
Ru.YEN, P. C. and G. HELMBERG 

Math. Annalen 161, 255--278 (1965) 

On Families of Equi-Uniformly Distributed 
Sequences in Compact Spaces 

By 

P. C. BAA.YEN in Amsterdam and G. HELMBERG in Eindhoven 

1. Introduction and preliminaries 

Let X be a compact Hausdorff space, let µ be a regular normed Borel 
measure on X, and let O(X) be the Banach space (under uniform norm 
11/11 = sup If (x)I) of all complex-valued continuous functions f on X. Identifying 

zEX 
measure and corresponding integral on O (X) we shall use the notation µ(/) 
= J f(x) dµ(x). A family e = {(x,,,n):=l: a ES} of sequences in Xis called 

X 

a family of equi-µ-uniformly distributed sequeMe,S (in German: ,,gleichma{Jig µ
gleichverteilt") if for every f E O (X) and for every real number e > 0 there 
exists an integer N (f, e), indepedent of a, such that 

(1) 

and for all a ES (HLAWKA. (10]). 
The question arises as to the possible size of such a family e, both from 

the topological and from the measure-theoretic point of view (section 4). 
This question may he modified by restricting attention to sequences of a 
special type only, such as the tail sequences of a given µ-uniformly distributed 
sequence (section 5, 6) or the sequences formed by the successive powers of 
a generator in a compact monothetic group (section 2, 3). In all of these modi
fications, a common feature of the answers to the above mentioned questions 
is the following: such a family e will in general be in some (topological) sense 
nowhere dense, it may he enlarged to one which is in some (topological) 
sense closed, and if the set of all sequences in question in some natural sense 
is given the measure 1, then e may have measure abitrary close to 1. 

Before taking up the subject in detail we mention two facts which we shall 
have to use. First, in order to show that the sequences of a certain family e 
are equi-µ-uniformly distributed it obviously suffices to establish (1) for the 
functions f of a fixed set F C O (X) having the property that finite complex 
linear combinations of elements of F are uniformly dense in O(X) ([10] § 2, 
(12] Satz 4). This fact will in the following be refered to as Weyl's criterion. 

Secondly we note that in the definition given above, 0 (X) may be replaced 
by the set of all real-valued Borel measurable functions / on X having the 
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following property: for every 'f} > 0 there exist real-valued continuous func
tions /1, / 2 such that /1 ~ / ~ / 2 and µ,(/2 - /1) ~ 'f/· Indeed, we then have 

I N I N I N 
N .E /i(x,,,.,)-µ(/1)-'f}~N .E f1(x,,,.,)-µ(f2)-;;;,N I: /(x,,,.,)-µ(/)-;;;, 

n=l n 1 n=l 
I X 1 N 

~ N .E f2(x,,,.,)- P,(/1)-;;;, I: f2(Xa,n)-µ(/2) + 'f} 
n=l n=l 

and therefore 

(2) 
It .. fJ(x,, ... )-µ(/)1 ~ 

-;;;, max{I! .,lJ1(x,,,.,) µ(/1)1, It .. fJ2(x,,,n)-µ(/2)I}+ 'f/ • 

Since 'f/ is arbitrary it is indeed possible to choose N (f, e) so large that for all 
N ~ N (f, e) the right hand member is smaller than a given e > 0, uniformly 
ina. 

As a consequence, if IS = { (xcr, .,): 1 : a ES} is a family of equi-µ-uniformly 
distributed sequences, (1) will hold for any complex-valued (Borel measurable) 
function f whose discontinuities are contained in a closed µ-zero set, in par
ticular for every characteristic function XA of a subset A of X whose boundary 
has µ-measure zero and for the product of XA with any function f E O (X) 
(cf. [12] Satz 6, [7] I.). 

As a case of particular interest, we already mentioned the set of sequences 
(a"):= 1 if X is a compact monothetic group and if a runs through the genera
tors of X. Here, because of the one-to-one correspondence between generators 
and sequences, the answers to the questions referred to above may be given 
by statements about sets of generators of X. Since it is both instructive and 
convenient for our later considerations, we shall :first deal with the special 
case of uniform distribution mod 1 before passing on to more general situa
tions. 

Some of the results of sections 2 and 3 have been announced by the authors in a talk 
given in October 1963 in the colloquium on uniform distribution at the Mathematical 
Center in Amsterdam. 

2. Uniform distribution mod 1 

Let X be the additive group of reals mod 1 and let µ be ordinary Lebesgue 
measure on [0, l[. It is well known that the sequence (na):= 1 is (µ-)uniformly 
distributed modl iff a is irrational. Taking in Weyl's criterion for F the set 
of functions f k(x) = e2nth (k an integer) we find that necessary and sufficient 
for the sequences (x,,,,.): = 1 (a ES) to be equi-uniformly distributed modl is 
the existence, for every integer k ~ 1 and for every real number e > 0, of 
an integer N(k, e), independent of a, such that 

I~ J; e2nikw,,,,., ~ e for all N ~ N(k, e) 
n-1 

(3) 
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and for all GE 8. In what follows we shall denote by [a] the greatest integer 
in a and by a = a - [a] the residue of a mod I. This should not cause con
fusion with the further use of brackets when replacing parentheses or signalling 
open or closed intervals. 

Theorem 1. Let A be a set of irrational numbers such that the sequences 
(na);' 1 (a EA) are equi-uniformly distributed mod 1. Then the set of residues 
modl .A= {d: a EA} is nowhere dense in [0, l[. 

Proof. Assume the contrary. Then we can find an integer k 6 1 such that 
the set kA is dense in [0, l[ (modl). Given any integer N 6 1 and anyreal 

number lJ (0 < lJ < 1) we can therefore find a number a EA such that ka E [ 0, ; [ 

(mod 1) and, a fortiori, nka E [O, lJ[ (mod l) for l ~ n ~ N. Thus, for these n, if lJ 

has been chosen small enough, e2n•nka is c1ose to l and so is I! f: e2 ninkal, in 
contradiction to (3). n = 1 

Corollary 1.1. Let a be irrational. Then the sequences (nma);'= 1 (m = 1,2, ... ) 
are not equi-uniformly distributed modl. 

Corollary 1.2. The family of all sequences (na);'= 1 (a irrational) is not the 
union of countably many families of mod l equi-unif ormly distributed sequences. 

Corollary 1.3. Let A and A be as in theorem I. Then A has outer Lebesgue 
measure smaller than 1. 

Theorem 2. Let lJ (0 < lJ < 1) be given. Then there exists a closed nowhere 
dense set A of irrational numbers in [0, 1( such that µ(A) 6 I - lJ and such 
that the sequences (na);' 1 (a EA) are equi-uniformly distributed modl. 

Proof. For every integer k 6 l we choose a real number ck> 0 in such a 
way that 

µ{x E [O, I[: le2nih 

00 

Let Ak {x E [O, l[: le2nih_ 11 6 ck} and let A= kol Ak. Then A is closed, 

consists of irrational numbers only, and we have µ(A) 6 I - J; ;,. = I-lJ. 
k=l 

Furthermore, for any k 6 l and for any a E A we have 

1
1 N . I 1 I elniNh_ 1 2 _ '\'I e2n,nka = _ ----1 :,;: __ 
N n ,:::..,1 N e1n1.1:o_ 1 - Ne,. . 

Thus, by Weyl's criterion, the sequences (na);'= 1 (a EA) are equi-uniformly 
distributed mod I and A. is nowhere dense by theorem I. 

3. Uniform distribution in eompaet monothetie groups 

Let X be a compact group which, as a topological space, is Hausdorff, 
and letµ be normed Haar measure on X. The group Xis called monothetic if 
there is at least one element a EX (called "generator") such that the sequence 
(an):'= 1 is everywhere dense in X {VAN DANTZIG [2]; cf. [4:], [9] II§ 9). As 
a consequence, a compact monothetic group is abelian. If a is a generator 

Math. Ann. 161 18 
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(and only in this case), the sequence (an):= 1 is µ-uniformly distributed [3]. 
I:f (xn):_ 1 is any µ-uniformly distributed sequence in X, then the sequences 
(XnY) (y EX) are equi-µ-unilormly distributed [10]. We denote by A the 
closure of a subset A of X. In the rest of this section, we shall omit explicit 
reference to Haar measure µ in statements concerning uniform distribution. 

