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1. The regretted Polish mathematician S. Lubelski, who met his
death in world war I1I, left to his colleague J. G. van der Corput a manu-
seript titled: Zahlentheorie. In the years after the war this manuseript,
which contained a preliminary version of a book on theory of numbers,
was studied in the Mathematical Centre at Amsterdam. Although in the
meantime a large number of books and memoirs on the subject had
appeared it turned out that the manuseript contained several new results.
After having been placed in the scope of the classical and modern litera-
ture, these results are worth to be published separately.

In the present note the first of these results are given.

As is well known Hermite has proved the following theorem:

If f(®y,y ..., 3,) 18 a positive quadratic form with determinant D and
M (f) is the smallest positive value of f for integral values of the variables,

n
we have M (f) < (H™ V2V D.

A gimple proof is found in Cassels [1]. Later considerably sharper
results were derived, a.o. by Minkowski and Blichfeldt (see Koksma
[2]). In the special case of integral positive quadratic forms this theorem
can be used to prove, that the number of classes of equivalent forms with
a given determinant is finite.

The analogous problem was also treated for other types of quadratic
forms. Mordell [3] and Oppenheim [4] derived analogous results for
indefinite quadratic forms. Here also must be mentioned the critical
note by Landherr [7] and the treatment by Siegel [8], who uses
Hermite’s definition of a reduced indefinite form. Further, Oppen-
heim [5,6] and Siegel [9] treated the analogous problem for integral
Hermitian forms.
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Here quadratic forms will be considered, whose coefficients are
elements of a Buclidean ring, which is also the domain of values for the
variables. In particular those Buclidean rings will be treated which consigt
of the integers of an imaginary quadratic number field.

The main results are given by theorems 1 and 2. In the rational case,
theorem 1, 3° just gives Hermite’s estimate. It may be remarked that
theorem 1 is somewhat different from the original result in Lubelski’s
manuseript, in so far as he restricted himself to the statements 1° and 3°.

Several indications were given by C. G. Lekkerkerker.

2. In a BEuclidean ring I we consider quadratic forms in » variables:

n
flaeyy ..o, a,) = Zaijm,-wj with  a; = a;;.
1, f=1
(I is the set of possible values for the variables and also the coefficients a;,
are elements of I.)
The diseriminant of f is defined as the determinant of the coeffi-
cients: det(ay).
By a linear transformation

n
&y = 2 Ciy Yy

fﬂl
the form f(s,,...,,) is transformed into a form
n
F(y,_, sy yn) = Z bii?/if'/:"
By f=1
The inverse transformation exists (in I), if and only if det(ey) is
a unit of I. Then f and F represent the same elements of I. The forms are
called (properly) equivalent in the case, that the transformation has
determinant I (the element ‘“‘one” of I). Equivalence is reflexive, symme-
tric and transitive. We have

“ (Omt) = (Cmi) (@i5) () With  €py = Cim;
det (byy) = det(ay;)(det(c;))2.

It follows, that equivalent forms have the same discriminant. We
say, that f represents an element of I properly, when this element occurs
as & value of f with relatively prime z,,...,»,. Equivalent forms also
represent the same elements properly.

LemMa 1. If in a Buclidean ring the quadratic form f represents the

element a properly, there exisis a form, which is equivalent to f and whose
first coefficient is a.
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Proof. a is represented properly by f, so we have a = f(u,, ..., u,)
with relatively prime u,, ..., #,. According to the theorem of the elemen-

@y ...
tary divisors (1), in a Buclidean ring for a given matrix {. . . . . . we have
(‘nm
Pry - Ay .o Gyy--- & 0
------------------ R - . v
cor Pun oo Ay cos Goom 0 .
where det(py) and det(g;;) are units and ¢, is & g.c.d. of the elements a;.
U,
Applying this to the matrix { : | we have m = 1 and we find
Uy, |
£
u
Pu 1 0
...... o le=1-
e pﬂf& un \ (.’

