B.

NEXT B differs from NEXT by the fact that the element is at least the

successor of the latest element in S. This way repetitions become

impossible.

In TEST B there is a statement which has the effect of excluding x + x

and x + x + x + x as possible elements by putting them artificially in

the forbidden region; the corresponding field in the array K is given

12

value 1 if the value was zero, else the value remains unchanged.

2d: The expansion of S by base elements.

When all the possible extensions of S by non-base elements have been

considered and discarded the algorithm tests whether or not the sequence

Scan be extended by base elements up to length 18.

This is performed by the statements after the labels COUNT and

EXPANSION.

As explained in §2b we only need to consider expansion by base elements

[~] and [~.
The results of the program demonstrate that all accepted sequences

contain each base element six times, so expansion by distinct base

elements is useless.

In CASE B the expansion procedure can be simplified as extension by

the element [~] produces sequences already treated in CASE A.

The number of elements [~] and [~ by which S can be extended is at

most 8 resp. 2 in CASE A resp.CASE B. We therefore skip the expansion

procedure if j = length (S) < 10 resp. 16.

The algorithm now performs the following steps:

1°) If continuing the algorithm should mean that the :fourth~e,leJ.D.ent, of

the sequence should be changed the treating of CASE A is considered

to be completed. The program then starts again at CASE B. Similar

the program stops the execution of CASE B if the sixtp element

should be changed.

2°) If there are still elements in S which may be changed the program

transforms the latest "fixed" element from S into a "variable"

element of S. The values of sim, y and z are adapted.

3°) If the length of the remaining sequence together with the variable

element is< 10 (16) the next element is chosen. (See CONTINUE.)

If not the expansion procedure is .gtarted.

13

4°) The value of Tis increased by 1. (T counts the number of sequences

tested by EXPANSION.)

50) b1 becomes the number of elements [6] by which s can be extended.

60) b2 becomes the number of

(Label A.)

elements [~] by which s can be es tended.

7°) If j + b1 + b2 < 18 the length 18 cannot be reached and Sis

rejected. (Label B.)

8°) If j + b1 > 18 or j + b2 ~ 18 extension by elements [~] or [~]

alone is sufficient. The resulting sequences are printed.

If the field K[1, 1 jJ contains a value~ 2 the expansion by

elements [~] and [~] simultaneously is impossible and the sequence

is rejected. (label D.)

(This statement was introduced as the result of a test program

showed that for nearly all sequences to be treated by EXPANSION

this field contained a value~ 2.)

The procedures .MENE and TEKEL are mirror images. The most efficient

one of the two is chosen. They test by how many elements [6] Scan

be extended after having been extended by f = 1, 2, ••• , b2 elements

[~] and vice V'ersa. This number is stored in the array-field t [f].

Every time the length 18 is realised the sequence is printed.

11°) The sequence is discarded (goto CONTINUE).

In CASE B only the steps 1°), 2°), 3°), 5°) and 8°) are performed.

2e: The structure of the algorithm.

Up to now the details of the program have been described. Next we

indicate the structure of the program "in the large".

The procedure OUTPUT.

OUTPUT prints an accepted sequence. The following lines are given:

14

A line containing two integers giving the number of times the base

elements [~] resp. [~] are contained in S. (In CASE B this second

number is zero.)

2°) A line containing some pars of integers. These pairs denote the

remaining non-base elements of S. (In CASE B the elements [~] and

[~] are printed also.)

3°) An empty line.

START: The starting position of CASE A is defined.

NEXT: Length Sis increaed by one. The new candidate element becomes

e4ual to the latest element in S.

KAPKAP: The se4uence is rejected if symmetry-reasoning demands it.

(See §2c)

TEST: If the candidate element is not in the forbidden region it is

accepted as a fixed member of S. The forbidden region is

redefined at the level j. A new element can be chosen (go to

NEXT)

else we ari ve at

CONTINUE: The candidate element is replaced by the next one. Again

symmetry has to be considered (go to KA.PKAP).