Theorem 3. Let A be a set of generators of X such that the sequences (an);:;>_ 1 

(a EA) are equi-uniformly distributed. Then also the sequences (an): 1 (a EA) 
are equi-uniformly distributed. 

Proof. Let f E O (X) and e > 0 be given. Suppose we have 

(4) I! .. £ f<a")- µ(f)I ~ B for all N ~ N(f, s) 

and for all a EA. Then, since /(x") is a continuous function of x for every n, 
(4) also holds for all a EA. 

We note that theorem 3 yields another proof of theorem 1 which may be 
regarded as a corollary of theorem 3. Indeed, if A satisfies the hypotheses of 
theorem 1 and if A (modl) contained an open interval, then A would have to 
contain rational numbers which certainly are no generators. We may gene
ralize the statement of theorem 1 in the following form: 

Theorem 4. Let X be not totally disconnected and let A be a set of generators 
of X 8UCh that the sequences (a"):= 1 (a EA) are equi-uniformly distributed. 
Then A is nowhere dense. 

Proof. By Pontrjagin's duality theorem ([18] theorem 46, [9] theorem 24.26) 
there exists a continuous character d of X such that d(X) {d(x): x EX} 
is the entire circle group T. By theorem 3, without loss of generality we may 
assume A to be closed. I:f A contained an open subset of X then d(A) would 
have to contain an open interval in T since dis an open mapping of X onto T. 
On the other hand, since dis a continuous homomorphism, d(A) would have 
to consist of generators of T only, a contradiction. 

Corollary 4.1. Suppose that X is connected and a is a generator of X. Then 
the sequences ((am)n): = 1 (m = 1, 2, ... ) are uniformly distributed but not equi
uniformly distributed. 

Proof. Since Xis connected iff its dual group is torsion-free ( [18] theorem 46, 
[9] theorem 24.25), we have d(am) = dm(a) 4 1 for every non-trivial characterd 
of X and for every integer m ~ 1. Thus, am is a generator of X ([9] theorem 
25.11). The second assertion follows from theorem 4 since the sequence (am): 1 
is everywhere dense in X. 

We note that, by theorem 4, the second assertion of Corollary 4.1 even 
holds if X is not totally disconnected, but in this case am need not any more 
be a generator for every m ~ 2. For convenience of notation we shall denote 
the set of all generators of X by G. 

Corollary 4.2. Suppose that X is connected and satisfies the second, axiom of 
countability. Then the family of all sequences (a"):= 1 (a E G) is not the union 
of countably many families of equi-uniformly distributed sequences. 
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Proof. Under the stated hypotheses, G is a set of second category in X 
([4], of. [9] 25.27). 

Corollary 4.3. Let X and A be as in theorem 4. Then µ(A)< I. 
Proof. If µ(A)= 1, then A would have to be everywhere dense in X 

since every open set has positive Haar measure. 
If X is totally disconnected, the assertion of theorem 4 may fail to hold. 

In fact, the sequences (an);;'= 1 (a E G) will be equi-uniformly distributed (see 
theorem 5 below) and G may be open (see example following corollary 5.1 
below). In order to show this we first establish an auxiliary result. We note 
that, in the absence of the second axiom of countability, Zorn's lemma is 
used in the proof. 

Lemma 1. Let d be a oontinuous character of X having the 'Pf'O]Jerty that 
d(X) = T. Then, for every irrational number a there exists a generator a E G 
such that d(a) eanto:. 

Proof. Let D {d.1.:}., EA} be a complete system of different continuous 
characters of X, let d0 be the trivial character (d0 == 1), and let d,_ = d. 
Since X is monothetic there is at least one generator b E G. Suppose d;.(b) 
=e2nif!,_ (/30 1). By assumption (d,_(X)= T), {31 is irrational. Let TA be 
the topological direct product TA= II T,. (T,. T for all ,1. EA) .. It is well 

J.EA 

known that the mapping rp: x-+ x = (d,.(x)),.EA ETA is a topological isomor
phism of X onto a closed subgroup:%.= rp(X) of TA. In fact,:%. is the closure 
(with respect to the product topology in TA) of the sequence (o"):' = 1 CT A• 
(The notation is chosen for technical reasons and should not be confused with 
the notation for residues mod 1 in section 2). 

We now choose a maximal system of exponents {3;., linearly independent 
over the field of rational numbers and including {30 1 and {31• We denote by 
D' = {d1,: l' EA'} the corresponding subsystem of D. We now define an 
element a of T in the following way: first we choose arbitrarily a set of real 
numbers a,., (A' EA'), linearly independent over the field of rational numbers 
and including ao 1 and ai = a (this may even be done by changing at most 
two of the numbers /3,.,). Then we define a,. for l EA\A' by writing /J.1. as a 
finite linear combination of {3/s with rational coefficients and replacing every 
{),., by a,.,. Now we put a= (e2 "i«;.),.EAE TA. If 

U(a;Ai_, .. . , Am; 8) = {x= (e2niE_.hEAE TA: le2"H,!.j.-e2"'".ti:I < 8,k= 1, .. . ,m} 

is an arbitrary neighbourhood of a in TA• then we can find an integer n (not 
necessarily positive) such that O" E U(a; Ai_, ••• , .4m; 8). Indeed, because of our 

m 
construction of a,., for any lattice point (k.ai,)f = i, the congruence .E k,_,, f),.,, = 

.t-1 
m 

0 (modl) implies .E h,.,.aAl == 0 (modl). Thus, by Kronecker's theorem ([14] 
k-1 

VU § 2) the simultaneous inequalities 

ln/J.a..,-a,.,,I < 1/ (modl) (k = 1, ... , m) 
18* 
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have a common integral solution n for any choice of 'Y/ = 1J (e). Thus a belongs 
to the group Jt. and therefore there exists an element a EX such that a= q.i(a). 

By our construction i:x,. will be an integer if and only if {3 .. is an integer. 
Since b was a generator of X, this is the case if and only if Ji.= 0. Thus, d,.(a) =l= 1 
for all A =l= 0 and a is a generator of X ([9] theorem 25.11). 

Theorem 5. The sequences (a11 ): = 1 (a E G) are equi-uniformly distributed if 
and only if X is totally disconnected. 

Proof. We apply Weyl's criterion, taking in place of Fa complete system D 
of different continuous characters of X. If X is totally disconnected, then 
d(X) is finite for every d ED. For every a E G and for every non-trivial character 
d ED, we therefore have ld(a) -11 ~ c4 > 0, where c4 only depends on d. 
Thus, for every non-trivial character d, we obtain 

(5) I_!_ E d(a11)I = _!__ d(aN+i) d(a) I::;;_!_::;; s for all N ~ ___!_ 
N n=l N d(a) 1 - Ned - - c,ie 

and for all a E G. 
If X is not totally disconnected, then there is a character d ED such that 

d(X) = T. If the sequences (a11): = 1 {a E G) were equi-uniformly distributed, 
then, by theorem 3, we would have G G. In consequence, by lemma l, 
we would have d{G) = T. This, however, is impossible since e211 iix is not a 
generator of T for rational ac. 

Corollary 5.1. G is cwsed if and only if Xis totally diswnnected. 
Proof. If X is totally disconnected, the assertion follows from theorem 5 

and theorem 3. If X is not totally disconnected, the same reasoning applies 
as in the second part of the proof of theorem 5. 

Corollary 5.1 may of course also be proved without any reference to equi
uniformly distributed sequences. As a consequence of lemma 1, G can cer
tainly not he open unless X is totally disconnected. If, however, this is the 
case, then G may well he open as already demonstrated by any finite group 
with the discrete topology. Below we shall exhibit a compact totally discon
nected monothetic group X containing infinitely many elements and having 
an open set of generators. This, in connection with theorem 5, shows that we 
cannot omit the hypothesis of X not being totally disconnected in theorem 4. 