Here det(p;;) and ¢ are units; ¢ is also a unit, as ¢ is a g.c.d. of uy, ..., u,
and u,, ..., u, are relatively prime. It is easy to prove that we can make
det(pﬁ) = =g == 1.

"

Now let y; = 3 pya; transform f(2y,...,%,) into F(y,,..., ¥s).

Then f and F are quuiva,lent and  f(uy, ..., u,) = F(I1,0,...,0), so
F(1,0,...,0) = a.

LEMMA 2. The integers of an imaginary quadratic number field
R(l/:;l) form a Euclidean ring for —d = —1, —2, =3, —17, —11 (and
in no other case).

In these Buclidean rings for given a and p with £ 5= 0 there always
evists a number &, so that |a— fE&|2 < v|p|2, where

v=1% for —d= —1, v=7: for —d= -7,
v =3 for —d= -2, v=2> for —d= —11.

1
v=14% for —d= -3,

These values of v cannot be replaced by smaller ones.

Remarks. 1. For d == 3 (mod4) we have v = }(1+d), ford = 4k—1
we have v = k?/(4k—1). .

2. For the Euclidean ring of the rational integers the same holds
with v = }.

(*) See van der Waerden, Moderne algebra, § 108.
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3. The five imaginary quadratic number fields, whose integers form
a Euclidean ring, were first mentioned by Dickson. The smallest possible
values of v are due to Heinhold [10].

3. In the following we restrict the Euclidean rings to those of
lemma 2 and the ring of the rational integers; as a further restriction we
only consider forms with discriminant 4 0. Now we introduce the notion
of a reduced form (standard form). For n = 1 every form is a reduced one;
further we define (by induction): a reduced form f(x,,...,s,) =

n
= > a;®;®; is a form, which has the following properties:

1’7.=1 —
1. jayl < \aule for all © > 1, where v is the number v of lemma 2
and v = } for the ring of the rational integers.
2. There is no equivalent form, for which |a,;| s smaller and positive.

n
3. F@ay ey @) = @y f(@y, ooy @) — (X @y @) is a reduced form.
1=1

THEOREM 1. 1° Every class of equivalent forms contains a reduced form.
)
2° For a reduced form in n variables we have

. P —
lay,] < w2 '/ID|7

where D is the discriminant and w = max((1—v)7}, 4).

3" If a form in n variables is reduced and is not a zero form, we have

] < (L—0)"@=D2Y[D].

(A zero form is a form, which has the value 0 for a set of values of the
variables, which are not all 0.)

Proof. 1° We give a proof by induction. For n = 1 there is nothing
to be proved. Now we suppose that the statement holds for n—1 varia-
bles, and prove it for n variables.

Let a be a number with smallest possible positive absolute value,
represented properly by a given class of equivalent forms in »n variables.
According to lemma 1 this class contains a form

n

flay, ...y 2,) = Zai]-w,-wj, with a4 = a.

i,7=1

This form satisfies the second condition for reduced forms. Now let

Hagy ooy @) = @y f@1, “-’%)_(Zna“mi)z

T=1
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and let 1 be the discriminant of ;. By the transformation (ag), with
a;; = o0y for i >1, the form &} }(r,,...,r,) with discriminant 4 is
transformed into the form a,,f with discriminant a}, ). As the transfor-
mation has determinant a,, we have al, 4 = al,D. So .1 0. Then
we may apply the induction hypothesis to f; this says, that }(z,, ..., 2,)
I8 equivalent to a reduced form F(y,,...,y,). Let (dif), y.a, . » be
the corresponding transformation; it has determinant 1. Let digy ooy dyy
be numbers of the Euclidean ring with
o
f“udu ‘"§“‘Z“udiy
=

s lapVe  for o= 2,..., n;

i

such numbers exist according to lemma 2. Now we put d,, = 1, d;; = 0
for i = 2,..., n and apply the transformation (dy) to f(=,, ..., x,); this
transformation also has determinant 1. We get a form F(y,, ..., ¥,)

7

= 3 byyy;- Now we have
] i

L
1]