If there is no next element we arive at

COUNT: If we are ready CASE Bis started, else the se4uence is shortened

and we continue the program at EXPANSION resp. CONTINUE depending

on the length of the se4uence.

EXPANSION: See §2d.

CASE B: The starting position of CASE Bis defined.

NEXT B, TEST B, CONTINUE B, COUNT Band EXPANSION B perform the same

function as the corresponding parts of the program in CASE A.

15

Function of the variables.

The arrays Sand n contain the elements of the sequence S. S contains

the accepted elements but n contains also the candidate element.

a1 and a2 become the coordinates of a candidate new element and are

used for calculations.

The variables m and mm are used to indicate places in the array k that

should have to be calculated each time again. c, 1 and x are used to

store results of incomplete calculations which should have to be stored

in arrays else.

j is the length of the sequence S together with the new element and i

is the length of the accepted elements from S. We always have i = j - 1.

Their values are increased by at NEXT and decreased by 1 at COUNT.

e, f, g are controled variables in for-statements.

The other variables have been explained elsewhere.

The output procedures EXIT, NLCR,._A.~SFIXT, SPACE and .PRINTEXT- a.ve.:.ma;chine­

code-written procedures of the MC-ALGOL 60 system for the EL X-8

computer which are available without declarations. See [lu .

16

begin connnent Verification of condition (C) for p=7., revised
program ,free of symmetry-repeatments ,with one-dimensional
arrays testing both cases.PEVEB 17-7-69;
integer array k[196:1077], s., n[4:21]., o[0:48]., t[0:6]., p, q.,
r[1 : 36];
integer a1, a2, b1, b2, c, e, f 1 g, h, i, j, 1., m, mm, sim, x,
y, z, T;

procedure OUTPUT(aa., bb, cc); integer aa, bb, cc;
begin NLCR; ABSFI:lcr'(2, 0 1 2 + bb); SPACE(4);

ABSFIXT(2, 0 1 2 + cc); NLCR;
for g:= 5 step 1 until aa do
begin ABSFI:lcr'(2, 0 1 p[S[g]TJ; ABSFIXT(2., O, q[S[g]]);

SPACE(4)
end;
NLCR;

end;

START: for f:= 0 step 1 until 6 do
beg!ii nnn:= 7><f; -

fore:= 0 step 1 until 6 do
"begin o[e +mm]:= if e + T< 7 then e + ·f else e + f - 7;

k[e + mm+ 196]-;; 0 -
end

enc!;
k[T96]:= 7; k[238]:= k[202]:= 6; k[231]:= k[244]:= k[201]:= 5;
k[243]:= k[237]:= 4; k[236]:= 3; s[4]:= 1; sim:= o; j:= 4;
z:= y:= 5; T:= 0;
fore:= 1, 5, 6, 8, 11, 15 do q[e]:= 1;
fore:= 2, 7, 9, 12, 16., 19do q[e]:= 2;
fore:= 3, 10, 13., 17, 20, 21do q[e]:= 3;
fore:= 4., 14., 18., 22, 23, 24 do q[e]:= 4;
fore:= 1 step 1 until 4 do -
"Eegin q[e +"21+]:= 5; q[e +28]:= 6; p[e]:= e; r[e]:= 0 end;
fore:= 5 step 1 until 18 do
oegin p[e]~[e + 14]; r[eT:= 1; p[e + 14]:= q[e];

r[e + 14]: = - 1
end;
n[1+] := 1;

NE:lcr': i:= j; j:= j + 1; n[j]:= x:= n[i]; h:= r[x];
y:= y + 1 - abs(h); z:= z + sign(h + 1);

KAPKAP: if sim + h < 0 then goto COUNT; if sim + h = 0 then
begTri if y = j + 1'""'tne'ngoto TEST; c:= z - y;

for e: = y step 1 until~ 2 do
begin if SleT"> s'[e"+"'"" c] - 1 4 then goto COUNT;

if s[e] + 14 < S[e + c] the~ -
'begin sim:= O; goto TEST end

end; -- -
ifS[z - 1] + 14 > x ~ n[j]:= x:= S[z - 1] + 14; sim:= O;
goto TEST

en~
sim:= sim + h;

