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1. Introduction and preliminaries

Let X be a compact Hausdorff space, let u be a regular normed Borel
measure on X, and let C(X) be the Banach space (under uniform norm
Ifl = sup |f(x)]) of all complex-valued continuous functions f on X. Identifying

reX

measure and corresponding integral on C(X) we shall use the notation u(f)
= [f@)du@). A family & = {(x,,,)v~1: 0 € 8} of sequences in X is called
x

a family of equi-p-uniformly distributed sequences (in German: ,,gleichmifig u-
gleichvertealt™) if for every f € C'(X) and for every real number ¢ > 0 there
exists an integer N (f, £), indepedent of ¢, such that

N
1) £2 5 f@an—pD|S e forall Nz NG

and for all ¢ € 8 (Hrawxga [10]).

The question arises as to the possible size of such a family &, both from
the topological and from the measure-theoretic point of view (section 4).
This question may be modified by restricting attention to sequences of a
special type only, such as the tail sequences of a given y-uniformly distributed
sequence (section 5, 6) or the sequences formed by the successive powers of
a generator in a compact monothetic group {(section 2, 3). In all of these modi-
fications, a common feature of the answers to the above mentioned questions
is the following: such a family & will in general be in some (topological) sense
nowhere dense, it may be enlarged to one which is in some (topological}
sense closed, and if the set of all sequences in question in some natural sense
is given the measure 1, then @ may have measure abitrary close to 1.

Before taking up the subject in detail we mention two facts which we shall
have to use. First, in order to show that the sequences of a certain family &
are equi-y-uniformly distributed it obviously suffices to establish (1) for the
functions f of a fixed set F' < C(X) having the property that finite complex
linear combinations of elements of F are uniformly dense in C(X) ([10]§2,
[12] Satz 4). This fact will in the following be refered to as Weyl's criterion.

Secondly we note that in the definition given above, C'(X) may be replaced
by the set of all real-valued Borel measurable functions f on X having the
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following property: for every % > 0 there exist real-valued continuous fune-
tions f, f, such that f, = f = f, and u(f, — f;) = 7. Indeed, we then have
1 N

N N
¥ E ) —pt) =155 3 hea)—ptS g X ) —ph =

n=1 =1 n=

X
S ¥ 3 haloan) - ph) S+ 2 Folara,) — () + 1
and therefore
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Since 7 is arbitrary it is indeed possible to choose N (f, ¢) so large that for ail
N = N(f, &) the right hand member is smaller than a given ¢ > 0, uniformly
ing.

As a consequence, if & = {(%,,,)r~1: 0 €8} is a family of equi-y-uniformly
distributed sequences, (1) will hold for any complex-valued (Borel measurable)
function f whose discontinuities are contained in a closed u-zero set, in par-
ticular for every characteristic function x4 of a subset 4 of X whose boundary
has y-measure zero and for the product of y, with any function f¢ C(X)
(cf. [12] Satz 6, [7] L).

As a case of particular interest, we already mentioned the set of sequences
(@™ ~1 if X is a compact monothetic group and if a runs through the genera-
tors of X. Here, because of the one-to-one correspondence between generators
and sequences, the answers to the questions referred to above may be given
by statements about sets of generators of X. Since it is both instructive and
convenient for our later considerations, we shall first deal with the special
case of uniform distribution mod1 before passing on to more general situa-
tions.

1 X 1 X
= max {‘Tn‘—»‘jl fl(xa,n) "‘:u(.fl) ’ Wnél .fz(wu,n)‘_'/"(fz)

Some of the results of sections 2 and 3 have been announced by the authors in a talk
given in October 1963 in the colloquium on uniform distribution at the Mathematical
Center in Amsterdam.

2, Uniform distribution mod1

Let X be the additive group of reals mod1 and let u be ordinary Lebesgue
measure on [0, 1], It is well known that the sequence (na)y_  is (u-Juniformly
distributed mod1 if & is irrational. Taking in Weyl’s criterion for F the set
of functions f, (x) = e?7t¥= (L an integer) we find that necessary and sufficient
for the sequences (x,,,)n—1 (0 € 8) to be equi-uniformly distributed mod1 is
the existence, for every integer & = 1 and for every real number £ > 0, of
an integer N (¥, ¢), independent of ¢, such that

1 X o,
(8) w & e < ¢ forall Nz Nk, e)

n=1
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and for all ¢ € 8. In what follows we shall denote by [a] the greatest integer
in ¢ and by d = @ — [a] the residue of @ mod1l. This should not cause con-
fusion with the further use of brackets when replacing parentheses or signalling
open or closed intervals.

Theorem 1. Let A be a set of irrational numbers such that the sequences
(na)y..q (@ € 4) are equi-uniformly distributed modl. Then the set of residues
modl 4 = {4: a ¢ A} is nowhere dense in [0, 1[.

Proof. Assume the contrary. Then we can find an integer £ = 1 such that
the set kA is dense in [0, 1[ (mod1). Given any integer N = 1 and anyreal

number § (0 < 6 < 1) we can therefore find a number a € 4 such that ka ¢ [O, %[
{mod 1) and, a fortiori, nka € [0, 6[ (mod1) for 1 < n < N. Thus, for these n, if §

N
has been chosen small enough, €>##7%4 ig close to 1 and so is I%.— D etninka
contradiction to (3). n=1

Corollary 1.1. Let a be irrational. Then the sequences (nma)y_; (m = 1,2,...)
are not equi-uniformly distributed modl.

Corollary 1.2. The family of all sequences (na)y .., (@ irrational) is not the
union of countably many families of modl equi-uniformly distributed sequences.

Corollary 1.3. Let A and A be as in theorem 1. Then A has outer Lebesgue
measure smaller than 1.

Theorem 2, Let § (0 < § < 1) be given. Then there exists a closed nowhere
dense set A of irrational numbers in [0, 1[ such that u(d) = 1 — 8 and such
that the sequences (na)y .. 1 (@ € A) are equi-uniformly distributed mod 1.