Let T 00 he the topological direct product of countably many copies of T. 
Let a E T 00 he defined by a= (e2 "i· 2-k)k = l and define X to be the closure of 
the sequence (a11):= 1 in T 00 • Then X is a compact monothetic group ([9) 
theorem 9.16). Consider an element b (e2 "il1k• 2-

1)f= 1 EX (b,. integers, 
I ~ b,. ~ 2"') with the property that b1 1. Since b may be approximated 
arbitrarily close by elements of the form a11 (n ~ l}, for every given integer 
m ~ I the system of simultaneous congruences 

n= b,. (mod2k) (k l, ... , m) 
has an integral solution n > 0 which has to be an odd integer. Therefore, 
there exists an integer n' > 0 such that 

I== n'b,. (mod2"') (k = 1, .•. , m) 
and a may he approximated arbitrarily close by elements of the form bn'. 
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Thus, b is a generator and we have G = {b = (e2nibk• 2-k)k=l: b1 = l}. This 

set G, however, is obviously an open subset of X of Haar measure ! . 
The following theorem establishes as generalization of theorem 2 which 

we, however, shall use in the proof. We note that, if X satisfies the second 
axiom of countability, G is a Gd-set and thus a Borel set ([9] 25.27). 

Theorem 6. Suppose that X satisfies the second axiom of oountability and l,et, 
e (0 < e < 1) be given. Then there is a closed nowhere dense subset Q of G such 
that µ(Q)>µ(G)-e and such that the sequences (an):=l (aEQ) are equi
unif ormly distributed. 

Proof. Let D = {dk: k = 0, 1, 2, ... } be a complete system of different 
continuous characters of X and let D' be the subset of D consisting of those 
characters d for which d(X) = T (D' is empty iff X is totally disconnected). 
We observe that, A denoting normed Haar measure on T, for every d ED' and 
for every Borel set Be T, we have A(B) = µ(d- 1 (B)). (This may be seen e.g. 
by defining a Borel measure A on T by this equation and checking that it has 
all the properties characterizing Haar measure on T). For every character 
dk ED' we may choose by theorem 2 a closed subset Ak of T having the pro
perty that the sequences (dk(an)): = 1 (dk(a) (_ Ak) are equi-A-uniformly distri-

buted in T and such that A(Ak) > 1- ;k. We put Q1 = dkQ.v, di'1 (Ak) if D' 

is not empty and Q1 = X if D' is empty. Then µ(Q1) > 1- e and, putting 
Q = Q1 r\ G, we have µ(Q) > µ(G)- e. 

Suppose now that a E Q is chosen arbitrarily and that dk (_ D is any non
trivial character. If dk(X) = T, then dk(a) E Ak and 

(6) I! nfl dk(an)I= I! nJ;l (dk(a))n I ~ e for all N ~ N(dk, e) 

and for all a E Q. If dk(X) is finite, then dk(a) =I= 1 since a is a generator and 
(6) holds by the reasoning used in the proof of (5). Thus, by Weyl's criterion, 
the sequences (an);:>= 1 (a E Q) are equi-uniformly distributed in X. By theorem 3 
we may replace Q by its closure which will then have the properties asserted 
in theorem 6. 

We remark that, while no assumption of connectedness is necessary in the 
hypothesis, theorem 6 is interesting only in the non-totally disconnected case in 
view of theorem 5. 

Corollary 6.1. Suppose that X is oonnected and satisfies the second axiom of 
countability. Then, for every given e (0 < e < 1) there is a dosed nowhere dense 
subset A of X such that µ(A) > 1 - e and such that the sequences (an);:>= 1 (a EA) 
are equi-uniformly distributed. 

Proof. Under the mentioned hypotheses we have µ(G) = 1 ([4], cf. [9] 
25.27). An application of theorem 6 completes the proof. 

4. Uniform distribution in compact Hausdorff spaces 

Let X be any compact Hausdorff space and let µ be any regular normed 
Borel measure on X. Every sequence e = (xn)::'- 1 C X may be regarded as an 
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element of the topological direct product space X 00 of countably many copies 
of X. We denote by~ the closure of a subset~ of X 00 in the product topology. 
The theorems stated in the previous sections have rather close analoga also 
in the present context. 

Theorem 7. Sup'JX)se that e = g,. E X 00 : <1 E S} is a family of equi-µ
uniformly distributed sequences. Then so is e. 

Proof. Let f E O(X) and e > 0 be given. By assumption, we have 

(7) I! E f (x,.,n)- µ(f)I ;:;;; E for all N ~ N(f, e) 
n=l 

and for all <1 ('. S. Let ; = (xn);;' = 1 be an arbitrary element of X 00 and define 
N 

FN(;) = ! £ f (xn). Then FN is a continuous function on X 00 • Thus, for 
n=l 

; Ee, we conclude from (7) that also 

I! E f(xn)-µ(f)I;;;;; E forall N~ N(f,t:). 
n=l 

This proves the assertion. 
Theorem 8. SuP'JX}se that X contains at least two points and that e i,<J a 

family of equi-µ-uniformly distributed sequences. Then e is nowhere dense in X. 
Proof. Assume the contrary. Because of theorem 7 we may assume that e 

is closed and therefore contains an open subset ll of X 00 • If X satisfies the 
second axiom of countability, then, via Baire's category theorem, this contra
dicts the well known fact that the set of all µ-uniformly distributed sequences 
in Xis of first category in X 00 ([12] Satz 12). 

If X does not satisfy the second axiom of countability we may argue in the 
following way: Without loss of generality we may assume that ll is of the form 

00 

ll = JI Un, where Un is an open subset of X for all n ~ 1 and Un = X for all 
ll=l 

n ~ N1• Let V and W be open subsets of X with disjoint closures. Let f be a 
Urysohn function on X (i.e. f E O(X) and O;:;;; f(x) ;;;;; 1 for all x EX) such 
that f(x) = 1 for all x EV and f(x) = 0 for all x E W. Let N ~ 3N1 be given. 
Because of our assumption e contains sequences 'Y/ = (y,.);:' = 1 E ll and 
C = (zn);:' _ 1 Ell with ~he following properties: Yn E V for N1 < n ;;;;; N and 

I N 2 1 N I 
Zn E W for N1 < n ~ N. We conclude N £ f(yn) ~ 3 and N £ f (zn) ~ 3 • 

n=l n=l 
Since N was arbitrary, this contradicts our assumption that e is a family 
of equi-µ-uniformly distributed sequences. 

If X satisfies the second axiom of countability, then, as mentioned above, 
the set of all µ-uniformly distributed sequences in Xis of first category in X 00 • 

This could suggest the idea that, in contrast to corollary 1.2 and 4.2, the set 
of all µ-uniformly distributed sequences might well be the countable union 
of families of equi-µ-uniformly distributed sequences. A closer inspection, 
however, shows that this still will not be the case in general. Indeed, if X 
is a compact connected abelian group satisfying the second axiom of countabi-
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lity (and a fortiori monothetic (9] 25.14) and ifµ is normed Haar measure 
on X, then the set of all µ-uniformly distributed sequences in particular con
tains all sequences (a"):_ 1 (a E G). This set, however, cannot be split into the 
union of countably many families of equi-µ-uniformly distributed sequences 
by corollary 4.2. 

In order to state an analogon of corollary 4.1 (cf. (8] theorem 2) we recall 
that the shift transformation P in X 00 is defined by P (xn):' = 1 = (Yn):'- i, 

where Yn = x,.+1 (1 ;:;;-;; n < oo ). 

Corollary 8.1. Suppose that X contains at least two points. Suppose further
more that ; E X 00 is µ-uniformly distributed in X and that, for some subsequence 
(mk);' = 1 of the positive integers, the sequence (pmk ;)k = 1 is dense in some open 
subset of Xoo- Then the sequences pmk; (k = l, 2, ... ) are µ-uniforrnJ,y distributed 
but not equi-µ-uniformly distributed. 

Corollary 8.2. Let X and e be as in theorem 8 and suppose that X is the 
support of µ. Then µ 00 ( e) < 1. 

Proof. Under the mentioned hypothesis, the support of µ 00 is Xoo- If ~ 
had µ 00-measure 1, then e would coincide withX00 , in contradiction to theorem 8. 

The following theorem and its proof are essentially due to E. HLAWKA. 
{[10] § 6) who has stated them for the case of a compact group. 