)
b,‘j == L akldkidl,H where d” e 1, dﬂl = ..o=ly = 0.
k, 11

For i =1 this gives b; = Y aydy;; from this it follows again, that
Teal

i s
by =a,,. Now for j=2,...,n we have |lZa,,d,,§ <5, {a,u]l/v, 80
a b

[by;| < |byy|Vo. This means, that ¥ satisfies the first condition for reduced
forms.
By the transformation, the linear form } ay; is transformed

Faml
i "
into Y a;dyy; = 3Ybyy;. As the transformation also transforms f into
A =1
F, we get

"

F(Yay -y Yn) = b0 F 91y ooey yn)“‘(}}jbuyf)'-
=1

Here F is reduced, so F satisfies the third condition for reduced forms.

Now F satisfies the three conditions for reduced forms, hence F
is a reduced form.

2° For n = 1 the statement is trivial.

Now at first we shall prove it for n == 2. So we consider a reduced
form f(x,, ;) = a2+ 2a,,0,0,+ay,03. We distinguish two ocases:
agy #= 0 and ayy = 0.
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In the first case |a,,| << |y, 80
[@11]2 < (@17 09| < |0411“22“a'§zl‘|‘ |aga]? < |a11“22—af§2t+’0\“n‘2
= |D|+vlayl?,

hence (1—w)|a,,|?2 < |D|, and so

ol < (1—0)"2V|D| < w'V[D].

In the second case f(x,, ®,) = ®,(ay;2;+ 2a,,%,). In the Euclidean
ring there is a number u%, such that

0 <lay+2a0u] < 2(a,f, 80 0 <[f(1,u)] < 2]ay.
Then
layy| < 2lay,| = 47V |D| < w'*V |D|.

Now the proof for n > 2; we suppose that the statement is true
for a smaller number of variables than n. We consider the reduced form

n
f@y, ooy @) = 3 ay@;2;. Then

1,7=1

F@ay ooy @p) = @yy f(@y ey @) — (Znaumi)z

t==1

is also a reduced form; its first coefficient is ay,a,,— ai, and its diseri-
minant is aj{?D (see proof 1°). So according to the induction hypothesis

PO
2 —9)/2 ;)
[@yy @ap — @15 < w3 l/lan]” |D].

It is easy to see, that the form a,, @] 2a,,%,@,+ ay,a5, whose discrimi-
nant is a;;a,,— aly, is also a reduced form. So

@y, | < w'? '/Ia'nazz“ ags| .

Then
n-—1 e
lay4]® < ’wlauazz‘—“?zl <w'® oy |au|""2|D|,
which gives
|y |" < W VD],
§o that

[ [ —
ay,] < w™ D2V (D],

3° For a reduced form in » variables, which is not a zero form, we find
in the same way:

lay] < (1—v)~=D2Y|D].
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Remark. A class of equivalent quadratic forms in n variables with

discriminant D always contains a form with |a,,| < (1 —-v) "“”"%D\.

If the forms of the class are zero forms, there is a form with a,; = 0
and for this it is true (but this form is not a reduced form in the sense of
our definition).

As an important consequence of theorem 1 we have

THEOREM 2. The number of classes of equivalent quadratic forms in n
variables with & given discriminant is finite.

Proof. According to theorem 1 every class contains a reduced form;
8o it is sufficient to prove, that the number of reduced forms in n varia-
bles with a given discriminant is finite. We prove this by induction. For
n = 1 it is true. (For » = 1 and a given D there is one form: Dzj.) Now

»

let f(@;,...,2,) = D ayxx; be a reduced form with discriminant D.

i T=1

It follows from
[ Jpre—
lay| < @™ VRYID], ] <laplVo o (i =2,...,m),

that for a given D there is only a finite number of possible sets a,;, ..., a,-
Next,

Ay f(ey, .oy @) = (Zn‘au‘*”’i)z + 1@y -y @),

i=1

where f is again a reduced form. For given D and a,, the discriminant
of f is determined (a};*D), so there is only a finite number of possibilities
for f (induction hypothesis).

Then for a given D there is only a finite number of possibilities for f.
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