Proof. For every integer k = 1 we choose a real number ¢; > 0 in such a
way that

, in

.

ufz €10, 1[: [e@7ike — 1| < ¢} <

8 o

Let 4, = {z €[0, 1] : |e?*i*2 — 1| = ¢,} and let 4 = kQ1A"‘ Then A4 is closed,

consists of irrational numbers only, and we have u(4) = 1 —kZ'l% = ]1—6.

Furthermore, for any & = 1 and for any a € 4 we have

| A 1 |ermidike_1| 2
_— 2 ka| — .
N ngle T et | =

Thus, by Weyl’s criterion, the sequences (na)y_, (@ € 4) are equi-uniformly
distributed mod1 and 4 is nowhere dense by theorem 1.

3. Uniform distribution in eompact monothetic groups

Let X be a compact group which, as a topological space, is Hausdorff,
and let u be normed Haar measure on X. The group X is called monothetic if
there is at least one element a € X (called “generator”) such that the sequence
{(a™)7_ 1 is everywhere dense in X (van Dantzic [2]; of. [4], [9] II §9). As
a consequence, a compact monothetic group is abelian. If @ is a generator

Math, Ann. 161 18
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(and only in this case), the sequence (a*);_ is w-uniformly distributed [3].
If ()%= i8 any p-uniformly distributed sequence in X, then the sequences
(@.y) (y € X) are equi-u-uniformly distributed [10]. We denote by A the
closure of a subset A4 of X. In the rest of this section, we shall omit explicit
reference to Haar measure p in statements concerning uniform distribution.

Theorem 3. Let A be a set of generators of X such that the sequences (a7 ... ¢
(@ € A) are equi-uniformly distributed. Then also the sequences (a™)F_, (a € 4)
are equi-uniformly distributed.

Proof. Let f € C{X) and & > 0 be given. Suppose we have

N
@) % g; flany—u(f)y £ e forall N =z N{f,¢)

and for all a € A. Then, since f(z") is a continuous function of z for every =,
(4) also holds for all @ € 4.

We note that theorem 3 yields another proof of theorem 1 which may be
regarded as a corollary of theorem 3. Indeed, if A4 satisfies the hypotheses of
theorem 1 and if 4 (mod 1) contained an open interval, then 4 would have to
contain rational numbers which certainly are no generators. We may gene-
ralize the statement of theorem 1 in the following form:

Theorem 4. Let X be not totally disconnected and lef A be a set of generators
of X such that the sequences (a™)y_, (a € A) are equi-uniformly distributed.
Then A is nowhere dense.

Proof. By Pontrjagin’s duality theorem ([18] theorem 46, [9] theorem 24.26)
there exists a continuous character d of X such that d(X) = {d(x):2 € X}
is the entire cirele group 7. By theorem 3, without loss of generality we may
assume A4 to be closed. If 4 contained an open subset of X then d(4) would
have to contain an open interval in 7 since d is an open mapping of X onto 7.
On the other hand, sinee d is & continuous homomorphism, d(4) would have
to consist of generators of T only, a contradiction.

Corollary 4.1. Suppose that X is connected and a is a generator of X. Then
the sequences ((a™)x_1 (m=1,2,...) are uniformly distributed but not equi-
uniformly distributed.

Proof. Since X is connected iff its dual group is torsion-free ([18] theorem 46,
{97 theorem 24.25), we have d(a™) = d™(a) + 1 for every non-trivial character d
of X and for every integer m = 1. Thus, a™ is a generator of X ([9] theorem
26.11). The second assertion follows from theorem 4 since the sequence (a™);; ... ;
is everywhere dense in X.

We note that, by theorem 4, the second assertion of Corollary 4.1 even
holds if X is not totally disconnected, but in this case a™ need not any more
be a generator for every m = 2. For convenience of notation we shall denote
the set of all generators of X by G.

Corollary 4.2. Suppose that X is connected and satisfies the second axiom of
countability. Then the family of all sequences (a%); ... 1 (& € G) i3 not the union
of countably many families of equi-uniformly distributed sequences.
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Proof. Under the stated hypotheses, & is a set of second category in X
{[4], cf. [9] 25.27).

Corollary 4.3. Let X and A4 be as in theorem 4. Then u(4) < 1.

Proof. If u(A)=1, then 4 would have to be everywhere dense in X
since every open set has positive Haar measure.

If X is totally disconnected, the assertion of theorem 4 may fail to hold.
In fact, the sequences (a)y_, (@ € @) will be equi-uniformly distributed (see
theorem 5 below) and G may be open (see example following corollary 5.1
below). In order to show this we first establish an auxiliary result. We note
that, in the absence of the second axiom of countability, Zorn’s lemma is
used in the proof.

Lemma 1. Let d be a continuous character of X having the property that
d(X)=T. Then, for every irrational number o there exists a generator a € G
such that d(a) = e?=iz,

Proof. Let D = {d;: A € A} be a complete system of different continuous
characters of X, let d; be the trivial character (dy=1), and let d, =d.
Since X is monothetic there is at least one generator b € G. Suppose d;(b)
=¢2"if; (B, =1). By assumption (d;(X)= T), B, is irrational. Let T, be
the topological direct product Ty = JJ T; (T3 = T for all 1 € A).. It is well

ica
known that the mapping ¢:x - £ = (d;())1c4 € T4 is a topological isomor-
phism of X onto a closed subgroup X = ¢(X) of 7',. In fact, X is the closure
(with respect to the product topology in 7',) of the sequence (%), C T,.
(The notation is chosen for technical reasons and should not be confused with
the notation for residues mod 1 in section 2).