Theorem 9. Suppose that X satisfies the second axiom of countability and 
let b (0 < 15 < 1) be given. Then there exists a closed family e of equi-µ-uniforrnJ,y 
distributed sequences such that µ 00 ( e) > I - c5. 

Proof. In order to be able to apply Weyl's criterion we first note that be
cause of the second axiom of countability there exists a countable set 
F = {fk: k = 1, 2, .•. } C O(X) as described in section 1. Given any k ~ 1 
we again define Fk,N E O(X00 ) for;= (x,.);:'= 1 by 

Fk,N(;) = ! £ fk(x,.). 
n=l 

It is a well known consequence of the individual ergodic theorem ([6], [10] § 6, 
[12] § 3) that 

for µ 00-almost all ; E Xoo- Therefore, by Egoroff's theorem ([5] § 21A), there 

exists a measurable subset ek of X 00 of measure µ 00 (€1.,) ~ 1- :k such that 
00 

the functions F k N converge uniformly on e., for N -4- 00 , Taking eo = n e., 
' k=l 

we obtain µ 00 (e0) ~ 1 c5. Furthermore, for every k ~ 1 and for every 
given e > 0, we have 

I! f: ft(X,i)- µ(fk)I ~ e for all N ~ N(f.,, e) 
n=l 

and for all ~ = (x,.):_ 1 Ee= 6 0• An application of Weyl's criterion leads 
to the assertion. 
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5. Almost well distributed sequences 

Let X be a compact Hausdorff space and let µ be a regular normed Borel 
measure on X. As in the preceding section we denote by P the shift trans
formation in infinite product space X 00 • A sequence ; E Xco is called µ-well 
distributed if the sequences Pm; (m = 1, 2, ... ) are equi-µ-uniformly distri
buted (HLAWKA [10], PETERSEN [17]). While under the assumption of the 
second axiom of countability µco-almost every sequence is µ-uniformly distri
buted ([12] Satz 11), µco-almost no sequence is µ-well distributed ifµ is not 
a point-measure ([8] corollary 2.1). We shall now apply the results of the 
preceeding section to some questions connected with the concept of good 
distribution. 

Theorem 10. Suppose that the se,quence ; E Xco is µ-well distributed. Then 
so ist every se,quence in the closure of the set e = {Pm;: m = l, 2, ... }. 

Proof. By theorem 7, e is a family of equi-µ-uniformly distributed sequences. 
If 'Y/ belongs to e, then so does pm'YJ for every m ~ 1. 

As an illustration in the case of uniform distribution mod 1 we note that, if 
a is irrational and if; is the sequence (na);:'= 1 (modl), then e is the family 
of all sequences (na + b);:'= 1 (modl) {b E [O, l[). 

We shall call a sequence ; E X 00 almost µ-well distributed if there exists an 
infinite subsequence ( m1c)f = 1 of the non-negative integers such that the se
quences pmk; (k = 1, 2, ... ) are equi-µ-uniformly distributed. If we want to 
refer to this particular subsequence we shall call ; almost µ-well distributed 
(m1c)k= l· Note that the very definition implies that an almost µ-well distri
buted sequence is µ-uniformly distributed. 

Theorem 11. Suppose that ; E X 00 is almost µ-well distributed (mk)k = 1 and 
let h be any positive integer. Then; is also almost µ-well distributed (mk + h)f = 1• 

Proof. For any given / E O (X) and for any e > 0 we have 

I
t mI;N /(x,.)-µ(/)1 ;£; e for all N ~ N(/, e) 

n=mJ1:+l 
and for all k ~ 1. We conclude 

I l mll: + k + N I I l m1; + N + h mk + h I 
N. n-t1/i.11+1 f(x,.)- µ(/) ;£; N n=m!+N +1 /(x,.)-n=f + /(x,.) + 

+It mEN f(x,.)- µ(/)I;£; 
n=mk+l 

;£; 2hjfll + e ;£; 2 dor all N ~ max ( N (/, e), 2
h ~I/II ) 

and for all k ~ 1. 
Corollary 11.1. Let ; and h be as in theorem 11. Then the se,quences pmk+ m; 

(1ml ;£; h, k =;= 1, 2, ... ) are equi-µ-uniformly distributed. 
Proof. By theorem 11, foreveryfixedm, the sequences pmk+m; (k = 1,2, ... ) 

are equi-µ-uniformly distributed. Taking the union of these finitely many 
families of sequences, we again obtain a family of equi-µ-uniformly distributed 
sequences. 
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Corollary 11.2. SuppoBe that e E Xoo iB al,moBt µ-well diBtributed (mk)k -1 

and that the differencea ( mk +1 - mk) are bounded. Then E i8 µ-well diBtributed. 
Proof. Put m0 = 0, let h = max (mk+1- m,.) and apply corollary 11.1. 

1:;;:;o 
If we compare these statements with the results of the previous sections, 

we may regard corollary 11.1 as some sort of analogon to theorem 3 and theorem 
7. In fact, it asserts that, restricting attention to the subsequences pme of 
a given µ-uniformly distributed sequence E, every family of equi-µ-uniformly 
distributed subsequences pmke (le= 1, 2, ... ) may be enlarged by an operation 
similar to taking the closure, referring, however, not to a topology but to the 
concept of relative density of a set of integers. In this sense, corollary 11.2 
appears to be an analogon to theorem 4 and theorem 8 if we state it in the 
following form: SuppoBe that ; E X 00 iB not µ-well diBtributed and BUppoBe that 
the sequences pmk; (le 1, 2, ... ) are equi-µ-uniformly diBtributed. Then the 
sequence of integers (mk)k = 1 is not relatively dense (i.e. it is not possible to find 
a positive integer h such that every interval of length h contains at least 
one integer mk). 

The following theorem again stems from a remark of E. HLAWKA ((10] 
last paragraph; the statements "jede Folge" and "offene Menge" in the passage 
referred to are erroneous). In the context just mentioned, it establishes an 
analogon to theorem 6 and theorem 9. 

Theorem 12. Suppose that X satisfies the second axiom of countability. Then 
µ 00-almost every sequence ~ E X 00 is al,most µ-well distributed. bi particular, 
µ00-almost every sequence~ E X00 has the following property: given any 15 (0< 15< 1) 
there exists a subBequence ( mk)k = 1 of the non-negative integerB of aBymptotic 
density greater than l - b Buch that e iB al,most µ-well diBtributed ( mk)k = 1• 

Proof. By theorem 9 we can find a sequence of families fa1 of equi-µ-uni-

formly distributed sequences such that µ 00 (fa1) ~ 1 - : (i = I, 2, ... ). We 

note that P is a µ 00-measure preserving ergodic transformation in X:X, [6]. 
By the individual ergodic theorem, there is a subset lt1 of X 00 such that 
µoo ('l:1) = I and such that for every ; E 'l:1 the sequence of exponents m,. 

00 

for which pmke E fa1 has asymptotic density µ00 (fa;)- Taking lt° n i;r, we 
i- 1 

obtain µ00 ('l:) = 1 and every ; E 'l: has the property stated in the theorem. 

6. Almost well, weakly well, and completely uniformly distributed sequences 

Let, as in section 5, X be a compact Hausdorff space and let µ be a regular 
normed Borel measure on X. In view of theorem 12 we are led to consider 
the following classes of sequences in X and to ask for the set-theoretic and 
measure-theoretic relations between them: 

ll ={~Ex;;,: ~ iB µ-uniformly diBtributed}. 
~w = {; E Xoo: e iB almoBt µ-well diBtributed}. 
~Wi ={~Ex~: for every 15 (0 < 15 < 1) there exiBtB a Bubsequence (mk>r- 1 

of the non-negative integers of asymptotic density greater than l - 6 
Buch that E iB al,m<>Bt µ-well distributed (mk)f _ 1}. 
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~'ID2 = {~ E X00 : there exists a subsequence (mk)k = 1 of the non-negative integers 
of asymptotic density l such that; is almost µ-well distributed (mk)k = 1}. 

'ID = {; E X00 : ; is µ-well distributed}. 