TEST: nnn:= 49 Xi; if k[p[x] + 7 X q[x] +mm]= 0 then
begin S[j]:= x;a1:= p[x]; a2:= q[x];

17

fore:= 0 step 1 until 6 do
'begin c:= o[ai + 7 X e]; m:= e + mm - 7;

for f:= 0 step 1 until 6 do
oegin g:= k["c+ 7 x o[a2 +7 x f] + mm] - 1; m:= m + 7;

l:= k[m]; k[m + 49]:= if g > 1 then g else 1
end - --

end~
got,o NE]T

en~
CONTINUE: x:= n[j]:= n[j] + 1; if x = 33 then goto COUNT;

sim:= sim - r[x - 1]; h:= rfx]; if x--;;-"'5 'Uieri y:= j;
if x = 19 then z:= j; goto KAPKAP; -

COUNT: if i = 4 then -
begI'n NLCR; NLCR; PRINTrEXT(

{ these are all sequences of lenght 18 without short zerosubsequences CASE A*
) ; NLCR; PRINTTEXT(
{ number of sequences checked by EXPANSION.:!-);
ABSFIXT(6, 0 1 T); goto CASEB

end; -
tty= j + 1 then y:= j; if z = j + 1 then z:= j;
sim:= 2 x z --r=. j; j:= T- 1; i:= i =-r;
if j < 10 then goto CONTINUE; T:= T + 1;

EXP.ANfilON: m:= jx4r;-
fore:= 1 step 1 until 6 do
begin if k[m + e]~then

beginb1 := e - 1; goto A end
else b1 := e - -

en~
A: for f:= 1 step 1 until 6 do

oe'g'in if k[m + 7 x f] > f-:rhen
beginb2:= f - 1; goto Benci
else b2:= f - -

en~
B: tt j + b 1 + b2 < 1 8 then goto CONTINUE;

if j + b 1 > 1 8 then ~ b 1 1 0) ;
I1 j + b2 > 1 8 'Uieri OUTPUI'(j, 0, b2);

D: 11 k[m + 8J > 2 then goto CONTINUE;
if b1 < b2 then goto NENE else goto TEKEL;

MENE:-:r[o] :-;; c:=""'152; - - -
fore:= 1 step 1 until b1 do
oe'g'in for f:= 1 step 1 untIT 6 do

beginif k[m +""'e+ 7 X f] > e+ f then
begin t(e] := f - 1; goto E end -
else t[e]:= f -- -

end~
E:~:= if t[e] < c then t[e] else c;

if j + e + c > 1 8 then OUTPUT (j , e, c) ;
end; - --
goto CONTINUE;

TEKEL:t'['O] := c:= b1;
for f:= 1 step 1 until 6 do
begin mm:= 7 x f;

fore:= 1 step 1 until 6 do
begin if k(m + e + mm] > e+ f then

begTri t[f] := e - 1; goto F end

else t[f] := e
end~

18

F:c:= if t[f] < c then t[f] else c;
if j + c + f > 1 8 then OUTPUT""(J; c I f) ;

end; - -
goto CONTINUE;

CASEB:q[33]:= q[34]:= p[33]:= 5; p[34]:= 6; p[35]:= p[36]:= 0;
q[35]:= 1; q[36]:= 3; S[5]:= 35; S[6]:= 36;
fore:= 294 step 1 until 342 do k[e]:= O;
k[300]:= k[3~= k[336]:= 6;-
k[299]:= k[315]:= k[328]:= k[342]:= 5;
k[298]:= k[321]:= k[327]:= k[341]:= 4;
k[297]:= k[320]:= k[326]:= k[340]:= 3;
k[319]:= k[325]:= k[339]:= 2; k[318]:= 1; k[294]:= 7; n[6]:= o;
j:= 6; T:= O;