We now choose a maximal system of exponents f;, linearly independent
over the field of rational numbers and including f, = 1 and §;. We denocte by
D' ={dy: A €A’} the corresponding subsystem of D. We now define an
element d of 7' in the following way: first we choose arbitrarily a set of real
numbers oy (A’ ¢.A'), linearly independent over the field of rational numbers
and including o = 1 and &, = o (this may even be done by changing at most
two of the numbers ;). Then we define o« for A € A\A’ by writing 8, as a
finite linear combination of 8;’s with rational coefficients and replacing every
Bx by a;. Now we put 4 = (e2™1%), ,€ Ty If

U@ 2y, Ams &) ={@ = (2" 0)c 4 € Ty | 280 —2™o] < g, k= 1,...,m}

is an arbitrary neighbourhood of d in 7', then we can find an integer n (not
necessarily positive) such that 6* ¢ U(d; 4y, . . ., Ay; £). Indeed, because of our

"
construction of «;, for any lattice point (A, )} ;, the congruence Z’ hy B =

0 (mod 1) implies Z hy, o3, = 0 (mod1). Thus, by Kronecker’s theorem ([14]
VII § 2) the sxmultaneous inequalities

|n By, —oz| < m(modl) (k=1,...,m)
18*
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have a common integral solution » for any choice of % = % (¢). Thus d belongs
to the group X and therefore there exists an element a ¢ X such that ¢ = ¢(a).

By our construction «; will be an integer if and only if §; is an integer.
Since b was a generator of X, this is the case if and only if 1 = 0. Thus, d, (@) +1
for all 2 + 0 and a is a generator of X ([9] theorem 25.11).

Theorem 5. The sequences (a®)y ..y (a € Q) are equi-uniformly distribuied if
and only if X is totally disconnected.

Proof. We apply Weyl’s criterion, taking in place of F a complete system D
of different continuous characters of X. If X is totally disconnected, then
d(X) is finite for every d ¢ D. For every a ¢ G and for every non-trivial character
d ¢ D, we therefore have |d(a) — 1| = ¢; > 0, where ¢; only depends on d.
Thus, for every non-trivial character d, we obtain

N
(5) lé—ﬂé'ld(a") —217 d@ ) —d(a) = ié g forall N= 2
and for alla € G.

T dia)—1 |T Neg— €

If X is not totally disconnected, then there is a character d € D such that
d(X) = T. If the sequences {(a®)7 ., (a € G) were equi-uniformly distributed,
then, by theorem 3, we would have G = G. In consequence, by lemma 1,
we would have d(@) = 7. This, however, is imposgible since 7= is not a
generator of 7 for rational «.

Corollary b.1. @ is closed if and only if X is totally disconnected.

Proof. If X is totally disconnected, the assertion follows from theorem 5
and theorem 3. If X is not totally disconnected, the same reasoning applies
as in the second part of the proof of theorem 5.

Corollary 5.1 may of course also be proved without any reference to equi-
uniformly distributed sequences. As a consequence of lemma 1, G can cer-
tainly not be open unless X is totally disconnected. If, however, this is the
case, then G may well be open as already demonstrated by any finite group
with the discrete topology. Below we shall exhibit a compact totally discon-
nected monothetic group X containing infinitely many elements and having
an open set of generators. This, in connection with theorem 5, shows that we
cannot omit the hypothesis of X not being totally disconnected in theorem 4.

Let T, be the topological direct product of countably many copies of T.
Let a ¢ T, be defined by a = (¢2*%2*)_, and define X to be the closure of
the sequence (a")y_, in T,. Then X is a compact monothetic group ({9]
theorem 9.16). Consider an element b= (272" , ¢ X (b, integers,
1 £ b, < 2%) with the property that b, = 1. Since b may be approximated
arbitrarily close by elements of the form a” (n = 1), for every given integer
m = 1 the system of simultaneous congruences

n=b, (mod2%) (k=1,...,m)
has an integral solution 7 > 0 which has to be an odd integer. Therefore,
there exists an integer »” > 0 such that

1=2'b, (mod2*¥) (k=1,...,m)
and ¢ may be approximated arbitrarily close by elements of the form &*.
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Thus, b is a generator and we have @ = {b = (2"*%2™)_,:b, = 1}. This
set G, however, is obviously an open subset of X of Haar measure % .

The following theorem establishes as generalization of theorem 2 which
we, however, shall use in the proof. We note that, if X satisfies the second
axiom of countability, G is a G,-set and thus a Borel set ([9] 25.27).

Theorem 6. Suppose that X satisfies the second axiom of countability and let
£ (0 < g < 1) be given. Then there is a closed nowhere dense subset @ of G such
that (@) > p(G) — & and such that the sequences (a®)y—., (@ € Q) are equi-
uniformly distributed.

Proof. Let D={d,,:k=0,1,2,...} be a complete system of different
continuous characters of X and let D’ be the subset of D consisting of those
characters d for which d(X) = T (D’ is empty iff X is totally disconnected).
We observe that, 4 denoting normed Haar measure on 7', for every d € D’ and
for every Borel set BC T, we have A(B) = u(d-*(B)). (This may be seen e.g.
by defining a Borel measure A on 7' by this equatlon and checking that it has
all the properties characterizing Haar measure on T'). For every character
d; € D' we may choose by theorem 2 a closed subset 4, of T having the pro-
perty that the sequences (d,(a™));’ -, (dx(a) € A) are equi-A-uniformly distri-
buted in 7' and such that A(4;) > 1 — . We put @ = o Y (Ay) if DY
is not empty and @, = X if D’ is empty Then u(@,) > 1— ¢ and, putting
@ =0; "G, we have u(Q) > u(G)—

Suppose now that a ¢ Q is chosen arbitrarily and that d, € D is any non-
trivial character. If d;,(X) = T, then d,(a) € 4, and

1 ¥ 1 ¥
®  |§ X ae)=|y I @@)y|se foral Nz N

n=1
and for all @ € Q. If d,(X) is finite, then d;(a) = 1 since a is a generator and
(6) holds by the reasoning used in the proof of (5). Thus, by Weyl’s criterion,
the sequences (a")y_ ; (¢ € @) are equi-uniformly distributed in X. By theorem 3
we may replace @ by its closure which will then have the properties asserted
in theorem 6.