Obviously we have U:) ~'ID:) ~Wi:) ~'ID2 :) 'ID. Furthermore, if the second 
axiom of countability is satisfied, we have µ 00 (~mli) = 1 by theorem 12 and 
µ 00 ('ID)= 0 if µ is not a point measure by [8] corollary 2.1. In what follows 
we shall show that, under these hypotheses and in the presence of µ-well 
distributed sequences, each of the above inclusions is strict and µ 00 (~'ID2) = 0. 

In this context it seems appropriate also to clarify the relations between 
the properties of a sequence ; E X 00 to be almost µ-well distributed, weakly 
µ-well distributed in the sense of HLA WKA [11] and completely µ-uniformly 
distributed in the sense of KoROBOV [15] (cf. [13] § 4). We shall therefore also 
consider the following classes of sequences in X : 

'ID 'ID = {; E X 00 : ; is weakly µ-well distributed, i.e. for every f E O (X) we have 

I B-11 1 (r+l)N I } 
lim lim sup R }; N ,E f (xn) - µ(f) = 0 . 

N--+ 00 B--+ 00 r=O n=rN+l 

(tll = {; E X00 : ; is completely µ-uniformly distributed, i.e. the sequence 
(pm~);:= 1 is µ 00 -uniformly distributed in X 00}. 

Again, it is well known and easy to see that we have U) (tll and 
ll) 'ID'ID) 'ID. Furthermore, if the second axiom of countability is satisfied, 
we have µ 00 ((tU) = 1 (replacing in the corresponding statement about uni
formly distributed sequences X by X 00 andµ by µ 00 ), µ 00 ('ID'ID) = 1 by [11] 
Satz 2 (cf. theorem 16), and (tll n 'ID = 0 by [8] theorem 2 ifµ is not a point 
measure. Thus, µ 00-almost every sequence ; E X 00 is at the same time almost 
µ-well distributed (even in the sense of ~Wi), weakly µ-well distributed, and 
completely µ-uniformly distributed. We shall show that, in fact, (tll n ~ 'ID2 = 0 
ifµ is not a point measure, thus establishing µ 00 (~'ID2} = 0, and that, in the 
presence of µ-well distributed sequences, all inclusions in the chain ll) 'ID 'ID ) 'ID 
are strict. In particular, we have 'ID 'ID) ~ 'ID2 but 'ID 'ID ]) ~ 'ID. Part of the 
proofs will be carried -0ut by explicitly constructing sequences that are of one 
type but not of the other. 

Let us note again that, in the definition of weakly µ-well distributed se
quences, we can replace O (X) by the larger class of functions described at the 
end of section 1. In fact, if ; E X 00 is weakly µ-well distributed and if f, fv /2 

are real-valued Borel measurable functions (11 E O(X), j = l, 2) satisfying 
Ei 

/ 1 ~ f ~ / 2 and µ(/ 2 - / 1) ~ 2 , then we can choose N(f, e) so large that for 

all N ~ N(f, e) we have 

(i = 1, 2). 
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By (2) we conclude 
. l R-11 l (r + l)N 

lim_..supR ,E N ,E f(x,i} 
R 00 r=O n=rN+l 

µ(f>I ~ 
2 • l R-1, l (r+l)N 

~ ,Elim sup][ ,E N J; f1 (xn) 
j 1 R--,. 00 r = 0 n = r N + 1 

This proves our assertion. 
We now proceed with the detailed exposition of the statements outlined 

above. The proof of the following theorem is, with some slight modifications, 
the same as the proof of theorem 2 in [8}. We shall, however, reproduce it 
here for the convenience of the reader. 

Theorem 13. Sup'f)QSe that µ is not a 'f)Oint measure and sup'f)QSe that 
~ = (x,.):'= 1 E X 00 is completely µ-uniformly distributed. Then ~ is not almost 
µ-well distributed with respect to any subsequence (m,c)f = 1 of the non-negative 
integers of asymptotic density 1. 

Proof. Assume the contrary and let ml= (m1c)k 1 be a subsequence oi the 
non-negative integers of asymptotic density 1 such that ~ is almost µ-well 
distributed (m1o)k 1• Sinceµ is not concentrated in one point we can find an 
open set A cX such that O <µ(A)< 1. Without loss of generality we may 
assume that the boundary of A has µ-measure zero. Let N ~ 1 be given and 

00 

let A 00 = I] An where An= A for 1 ~ n ~ N and An= X for n > N. Then 
n = 1 

A00 is open in X and its boundary has µ.,.,-measure zero. Furthermore, we have 
0 < µ 00 (A 00 ) < 1. Since the sequence (Pm~):= 1 is by assumption µ 00-uni
formly distributed in X 00 , and since ml has asymptotic density 1, so is the 
sequence (Pmc~)k= 1• Therefore, there exists a positive integer k(N) such 
that pmi<N>~ E Aw Hence, for every choice of N ~ 1, we have 

1 m.t(N1+N 
N ,E x .. dxn)- µ(A)= 1-µ(A)> o. 

n=mk<N>+ 1 

This, however, contradicts our assumption that~ is almost µ-well distributed 
(mk)k = 1 . (If the support of µ is X the theorem can also be derived from corol
lary 8.1). 

Corollary 13.1. Suppose that X satis-{i,es the second axiom of countability and 
that µ is not a 'f)Oint measure. Then µ00 (~m:32) = 0. 

Proof. Under the mentioned hypothesis, we have µ 00 ('ill) = 1. The state
ment then follows from theorem 13. 

Corollary 13.2. Sup'f)Ose that X satis-{i,es the second axiom of countability and 
that µ is not a 'f)Oint measure. Then ~ml,_~ ~W2• 

Proof. The statement follows from theorem 12 and corollary 13.1. 
Theorem 14. SupJ>Ose that X contains at least two 'f)Oints and that there exists 

a µ-well distributed sequence. Then there also exists a sequence~ E X 00 , constructed 
explicitely below, which is not µ-well distributed but almost µ-well distributed 
(m")f = 1 where (mk);',.. 1 has asymptotic density 1. Consequently we have ~W9 ~ W. 
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Proof. Suppose that the sequence r; = (yk)k= 1 E X 00 is µ-well distributed 
and let a EX belong to the support ofµ. We then choose a point b =!= a in X 
and construct a sequence ~ (x,.);:' = 1 E X 00 by induction as follows: Let Xi = b. 
H Xi, .•• , x,.. (h ~ 1 an integer) have already been defined such as to com.prise 
all elements Yk with k ~ h4 h(2h- l), then let x,. (h4 < n ~ k4 + 4h3 +6h2) 

be the next 4h3 + 6h2 consecutive Yk's and let x,. = b for k4 + 4h3 + 6h2 < 
< n ~ (h + 1)4• 

Obviously, due to the increasing stretches of h's which certainly do not 
cover the support ofµ, the sequence ~ is not µ-well distributed. If we allow m 
to run through all integers satisfying h4 ~ m < h4 + 4h3 (h 1, 2, ... ), then 
it is easy to see that this subsequence ml of the positive integers has asymptotic 
density 1. We shall now show that the corresponding sequences pm~ (m E ml) 
are equi-µ-uniform.ly distributed. 

To this purpose, let f E C (X) (f $ 0) and e > 0 be given and suppose that 

1

1 m+N I e 
N E f(y,.)-µ(f) ~ 2 for all N ~ N(f, s) 

n=m+l 

and for all m = 1, 2, ... It will suffice to show that 

(8) 
1

1 m+N I 
N ,E f(x,.)-µ(f) ~ e fora11 N~ N(f,e) 

n=m+l 

and for all m E ml which are greater than the fourth power of some fixed integer 

H=H(f, s).Infact, we choose this integer Hin such away that 6H;! :H\ 1 < 

< 4 tt/ll and 6H2 ~ N(f, e). For a fixed m E ml, m ~ H 4, let us denote by N' 

the number of elements Xm+n (1 ~ n ~ N) chosen from the sequencer; and 
by ,E' /(x.,) the sum over these elements. For all N ~ N(f, s) we have 
N' ~ N (/, e) because of h4 ~ m < h4 + 4h3 and 6h2 ~ 6H2 ~ N (f, s). Thus 
we obtain 

1 m+N N' 1 N-N' 
N ,E f (x,.) = · N' ,E' f(x,.) + N f(b) 

n=m+l 
1 N-F l N-F 

= N' ,E' f(x,.) - N · N' E' f(x.,) + N f(b) 

and 

(9) 1

1 m + N I 11 I N N' N E f(x.,) -µ(f) ~ N' E' f(x,.)- µ(f) + 2 - 11/11 ~ 
n=m+l 

~ 8 +2 N~N' llfl\, 

Because of our construction of~ and of the restriction imposed on m we have 

N -N' 4k + 1 4H + 1 e 
N ~ 6hf + 4h, + 1 ~ 6H1 + 4H + 1 ~ 411/~ ' 

This, in connection with (9), proves (8). 
In order to establish the inclusion ~~::>~~2 we again need a lemma. 
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Lemma 2. Let ml be a subsequence of the non-negative integers of asymptotic 
density 1 and let N be given. Then the subsequence m = {r : r N E ml} of the 
non-negative integers also has asymptotic density I. 