NEXTB: i:= j; j:= j + 1; n[j]:= x:= n[i] + 1;
if x = 35 then goto COUNTB;

TESTB:mm:= 49 X 1; if k[p[x] + 7 X q[x] + mm] = 0 then
begin S[j]:= x;a1:= p(x]; a.2:= q[x];

fore:= 0 step 1 until 6 do
begin c:= o[a1 + 7 X e]; m:= e + mm - 7;

for f:= 0 step 1 until 6 do
begin g:= k[c+ 7 X o[a2 +7 X f] + mm] - 1; m:= m + 7;

l:= k[m]; k[m + 49]:= if g > 1 then g else 1
end - ---

end;
fore:= 1, 2 do
oegin a1:= o[al + 7 x a1]; a2:= o[a2 + 7 x a2];

m:= mm+ 49 + a1 + 7 x a2;
k[m]:= if k[m] = O then 1 ~ k[m];

end;
goto NEXTB

en~
CONTIN'O'EB: x:= n[j]:= n[j] + 1; 2;! x 4 35 ~ goto TESTB;
COUNTB: if i = 6 then

begin NLCR; NLCR; PRINTTEXT(
7case B completed. Number of sequences type B found i);

ABSFIXT(6, O, T); if T = 0 then
begin NLCR; PRINTTEXT(-

{ there are no sequences of type B. condition (C) is verified .i
) ; EXIT

end
end;
j:= j - 1; i:= i - 1; if j < 16 then goto CONTINUEB;

EXPANSIONB: m:= j X 49; - --
fore:= 1 step 1 until 6 do
begin if k[m + e]"'>e'°then

beginb1 := e - 1; goto'EB end
else bl:= e - -

en~
EB: if j + b1 < 18 then goto CONTINUEB; T:= T + 1;

OUTPUT (j , b 1 + 2 , - 2Jj goto CONTINUEB;
end

19

Output of the program.

6 6

1 1 1 1 1 1

6 6

2 1 2 2 2 2 1 2 1

6 6

3 3 3 3 1 3 1 3

6 6

4 4 4 4 1 4 4 1

6 6

4 3 4 3 4 3 4 3 4 3 4 3

6 6

5 5 5 5 1 5 5 1

6 6

6 6 6 6 6 6

these are all sequences of length 18 without short zero-subsequences

CASE A.

Number of sequences checked by EXPANSION 4705.

CASE B completed. Number of sequences type B found 0.

The_re .. ave Il<D seq\iences'~lof::t§-pe B.;)eondi:t:ion'; ~C) is v:er"ifi~d.

20

The program was executed 18th July 1969 by the EL-X-8 computer of the

Mathematical Centre in Amsterdam. The execution took 123 mh form which

120 mh was needed for CASE A alone.

In April 196'8 a test program performing all the steps in the program

up to Label D and printing the accepted sequences together with the

corresponding "chessboard"-diagrams describing the forbidden region

at the level of the length of S was elaborated. Its results seemed to

give already a verification of condition (C) for p = 7.
On resuming the research in July 1969 it was found that the "impossible"

case B was not covered by this preliminary program and the presented

program was written in order to fill this gap.

References.

[1] P. van Emde Boas

[2] P.C. Baayen,

P. van Emde Boas and

D. Kruyswijk

[3] H.L. Oudshoorn,

H.N. Glorie and

G.C.J.M. Nogarede

[4] F.E.J. Kruzeman Aretz

21

A combinatorial problem on finite

Abelian groups II.

Math. Centre Report ZW-1969-OO7.

A combinatorial problem on finite

Abelian groups III.

Math. Centre Report zw-1969-OO8.

ALGOL editor. A program for

standardizing program lay-out.

Math. Centre Report MR 98 (Sept.1968).

Het MC-ALGOL 6O-systeem voor de X-8.

Math. Centre Report MR 81 (Dutch).