We remark that, while no assumption of connectedness is necessary in the
hypothesis, theorem 6 is interesting only in the non-totally disconnected case in
view of theorem 5.

Corollary 6.1. Suppose that X is connected and satisfies the second axiom of
countability. Then, for every given e (0 < & < 1) there i3 a closed nowhere dense
subset A of X such that u(A) > 1 — & and such that the sequences (a™)7. 1 (@ € A)
are equi~-uniformly distributed.

Proof. Under the mentioned hypotheses we have u(G)=1 ([4], cf. [9]
25.27). An application of theorem 6 completes the proof.

4. Uniform distribution in compact Hausdorft spaces

Let X be any compact Hausdorff space and let u be any regular normed
Borel measure on X. Every sequence & = (2,)X. ; C X may be regarded as an
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element of the topological direct product space X, of countably many copies
of X. We denote by U the closure of a subset U of X, in the product topology.
The theorems stated in the previous sections have rather close analoga also
in the present context.

Theorem 7. Suppose that & = {£,€X,:0€ S} is a family of equi-u-
uniformly distributed sequences. Then so is &.

Proof. Let f € C(X) and & > 0 be given. By assumption, we have

N
W) & X @) —p() = ¢ forall N=N(,e)
n=1
and for all o G 8. Let & = (%,)7_; be an arbitrary element of X, and define

Fy() = )_—_,' f(z,). Then Fy is a continuous function on X .. Thus, for
EcE, we conclude from (7) that also

‘ﬁ 2 f@) —pu)< e forall Nz N(f,¢).
n=1

This proves the assertion.

Theorem 8. Suppose that X contains at least two poinis and that & is a
family of equi-p-uniformly distributed sequences. Then & is nowhere dense tn X,

Proof. Assume the contrary. Because of theorem 7 we may assume that &
is closed and therefore contains an open subset U of X . If X satisfies the
second axiom of countability, then, via Baire’s category theorem, this contra-
dicts the well known fact that the set of all y-uniformly distributed sequences
in X is of first category in X, ([12] Satz 12).

If X does not satisfy the second axiom of countability we may argue in the
following way: Without loss of generality we may assume that U is of the form

U= [T U,, where U, is an open subset of X for all » 2 1 and U, = X for all
n=1

n = N;. Let V and W be open subsets of X with disjoint closures. Let f be a

Urysokn function on X (ie. f €C(X) and 0 < f(x) < 1 for all x € X) such

that f(x) = 1 forall z € V and f(x) = O for all x ¢ W. Let N = 3N, be given.

Because of our assumption & contains sequences 7 = (¥,)y—; €U and

= (2,)7-1 €U with the following properties Yn é V for Ny <n < N and

N
2, €W ifor Ny<n < N. We conclude 2 f y,,)> 1{, ) f(z,,)g—;—
noe=l

n=1
Since N was arbitrary, this contradlcts our assumption that & is a family
of equi-y-uniformly distributed sequences.

If X satisfies the second axiom of countability, then, as mentioned above,
the set of all y-uniformly distributed sequences in X is of first category in X ..
This could suggest the idea that, in contrast to corollary 1.2 and 4.2, the set
of all y-uniformly distributed sequences might well be the countable union
of families of equi-y-uniformly distributed sequences. A closer inspection,
however, shows that this still will not be the case in general. Indeed, if X
is a compact connected abelian group satisfying the second axiom of countabi-
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lity (and a fortior: monothetic (9] 25.14) and if u is normed Haar measure
on X, then the set of all y-uniformly distributed sequences in particular con-
tains all sequences (a”); .. ; (@ € G). This set, however, cannot be split into the
union of countably many families of equi-u-uniformly distributed sequences
by corollary 4.2.

In order to state an analogon of corollary 4.1 (cf. [8] theorem 2) we recall
that the shift transformation P in X is defined by P(z,)3 .1 = ¥)y=1
where ¥, = %, ., (1 = % < o).

Corollary 8.1. Suppose that X contains at least two points. Suppose further-
more that & € X, is p-uniformly distributed in X and that, for some subsequence
(my)r— 1 of the positive integers, the sequence (P™ E)_ | i3 dense in some open
subset of X .. Then the sequences P™E (k= 1,2, .. .) are y-uniformly distributed
but not equi-p-uniformly distributed.

Corollary 8.2. Let X and & be as in theorem 8 and suppose that X is the
support of p. Then p (8) < 1.

Proof. Under the mentioned hypothesis, the support of u,, is X,. If &
had p,-measure 1, then & would coincide with X, in contradictiontotheorem 8.

The following theorem and its proof are essentially due to E. Hrawxa
{[10] § 6) who has stated them for the case of a compact group.

Theorem 9. Suppose that X satisfies the second axtom of countability and
let 6 (0 < 6 < 1) be given. Then there exists o closed family S of equi-u-uniformly
distributed sequences such that p,, () > 1 — 4.

Proof. In order to be able to apply Weyl’s criterion we first note that be-
cause of the second axiom of countability there exists a countable set
F={fi:k=1,2,...} ¢ C(X) as described in section 1. Given any k = 1
we again define Fy, y € C(X ) for & = (z,)5-, by

Fux® = X flen).