Proof. For any integer M ~ 1 we define 

v(ml, M) = I; 1 
mE2ll 
m<M 

(for other sequences, the counting function vis defined analogously). Suppose 

liminf v(~R) = 1-2!5 (!5 > 0), contrary to the assertion. We then have 
R-+OO 

v(ml, RN)~ v(m, R) + (N -1) R for every R ~ 1 

and therefore 

v(~, RN) :,;;; __!__. v(9t, R) + N -I < __!__ (l - !5) + N -I _ 1 _ _i_ 
RN - N R N N N - N 

for infinitely many R, in contradiction to our assumption. 
Theorem 15. Suppose that the sequence ~ = (xn): = 1 E X 00 is almost µ-well 

distributed (mk)k = 1 and ml= (mk)k = 1 has asymptotic density I. Then ~ is 
weakly µ-well distributed. Consequently, we have WW :::i ~W2• 

Proof. Let f E O (X) and e > 0 be given and let 

It mfN f(xn)-µ(f)l~e forall N~N(f,e) 
n=m+l 

and for all m E ml. Fix any N ~ N(f, e) and let m = {r ~ 0: rN E ml}. 
Furthermore, let m' be the subsequence of the non-negative integers, comple
mentary to m. Then we have 

I 
l (r+l)N I 

aN,r = N I: f(xn) - µ(f) ~ e for all r Em 
n=rN+l 

and aN,r ~ 2 ll/11 for all r ~ 0. Since m has asymptotic density 1 by lemma 2, 
m' has asymptotic density 0. We conclude 

! £1 

aN,r = ! ( I: aN,r + I: aN,,) ~ 
r=O rE~ rE~' 

r<R r<R 

.--- ~+ v(9t',R) 211/11 2 f 11 R R 2 R R · ~ e ora ~ 0 • 

As a consequence, we have 
1 R-1 

lim sup1f .E aN,r ~ 2e for all N ~ N(f, e) 
R-+oo r= 0 

and, since e was arbitrary, 
1 R-11 1 (r+l)N I 

lim limsup1f .E N I; f(xn)-µ(f) = 0. 
N.-+oo R-+ 00 r=O n=rN+l 

For the case of a compact group X with normed Haar measure µ, the 
following theorem has been proved by HLAWKA ([11] Satz 2). In order to obtain 
an even sharper statement, the proof given there actually makes use of group 
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theoretic concepts. We shall therefore give another proof here which makes 
use of ergodic theory and is valid also in the more general situation considered 
in this section (the possibility of this approach has also already been mentioned 
bylILAWKA). 

Theorem 16. Suppose that X satisfie,s the second axiom of counta.bility. Then 
µ 00 -almost all sequences ; E X 00 are weakly µ-well distributed. 

Proof. We note that Weyl's criterion holds for weakly µ-well distributed se
quences just as well. We therefore choose a countable subset F = {fk:k 
= l, 2, ... } C O(X) as described in section land fix a function/= fk EF (/ $ 0). 
We then define the functionFN E O(X00 ) for~ (x,.):= 1 by 

FN(~) It 
11

f/(x,.)-µ(/)1. 
Since µ 00-almost all~ EX00 are µ-uniformly distributed, we have lim FN(~)=O 

N--+oo 

for µ 00-almost all~ E X 00 • 

Let the integer i;;;;; l be given. By Egoroff's theorem ([5] § 21A) there 

exists a subset€>; of X 00 such that µ 00 (€>;) >1- 4i~I/II and such that the 

functions F N converge to zero uniformly on €>1• Let N (j) be chosen in such a 

way that F NW ~ 2\ for all N ;;;;; N (j) and for all ;E €>;, We fix an integer 

N 6 N (j). By the individual ergodic theorem, applied to the ergodic measure 
preserving transformation pN in X 00 , for all~ in some subset \t'(/, j, N) C X 00 

of µ 00-measure l, we have p,N ~ E €>1 for all r;;;;; 0 except for a subsequence 

(rh)h= 1 of the non-negative integers of asymptotic density smaller than 41
1

ll/!I • 

For every such ~ = (x11): = 1 E \t' (/, j, N) we obtain 

1 R-1

1 

l (r+l)N 

1 
limsupR I; N I; /(x,.)-µ(/) 

R--+oo r=O n=rN+l 

l R-1 
=lim supR I; FN(P,N~);:;;;; 

.R--+oo r=O 

~limsup(! L FN(P'N;)+ ! L 211/1\)~ 
.R-...:,c o:::,;,:::,;.R-1 o:s;,:s;.R-1 

1"8 eee, P' 8 eEes 
1 2 ll/11 1 

~ 2f + 4flifll 
00 

For every ~ E n \t' (/, j, N) we therefore have 
N=N(i) 

. 1 .R-l 11 (r+ l)N I 1 
lim sup-R I; N I: f(x11) µ(/) ~ -

1
• 

.R--+cc r=O n=rN + 1 
for all N;;;;; N(j) 

00 00 

and for every EE !I'(/)= n n . \t' (/, j, N) we have 
i=l N-N(1) 

(10) 
1 R-1, l (r+l)N 

1 
lim lim supR I: N I: f(x,.)- µ(/) = 0. 

N--+oo R-+oo ,-o n-rN+l 
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00 

Taking~= kol ~(fk) we finally have ,Uoo(~) = l and, by Weyl's criterion, 

(10) holds for all f E O (X) and for all ~ = (xn): = 1 E ~-

Corollary 16.1. Suppose that X satisfies the second axiom of countability and 
thatµ is not a point measure. Then WW ~ QIW2• 

Proof. The statement follows from theorem 16 and corollary 13.1. 
In view of the inclusion WW) Qt W 2, theorem 14 furnishes an example 

of a sequence which is weakly µ-well distributed but not µ-well distributed. 
Our last two theorems will be concerned with constructions of sequences 
belonging to the (differences of) classes ll\(QIW v WW) and QIW\(QIW1 v WW) 
respectively. 

Lemma 3. Let A be a closed subset of X with µ-zero boundary and such that 
µ(A)= ix> 0. If the sequence~ (xn)~ 1 is µ-uniformly (resp. µ-well) distribu
ted in X, then the subsequence 17 ~ n A (y1r,)'{'= i, consisting of all elements of 

~ lying in A, is ~ µ-uniformly ( resp. ~ µ-well) distributed in A, considered 

as a compact Hausdorff space in the relative topology. 
Proof. Since every continuous complex-valued function on A is of the form 

f XA (f E O (X)) by Tietze's extension theorem, we have to show that 

(11) 

resp. that 

1

1 m+N 

N~oo N k=f+Jx..4(y,.) ~ µ(/X,1)1=0 for all f EO(X) 

uniformly in m = 0, l, 2, .... 
Let f E O(X) be given and suppose first that ~ is µ-uniformly distributed 

in X. For every given integer N ~ 1 we define N' to be the smallest integer 
N' 

having the property that J; XA (xn) N. Thus, we have N' ~ N and 
n=l 

lim _!_, = l · lim 
N-+oo txN (X N'-+oo 

From the identity 

1

1 N l I N J; f XA (Y11:) - -; µ (f XA) 
k=l 

we then deduce (11). 
Suppose next that ~ is µ-well distributed. For every integer m ~ 0 we now 

m'+l 
define m' as the smallest integer having the property that J; XA (xn) = m + l, 

n-1 
m'+N(m) 

and N (m) as the smallest integer having the property that J; XA (xn) = N. 
n-m'+l 
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Thus, we have N(rn) ~ N. Furthermore, by the same reasoning as above, if N 

is greater than a fixed integer N 0, independent of m, then IY.tm) is close to I 

and the difference 

1

1 m+N 1 I I I !Y.N(m) I m'+N(m) I 
N .E /x.A(Yk)--;:µ(fx.A) =a:-N-• N(m) .E fXA(x,.)-µ(fx..4.) 

k=m+l n=m'+l 

is close to 0, uniformly in m = 0, 1, 2, ... This proves the assertion. 
Theorem 17. Suppose that µ is not a point measure and that there exists a 

µ-uniformly distributed sequence. Then there also exists a sequence EE Xcc,, 
constructed explicitely below, which is µ-uniformly distributed but not almost 
µ-weU distributed and not weakly µ-well distributed. Consequently we have 
ll ~ 21W and U ~ WW. 