It is a well known consequence of the individual ergodic theorem ([6], [10] § 6,
[12] § 3) that

Jim v (8= p(f)

for . -almost all £ ¢ X . Therefore, by Egoroff’s theorem ([5] § 21 A), there
exists a measurable subset &, of X, of measure u(S;) = 1 —-—26; such that

the functions F, y converge uniformly on &, for N - oo . Taking &, =.N.&

we obtain u. (&) = 1 — 8. Furthermore, for every k= 1 and for every
given £ > 0, we have

N
e Z fula) —p(h)| S ¢ forsl Nz Nifye)

and for all £ = (x,)%., € @ = &, An application of Weyl’s criterion leads
to the assertion.
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5. Almost well distributed sequences

Let X be a compact Hausdorff space and let u be a regular normed Borel
measure on X. As in the preceding section we denote by P the shift trans-
formation in infinite product space X .. A sequence & € X, is called u-well
distributed if the sequences P™& (m =1,2,...) are equi-y-uniformly distri-
buted (Hrawga [10], PETERSEN [17]). While under the assumption of the
second axiom of countability u.-almost every sequence is y-uniformly distri-
buted ([12] Satz 11), u-almost no sequence is u-well distributed if x is not
a point-measure ([8)] corollary 2.1). We shall now apply the results of the
preceeding section to some questions connected with the concept of good
distribution.

Theorem 10. Suppose that the sequence & ¢ X, is u-well disiributed. Then
0 1st every sequence in the closure of the set & = {P™&:m=1,2,.. }.

Proof. By theorem 7, @ is a family of equi-y-uniformly distributed sequences.
If 7 belongs to &, then so does P™ for every m = 1.

As an illustration in the case of uniform distribution mod 1 we note that, if
a is irrational and if £ is the sequence (na)Y_, (mod1l), then & is the family
of all sequences (na + b)y_; (modl) (b € [0, 1).

We shall call a sequence & € X almost y-well distributed if there exists an
infinite subsequence (m,);—, of the non-negative integers such that the se-
quences P™¢& (k= 1,2,...) are equi-u-uniformly distributed. If we want to
refer to this particular subsequence we shall call & almost y-well distributed
(m)5 1- Note that the very definition implies that an almost pu-well distri-
buted sequence is g-uniformly distributed.

Theorem 11. Suppose that & € X, is almost y-well distributed (m)y_ and
let b be any positive integer. Then & is also almost p-well distributed (my + R)g - ;.

Proof. For any given f ¢ C(X) and for any £ > 0 we have

1 my+ N
Ly f(x,,)_p(f)}gs forall N = N(f, ¢)
0=+
and for all £ = 1. We conclude
mk+h+N mg+ N+ B my+ b
v fa—nt|s |y X fad— X f)+
numg-i-h +1 ne=mp+N+1 n=mg+1
1 mp+ N
tly X e —pi)s
”n=my+

2h{ifﬂ < 2¢ forall NZmax(N(f £}, 2hW”)

and forall k = 1.

Corollary 11.1. Let £ and h be as in theorem 11. Then the sequences P™+ " £
(Im| £ h, k=1,2,...) are equi-u-uniformly distributed.

Proof. By theorem 11, for every fixed m, the sequences P™+™£ (k= 1,2,...)
are equi-p-uniformly distributed. Taking the union of these finitely many
families of sequences, we again obtain a family of equi-u-uniformly distributed
sequences.
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Corollary 11.2. Suppose that & € X, is almost p-well distributed (my)y ..,
and that the differences {m, ,,— my) are bounded. Then & is p-well distributed.

Proof. Put my= 0, let b =max (m,, ,—m;) and apply corollary 11.1.
=0

If we compare these statements with the results of the previous sections,
we may regard corollary 11.1 as some sort of analogon to theorem 3 and theorem
7. In fact, it asserts that, restricting attention to the subsequences P™¢ of
a given u-uniformly distributed sequence &, every family of equi-u-uniformly
distributed subsequences P™ & (k = 1, 2, . . .) may be enlarged by an operation
similar to taking the closure, referring, however, not to a topology but to the
concept of relative density of a set of integers. In this sense, corollary 11.2
appears to be an analogon to theorem 4 and theorem 8 if we state it in the
following form: Suppose that & € X, is not p-well distributed and suppose that
the sequences P™§ (k==1,2,...) are equi-u-uniformly distributed. Then the
sequence of inlegers (my)y’.. 1 is not relatively dense (i.e. it is not possible to find
a positive integer % such that every interval of length % contains at least
one integer m;,).

The following theorem again stems from a remark of E. Hrawrka ({10]
last paragraph; the statements "’jede Folge* and “offene Menge* in the passage
referred to are erroneous). In the context just mentioned, it establishes an
analogon to theorem 6 and theorem 9.

Theorem 12. Suppose that X satisfies the second axiom of countability. Then
Yoo-almost every sequence & € X is almost p-well distributed. In particular,
foo-almost every sequence & € X, has the following property: given any 6 (0<<d<1)
there exists a subsequence (my)i.., of the non-negative integers of asymplotic
density greater than 1 -— & suck that & is almost p-well distributed (m)y_ 4.

Proof. By theorem 9 we can find a sequence of families &; of equi-y-uni-

formly distributed sequences such that g, (&) = 1 ——;—(7' ~1,2,...). We

note that P is a p.-measure preserving ergodic transformation in X_ [6].
By the individual ergodic theorem, there is a subset §; of X such that
e (Z;) =1 and such that for every & €&, the sequence of exponents m,

for which P™£ ¢ &; has asymptotic density u,(&;). Taking & 3591 %; we
obtain p. (%) =1 and every &¢ & has the property stated in the theorem.

6. Almost well, weakly well, and completely uniformly distributed sequences

Let, as in section 5, X be a compact Hausdorff space and let 4 be a regular
normed Borel measure on X. In view of theorem 12 we are led to consider
the following classes of sequences in X and to ask for the set-theoretic and
measure-theoretic relations between them:

U={&cX: &is y-uniformly distributed}.
AW = {£ € X & is almost u-well distributed}.
AW, = {£ € X, : for every 6 (0 < & < 1) there exists a subsequence (m,){ .,
of the non-negative integers of asymplotic density greater than 1 — o
such that & is almost p-well distributed (my)p-. 1}.
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AW, = {£ € X, : there exists a subsequence (my)i = 1 of the non-negative integers
of asymptotic density 1 such that & is almost p-well distributed (my)y- 1}

W= {£ € X,,: &1is p-well distributed}.

Obviously we have U > A O AW, D AW, > W. Furthermore, if the second
axiom of countability is satisfied, we have . (A%W,) =1 by theorem 12 and
oo (W) = 0 if u is not a point measure by [8] corollary 2.1. In what follows
we shall show that, under these hypotheses and in the presence of u-well
distributed sequences, each of the above inclusions is strict and p, (UW,) = 0

In this context it seems appropriate also to clarify the relations between
the properties of a sequence & € X, to be almost y-well distributed, weakly
p-well distributed in the sense of Huawka [11] and completely p-uniformly
distributed in the sense of KoroBov [15] (cf. [13] § 4). We shall therefore also
consider the following classes of sequences in X :

BWW = {5 € X & is weakly p-well distributed, i.c. for every f € C(X) we have

lim li 1 R-1 1 (r-;_})N ’ }
i im Sup-g- N id Tp) — =0;.
N-—soo R-)ong ré:) Nn=rN+1f( ) ,u(f)

CU={£cX,: & is completely p-uniformly distributed, i.e. the sequence
(P E)m =1 88 poo-uniformly distributed in X }.

Again, it is well known and easy to see that we have UDEU and
US> WW D W. Furthermore, if the second axiom of countability is satisfied,
we have u., (€U)=1 (replacing in the corresponding statement about uni-
formly distributed sequences X by X and u by u..), te (W) =1 by [11]
Satz 2 (cf. theorem 16), and €U N W = P by [8] theorem 2 if u is not a point
measure. Thus, u-almost every sequence & € X, is at the same time almost
u-well distributed (even in the sense of AMW,), weakly u-well distributed, and
completely u-uniformly distributed. We shall show that, in fact, €U N AW, =9
if p is not a point measure, thus establishing u. (A¥B,) = 0, and that, in the
presence of u-well distributed sequences, all inclusions in the chain U > WW O W
are strict. In particular, we have WO AW, but W D AW. Part of the
proofs will be carried out by explicitly constructing sequences that are of one
type but not of the other.

Let us note again that, in the definition of weakly y-well distributed se-
quences, we can replace C(X) by the larger class of functions described at the
end of section 1. In fact, if &£ € X, is weakly u-well distributed and if f, f;, f;
are real-valued Borel measurable functions (f; € C(X), j =1, 2) satisfying
hfsfoand p(fy—f) = —%, then we can choose N (f, £) so large that for
all N = N(f, £) we have

. 1 B=1j, C¢+D¥N i
imsup— 3 = 3 fiw)—pf) =5 (=12).

R+ oo r=0 n=yN+1
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By (2) we conclude
ot S R
T e
RSP R 2 [V, &, (@n) — p{f)
< Simep L TL YT ) Ll ts
= up —- l— x,) — ’ 5= €&
N B> Rr=0 Nn=fl<7+1 ! #ils 2

This proves our assertion.

We now proceed with the detailed exposition of the statements outlined
above. The proof of the following theorem is, with some slight modifications,
the same as the proof of theorem 2 in [8]. We shall, however, reproduce it
here for the convenience of the reader.

Theorem 13. Suppose that p is not a point measure and suppose that
E= (@, )p 1€ X, 18 completely p-uniformly distributed. Then & is not almost
p-well distributed with respect to any subsequence (m.)i.., of the non-negative
integers of asymptotic density 1.

Proof. Assume the contrary and let I = (m,)p.. ; be a subsequence of the
non-negative integers of asymptotic density 1 such that & is almost u-well
distributed (m;)7.. 1. Since g is not concentrated in one point we can find an
open set 4 ¢ X such that 0 < u(4) < 1. Without loss of generality we may
assume that the boundary of 4 has y-measure zero. Let ¥ = 1 be given and

let A, = JT A, where A, = A for1 <n< N and 4, = X for n > N. Then
n=1

A, is open in X and its boundary has y-measure zero. Furthermore, we have
0 < p,(4,) < 1. Since the sequence (P™£);._, is by assumption p.-uni-
formly distributed in X, and since 9 has asymptotic density 1, so is the
sequence (P™ &) .. Therefore, there exists a positive integer k(N) such
that P™wE ¢ 4 . Hence, for every choice of N = 1, we have

1 MmN
¥ 2 ta@w)—pld)=1-—u(4)>0.
7= my o+ 1
This, however, contradicts our assumption that £ is almost u-well distributed
(my)i’= 1 (1f the support of y is X the theorem can also be derived from corol-
lary 8.1).
Corollary 13.1. Suppose that X satisfies the second axiom of countability and
that p is not a point measure. Then u., (AW,) = 0.
Proof. Under the mentioned hypothesis, we have u.(€U) = 1. The state-
ment then follows from theorem 13.
Corollary 13.2. Suppose that X satisfies the second axiom of countability and
that u is not @ point measure. Then AW, 2 U,
Proof. The statement follows from theorem 12 and corollary 13.1.
Theorem 14. Suppose that X contains at least two points and that there exists
a pi-well distributed sequence. Then there also exists a sequence & € X ,, constructed
explicitely below, which is not u-well distributed but almost u-well distributed
(m)P— 1 where (my)f.. | has asymptotic density 1. Consequently we have ALB, 2 B.
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Proof. Suppose that the sequence 5 = (¥,)7'=1 € X, is p-well distributed
and let @ € X belong to the support of u. We then choose a point b==ain X
and construct a sequence § = (x,)7— 1 € X, by induction as follows: Let o; = b.
2z, ..., 23 (h = 1 an integer) have already been defined such as to comprise
all elements y, with & < A% h(2h — 1), thenlet x, (b* < n = k% + 4534647
be the next 44°% + 642 consecutive y,’s and let a, = b for At 4 4% + 642 <
<n < (h+ 14

Obviously, due to the increasing stretches of &’s which certainly do not
cover the support of g, the sequence £ is not u-well distributed. If we allow m
to run through all integers satisfying b* < m < b4 4+ 4h%* (h=1,2,...), then
it is eagy to see that this subsequence IR of the positive integers has asymptotic
density 1. We shall now show that the corresponding sequences P& (m ¢ M)
are equi-p-uniformly distributed.