Proof. Let A be a closed subset of X with µ-zero boundary and such that 
0 <µ(A)= a< 1 (our hypothesis onµ implies the existence of such a set A). 
Furthermore, let B be the closure of the complement of A. Then also B has 
µ-zero boundary and we have µ(f) = µ (f XA) + µ (f XB) for every / E O (X). 

By lemma 3 there exists a sequence 1/ = (yk)'t' = 1 which is ! µ-uniformly distri-

buted in A and a sequence C = (z,)f= 1 which is 1 
1 

1Y. µ-uniformly distributed 

in B. We construct the sequence E = (x,.): = 1 by induction as follows: Let 
x1 = Zi, x2 = z2• If x1, ••• , x 

2 
(:) (k ~ 2) have already been chosen such as to 

comprise certain initial segments of the sequences 1/ and C, then let x (") , •.• , 
2 

2 
+1 

x (") be the next 2[hcx] consecutive y/s and let x (") , ... , 
2 

2 
+2[h] 2 

2 
+2111«]+1 

x2("!1) be the next 2h-2 [ha] consecutive zi's not yet incorporated into the 

sequence E to be constructed. 
We first show that the sequence E constructed in this way is µ-uniformly 

distributed in X. Let f E O(X) and e > 0 be given. For a given integer N ~ 2 

we determine the integer k in such a way that 2 (;) ;;;;; N < 2 (h ! 1) . Further

more, we define N 11 (resp. Nz) to be the number of Yk's (resp. z/s) occurring 

among the first 2 (;) x,.'s. Thus, we have N vz = N 11 + Nz = 2 (;) and 

1 N 
¥ ,E I (x,.)- µ(!) = 

n=l 

= Nn { N. [-
1 ,E f(yk)-_!._µ(fXA)] + [ N. • _!._-1] µ(fXA)} + 

N N,. N. 
11 

1Y. N,. 1Y. 

+ N., { N, [-1 ,E f(z,)--1-µ(fXB)] + [ N, . 
N N.. N. z 1- 1Y. N., ~IY. -1] µ(/xB)} + 

+ t [ J; f (x,.) - (N - N 111) µ(/)] ; 
n=N.,+1 
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here J; and J; denote the sums over the y-1/s and z1's respectively, occurring 
'V z 

among the first N 11 .xn's, and the third term disappears for N = N 111• In view 
of lim N-v = lim N. = oo we obtain, for all sufficiently large N, 

N-+oo N-+oo 

1N IN l NI nf/(x,.)-µ(/) ~ N., 8 + oc · N,,: -l ll/11 + 
+ N. s+ I . N. -1111/11 + 

N oc Nu 

+ 4; 11111. 
Evidently, for sufficiently large N, the last term becomes smaller than e. 
Furthermore, we have 

2[oc] + 2 · [2oc] + 2 · [3oc] + · · · + 2[(h- l)oc] = ~----=-=--cc-~-=c-"c----cc-----=-=---"----cc--c-=-~~~ 
2 · I + 2 · 2 + 2 • 3 + · · · + 2 · (h- 1) 

Therefore, we conclude lim NN" = oc and, by a similar reasoning, lim NN ._ 
N~oo 11 z N-+oo J. 118 

= 1-oc. Thus, we obtain 

for all sufficiently large N. 
We next show that g is not almost µ-well distributed. In order to 

do this, for every given integer m ~ 2 we estimate the difference 

I! m f; N XA (xn) - ocl from below for suitably chosen integers N. We distin
n = m + 1 

guish four cases, depending on the choice of m. 

1) 2 (!) ~ m < 2 (!) + [hoc]. We choose N = 2 (;) + 2 [hoc] - m. Then 

we have N > [hoc] and 

I! mf;N X.4(Xn)-ocl 
n=m+l 

1 oc> 0. 

2) 2 (!)+[hoc]~ m < 2 {;) + 2[hoc]. We choose (h + 1) N=2 2 -m. 
Then we have N > 2h - 2 [hoc] and 

I m+N j [hoc] oc 
- J; X (x ) :s;; max . = --- :s;; < oc 
N n=m+l .4 n -i::.;1;;.;;[hoc] 2h-2[hoc]+1 2h-[hoc] - 2-oc • 

Therefore, we obtain 

1

1 m+N I °' 1-oc N J; X.4(xn)-oc ~ oc- = oc·~>O. 
n=m+l °' 

3) 2(;)+2[hoc]~m<2{;)+h+[h«]. We chooseN=2{h!l)-m. 

Then we have N > h - [hoc] and 

1

1 m+N I 
N L XA (xn) - OC 

n=m+l 
oc > 0. 

Math. Ann. 161 19 
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4) 2 (!) + h + [ha] ;i m < 2 (h ! 1). We choose N 2 (h ! 1) + 
+ 2[(h + l)a]-m. Then we have N > 2[(h + 1)01:] and 

I m;.N 2[(h + l)ixJ 
N ....., X..4. (x.,) ~ h- [hix] + 2[(h + l)ix] 

n-m+l 

For large h the right member is close to 1 ~ cc > ix. As a consequence, for large 

h we obtain 

1
1 m+N I 1 ( 2cc ) cc 1-ix - E X..4.(X )-a~- ---01: =-· >0 

1N n=m+l n - 2 I+cc 2 oc • 

Choosing now e min ( 01: · ! : , ; · ! + : ) , we see that, given any 

positive integer N 0, for every integer m which is larger than a certain constant 
M depending on N O we can find an integer Nm ~ N O such that 

1

1 m+N., I 

N E z..4.(x .. )-01: ~ e. 
m n=m+l 

It is therefore not possible to select an infinite increasing sequence of integers 
m,. in such a way that the sequences pmk~ (k = 1, 2, ... ) are equi-µ-uniformly 
distributed. Thus, ~ is not almost µ-well distributed. 

Finally we show that the sequence~ is not weakly µ-well distributed. In 
fact, we shall prove that, for every fixed integer N ~ 1, 

1 R-11 1 (r + l)N I 
lim 1f E N E X..4.(x .. )-a = 2a(l-a). 

R--+00 r=O n=rN+l 

To this purpose it will suffice to show the following: Given any integer h ~ 2, 
let (x,N +1• ••• , X(r+J.) N) (rh-l < r ;i r,J be those blocks of N consecutive ele
ments of~ that have some overlap with the block of 2 [ha] consecutive elements 
'//,, and 2h - 2 [ha] consecutive elements z,, but no overlap with the following 
block of 2[(h+ l)a] consecutive elements '!/,, and 2(h+ l)-2[(k+ 1)01:] 
consecutive elements z1 in the same sequence ~. Then 

l ri I l (r + l)N I 
Jim--- J; N I; z..4.(x .. )-a=201:(l 01:). 

h-->-oo r,.-r,._1 ,._,,,_1+1 n=rN+l 

(we note that 2;-l;irh-rh_1;i 2; +l. From this follows,.~ (r,.-rh_i) 

=oo and 
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Indeed, if his sufficiently large, for approximately 
2

~°'] (at least 
2

~°'] -2) 
I 

l (r+l)N I 
values of r(r,._1 < r ~ r,.) the difference dr = N E XA (x,.)-oc will have 

=rN+l 

the value 1-oc, while for approximately 21,, {at least 2
h-_;[hoc] 2) 

values of r(r,._1 < r ~ r,.) this value will be oc and for at most two values 
of r, dr will be different from oc and 1 oc but bounded above by 2. Thus 
we obtain 

= lim ~. 2[hix] 11 oc) + (2h-2[hix])oc _ 2 (l - ) 
h-HXJ 2h N - °' oc · 

This completes the proof. 
In the modl case, a less abstract example of a sequence enjoying the pro• 

perties mentioned in theorem 17 (having also served as a model for the con-

struction carried out in the proof) is furnished by the sequence ( 0, 0, ! , 
0, ! , ! , 0, ! , ! , ! , 0, ! , ... ) . Sequences of this type have been consi

dered in [16] in connection with the rearrangement of arbitrary sequences, 
every where dense modl, to modl uniformly distributed sequences. 