To this purpose, let f € C(X) (f == 0) and ¢ > 0 be given and suppose that

1 m+ N €
}"i 2 f(?/n)‘“ﬂ(f}}§§ forall Nz N(f,¢)
+1

and for all m = 1,2, ... It will suffice to show that

1 mrN
(8) }T Z+1f(xn)”l‘(f);§£ forall N = N(fe)

and for all m ¢ M which are greater than the fourth power of some fixed integer
4H 41
6H2 4+ 4H 41

< TIT?W and 6H2 = N(f, ¢). For a fixed m € M, m = H?, let us denote by N’
the number of elements «,,,, (1 =< 7 < N) chosen from the sequence #» and
by ) f(x,) the sum over these elements. For all N = N(f, &) we have

N’ = N{f, ) because of h* < m < bt + 45% and 64% = 6H? = N{(}, ¢). Thus
we obtain

H=H }, £). Infact, we choose this integer H insuch a way that <

1 m+ N N’
’1\7“2%’ f(xﬂ)‘“ N N’Z f(xn)'{“ N f(b)
3 Z e — YT 3 ) + 2 1 0)
and
1 m+ N

= me%MMQ%ZWm~MWME%£Mé

(9) n=m+1
<+ +2 550

Because of our construction of & and of the restriction imposed on m we have

N—N' 45+ 1 4H 4-1 €
JOAE Y By v g Sy gy g g1 I
This, in connection with {9), proves (8).
In order to establish the inclusion ¥IW > AW, we again need a lemma.
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Lemma 2. Let M be a subsequence of the non-negative sntegers of asymptotic
density 1 and let N be given. Then the subsequence R = {r:rN ¢ M} of the
non-negative integers also has asymplotic density 1.

Proof. For any integer M = 1 we define

™M= 31
mEM
m<M
(for other sequences, the counting function » is defined analogously). Suppose
lim inf =220 v(% B _1_26 (0 > 0), contrary to the assertion. We then have

R-—>00
(M BRN) < »(R,R)+ (N—1)R forevery R=1
and therefore
»@RN) _ 1 »@® R -1 1 N—1 s
vt sy G T g -+ =1
for infinitely many R, in contradiction to our assumption.

Theorem 15. Suppose that the sequence & = (x,)y -1 € X, is almost y-well
distributed (m;)g~1 and M = (my)p~ 1 has asymptotic density 1. Then § is
weakly p-well distributed. Consequently, we have WIB O AW,.

Proof. Let f € C(X) and ¢ > 0 be given and let

2 e |5 e foral Nz NG9
m+1

and for all m ¢ M. Fix any N = N(f,¢) and let R={r=0:rN cM}.
Furthermore, let R’ be the subsequence of the non-negative integers, comple-
mentary to R. Then we have

(r+1)N
aN.r=!f" ZN' f(x,.)—,u(f)‘s.s forall reR

r¥+1

and ay,, < 2 |f| for all » = 0. Since R has asymptotic density 1 by lemma 2,
R’ has asymptotic densﬂ;y 0. We conclude

1 R—1
f Z’O aN;r f Z'anf+ 2 a’N,r) =

r= reR
r<R r<R
<2 2B ol <2 foral Rz R,.
As a consequence, we have
R—1
liIIfnsup-Ile— 3 ay, <2 forall N=N(,e)
—>x r=0
and, since £ was arbitrary,
1 R-—-1 1 (1‘+1)N
lim lim sap —- — Z,) — =
Jm tmewp gy X | X fe) —ul)

For the case of a compact group X with normed Haar measure y, the
following theorem has been proved by HLawka ([11] Satz 2). In order to obtain
an even sharper statement, the proof given there actually makes use of group
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theoretic concepts. We shall therefore give another proof here which makes
use of ergodic theory and is valid also in the more general situation considered
in this section (the possibility of this approach has also already been mentioned
by HLawka).

Theorem 16. Suppose that X satisfies the second axiom of countability. Then
Hoo-almost all sequences & ¢ X, are weakly p-well distributed.

Proof. We note that Weyl’s criterion holds for weakly u-well distributed se-
quences just as well. We therefore choose a countable subset F = {f.:k
=1,2,...}C0(X) as described in section 1 and fix a function f = f, € F (f = 0).
We then define the function Fy ¢ C(X) for £ = (x,)7_ 1 by

1 N
Fy@)=|z X @) ——f‘(f)i :

Since p,-almost all £ € X, are y-uniformly distributed, we have glm Fyi&)=0

for p-almost all £ € X .
Let the integer j = 1 be given. By Egoroff’s theorem ([5] § 21A) there

exists a subset &; of X, such that u. (&;) >1 “Z;HTH and such that the
functions F'y converge to zero uniformly on &;. Let N (j) be chosen in such a
way that Fy(§) < —17— for all N = N(j) and for all £¢&;. We fix an integer

N = N(j). By the individual ergodic theorem, applied to the ergodic measure
preserving transformation P¥ in X, for all & in some subset € (f,, N)c X
of u.-measure 1, we have Pr¥ £ ¢ &, for all r = 0 except for a subsequence

(ra)i— 1 of the non-negative integers of asymptotic density smaller than WIW

For every such & = (z,)x_1€Z(f,j, N) we obtain

. 1 R~1 1 (r+ 1N
lmswpy X |y X fed—ud)

R0 r=0 n=yrN

R~-1
= lim sup—ll? 2; Fy(PriE) <
# o

R~» oo

r s B—1 0 SR-1

. 1
_ghmsup(?— 2 Fy(P¥&)+ 4 y 2 2||f">§
Fiice Fitee,
1

2 1
St LI T

For every £ ¢ . =Bl’}‘r(}) Z(f,4, N) we therefore have

R—1 (r+ 1N
lmswpk ¥ |l X f@)—p)s G forall Nz NG)
R . i

B re=0 ne=r¥N+

and for every £ € Z{f) 2591 NaﬂN(i)Q(f, i, N} we have

R=1yy (+DN
[+

Iy X te—pp|=o.
£ 0 N+1

oy

. . 1
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Taking € =&Qlﬁ(fk) we finally have (%)= 1 and, by Weyl’s criterion,
{10) holds for all f ¢ C(X) and for all £ = (z,)7.:€Z.