Theorem 18. Suppose that µ is not a point measure and that there exists 
a µ-well distributed sequence. Then there also exists an almost µ-well but not 
weakly µ-well distributed sequence w E X00 , constructed explicitely below, with the 
following property: if 91l = (mk)k 1 is any infinite subsequence of the non
negative integers such that w is almost µ-well distributed (m,.)f = 1, then 91l has 
asymptotic density 0. Consequently we have 2{m) ~ 2CmJi and WW]) 2CW. 

Proof. As in the proof of theorem 17, let A be a closed subset of X with 
µ-zero boundary and such that 0 < µ(A) oc < 1, and let B be the closure of 
the complement of A. Let ~ = (xk)k = 1 be a sequence which is µ-well distributed 

in X, let 'TJ = (y1)i= 1 be ~ µ-well distributed in A and let C = (zm):=l be 

1 
1 

ix µ-well distributed in B (cf. lemma 3). We construct the sequence 

w = ( u,.):' = 1 by induction as follows: Let u1 = x1• If u1, ... , uh• (h ~ 1) have 
already been chosen such as to comprise certain initial segments of the sequences 
~. 'TJ, and C, let uh'+ 1, .•• , uh,+ 611, + 1 be the next 6ha + 1 consecutive xk's, and 
let uh'+ 6 h, + 2, ••• , u<h + l)' consists of the 2ha + 2 consecutive blocks of 2h 
elements each (referred to in the following as "yz-blocks"), which in turn consist 
of the next 2 [hoc] consecutive y1's and, immediately following, the next 
2h- 2 [hoc] consecutive z,,/s not yet incorporated into the sequence w to be 
constructed. 

We shall first show that the sequence w is almost µ-well distributed (h4)f- 1 

To this purpose, given any / E O (X) and any e > 0, we choose N1 such that, 
19* 
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uniformly in h = 1, 2, ... , 

for all N ~ N1 • 

Furthermore, we choose the integer H such that min(2 [H a],2H-2 [Ha])~ N1 

and such that max ( Bh;~ 1, [ [1:] - 1[, \ !~ ~:~ - 1[) ~ e for all h ~ H. 

Let now h ~ Hand N ~ N1 be given. We define Nx to be the number of 
xk's among the elements uh,+ i, ••• , uh'+ N• Furthermore, consider the yz
blocks completely covered by these elements and let N v and N. be the number 
of the y 1's and zm's contained in all of these yz-blocks respectively. We set 
N'IIZ = Nv + N. and N., = N -Nx-Nv-N •. Then we have 

I h'+N N [ I ] 
N L f(un) - µ(f) = N N 1: f(xk)- µ(f) + 

n=h'+ 1 z x 

+ ~· { ::. [ ;,, f HY1) - ~ µ(f xA)] + [ rx!:. -1] µ(f XA)} + 

+ ~· { ::. [;. f f(zm) - I I rx µ(fxB)] + L1-:)N,,. - 1] µ(f XB)} + 

+ ! [f f(un)-N.,µ(f)] . 

Here the sums I;, J;, I,; are extended over the corresponding N.,, Nv, N. 
X 1/ Z 

elements xk, y1, Zm respectively. The second and third member disappear if 
N < 6h2 + 1 + 2h; the fourth member also may disappear and contains a 
sum J; over N., tail elements where N., (if positive) is less than the number .. 
of elements in the unfinished yz-block. Taking absolute values, because of 
N ~ N1 and 6h2 + 1 ~ min(2 [ha], 2h - 2 [ha]) ~ N1 we obtain 

1

1 h'+N I N 
N I: f(un)- µ(f) ~ zi e + 

n=h'+l 

+ Nv•{~e+l~-1[11/11}+ N Nu rxN., 

+ ~• {%:. e + \ (1-:)Nu -1111/11} + 
2h 

+ 6h2 + I . 2 lit II ~ 

~ e + I rx~wu - 1\ 11/11 + I (1 ~•)N,. - 1111/11 + e 11/11 · 
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Let the integer i ~ l be chosen such that (h + i 1)4 < h4 + N ~ (h + i)4• 

We then have, for some integer j ~ 0, 

N1/Z = 2h(2h2 + 2) + 2(h + 1) (2(h + 1)2 + 2) + · · · + 2(h + i-1) · j 

N11 = 2 [ho:] (2h2 + 2) + 2 [(h + l)o:] (2(h + 1)2 + 2) + • • · + 2[(h+ i-1) o:] ·j 

N. = 2(h - [ho:]) (2h2 + 2) + 2 (h + 1 - [(h + l)o:]) (2(h + 1)2 + 2) + , · · + 

+ 2(h+ i-l-[(h+ i-l)o:]) ·j 
and therefore 

. ( [hot:] mm -h-, ... , 
[(h+i-l)ot:]).,,.,, N,.,,.,, ([hot:] [(h+i-l)ot:]) 
h+i-l =" N,. ::a max h ' ... , h+i-I ' 

By our choice of h ~ H we conclude 

(l __!!;)N,. - 1! ~ e. Thus we obtain 
l__!!_y_ 1j ~ e and, analogously, o:N,,. 

1

1 h'+N I 
F J; /(un)- µ(/) ~ e + 3ellfll 

n=h'+ 1 
for all N ~ N1 

and for all h ~ H. This proves that ro is almost µ-well distributed (h4)f = 1• 

Suppose next that the subsequence ml= (mk)k 1 of the non-negative 
integers has positive upper asymptotic density. We shall show that the se
quences pmkw (k = 1, 2, ... ) cannot be equi-µ-uniformly distributed. Con
sider the set of positive integers m = {n: h4 - 6(h 1)2 ~ n ~ h4 + 6h2 for 
some h = I, 2, ... }. Since m has asymptotic density zero, infinitely many 
mk E ml must lie outside of m and therefore satisfy the inequality 

h4 + 6h2 + 1 ~ mk ~ (h + 1)4 - 6h2 -1 (h ~ 1 an integer) 

It follows that the element um .. + 1 belongs to some yz-block of length 2h and, 
since mk + 4h < (h + 1)4, the elements Umk+n (1 ~ n ~ 4h) cover a.t least 
one complete yz-block of length 2h. Since this happens for infinitely many k, 
by the same reasoning as in the proof of theorem 17, the sequences pm-,.w 
(k = 1, 2, ... ) cannot be equi-µ-uniformly distributed. 

Finally, since the elements xk form a subsequence of asymptotic density 0 
in w, by the same reasoning as in the proof of theorem 17 we find that 

1 R-1, l (r+ l)N I 
lim 7[ J; N J; x .. dun)-o: 2o:(l - oc). 

R-,.oo r=O n=rN+l 

for all N ~ I. Thus, the sequence ro cannot be weakly µ-well distributed. 
This completes the proof. 

The preceding discussion still ]eaves some open questions concerning the 
remaining possible inclusions between the classes ~HID and ~W1 on the one 
hand and WW on the other hand. Apart from these we mention one particular 
question which so far has not been taken up: Suppose that X satisfies the 
second axiom of countability. Does there always exist a µ-well distributed 
sequence ~ In a recent publication, written after completion of the present 
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paper, BAAYEN and HEDRLfN [l] showed that the answer is yes. Thus the 
hypothesis of existence of a µ-well distributed sequence in theorem 14 and 
theorem 18 (as well as the hypothesis of existence of a µ-uniformly distributed 
sequence in theorem 17) may be replaced by the second countability axiom. 
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