Corollary 16.1. Suppose that X satisfies the second axiom of countability and
that p is not a point measure. Then TWW 2 AW,.

Proof. The statement follows from theorem 16 and corollary 13.1.

In view of the inclusion WD AW,, theorem 14 furnishes an example
of a sequence which is weakly u-well distributed but not u-well distributed.
Our last two theorems will be concerned with constructions of sequences
belonging to the (differences of) classes U\(ALB W) and AW\(AWB, w WWB)
respectively.

Lemma 3. Let A be a closed subset of X with u-zero boundary and such that
p(A) = oo > 0. If the sequence & = (x,)7 .. 1 48 p-uniformly (resp. u-well) distribu-
ted in X, then the subsequence n = &£ N A = (y)¢~ 1, consisting of all elements of
& lying in A, is % p-uniformly (reap. -:; ,u-well) distributed in A, considered
as a compact Hausdor(f space in the relative topology.

Proof. Since every continuous complex-valued function on A4 is of the form
fxa (f € C(X)) by Tietze's extension theorem, we have to show that

W fim | 5 frate) — % elza| =0 forall fe0W),
resp. that

. 1 m+ N

Jim L X fran) — ] =0 forall [€0(X)

uniformlyinm = 0, 1, 2, .
Let f € C(X) be given and suppose first that £ is y-uniformly distributed
in X. For every given integer N = 1 we define N’ to be the smallest integer
%

having the property that ' x,(%,) = N. Thus, we have N’ = N and
n=1

. N 1
Nhflco AN = w 'N._Mo N, Z 2alEn) = 1.

From the identity

N , e
¥ 2 ) — g uttna| = [ 2 frate) — pliza

we then deduce (11).

Suppose next that £ is y-well distributed. For every mt;eger m = 0 we now
+1
define 7’ as the smallest integer having the property that Z Yalwg) =m + 1,

m + N(m)
and N (m) as the smallest integer having the property that 3’ x4(x,)= N.

n=m +1
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Thus, we have N (m) = N. Furthermore, by the same reasoning as above, if N

is greater than a fixed integer N, independent of m, then NLI ) is elose to 1
and the difference
1 m+ N ozN(m) 1 m’+N(m)

Wk=§+1fXA(yk)——H(fo)“‘_ N Wy, & fral)—plfrl)

ne=m 41

is close to 0, uniformly in m = 0, 1, 2, . . . This proves the assertion.

Theorem 17. Suppose that y is not a point measure and that there exists a
p-untformly distributed sequence. Then there also exists a sequence §€ X,
constructed explicitely below, which is p-uniformly distributed but not almost
u-well distributed and not weakly p-well distributed. Consequently we have
U2AW and U 2 WBW.

Proof. Let 4 be a closed subset of X with u-zero boundary and such that
0 < {4} = a < 1 (our hypothesis on y implies the existence of such a set 4).
Furthermore, let B be the closure of the complement of 4. Then also B has
p-zero boundary and we have u(f) = u(fys) + u(fys) for every f¢C(X).

By lemma 3 there exists a sequence = (¥)i -1 Whieh is 1 p-uniformly distri-

buted in 4 and a sequence( = (z;);. ; which is y—— p-uniformly distributed

in B. We construct the sequence & = (z,);7_ by mductxon as follows: Let
Ty =2, By=2y Hay, ..., z (;,) (A = 2) have already been chosen such as to
2

g vy

comprise certain initial segments of the sequences » and {, then let z, (;,) 1
2

ey

z, (;)4-2[& . be the next 2[ha] consecutive y,’s and let x, ( )+2[ka}+1

z, (;, + 1) be the next 2% — 2 [h«] consecutive z;’s not yet incorporated into the
2
sequence £ to be constructed.

We first show that the sequence £ constructed in this way is y-uniformly
distributed in X. Let f € C(X) and ¢ > 0 be given. For a given integer N = 2

we determine the integer % in such a way that 2 (h) =N<2 (h + 1) Further-
more, we define N, (resp. N,) to be the number of y;'s (resp. 2;’s) occurring

among the first 2 () 2,'s. Thus, we have N,, = N, + N, = 2 (3) and

Zf(x'n)— h=

n=

)d

_x

Q

2

{1‘: [ fyk)"—?/“(ll‘i)]‘l' lf,v -%*1]/40%4)}4“

Yt ?lo—- 2[;—:

g
£

i N{ZZVV [721e 7 el + | liu~1]u(/xn)}+
A Hf(xn)—(N—-N“)u(f)] ;
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here 3 and }3; denote the sums over the y,’s and z,’s respectively, occurring

Y z
among the first N,,x,’s, and the third term disappears for N = N,,. In view
of th N, = lim N, = oo we obtain, for all sufficiently large N,

I .
«

¥ 2 fe) —uth] S Fret

¥t e w1+

Evidently, for sufficiently large N, the last term becomes smaller than e.
Furthermore, we have

N, _ 2[«]+2-[2e] 42 [3a] 4« + 2[(h— )]
N,e 2 1+22+2:3+F--+2-(h—1) .

Therefore, we conclude lim = ¢ and, by a similar reasoning, hm N,

N—ooo N” Noo N,,
= 1—o. Thus, we obtain

2 fe— ] < 4

for all sufficiently large N.
We next show that £ is not almost u-well distributed. In order to

do this, for every given integer m = 2 we estimate the difference
m+ N

1

2 e
n=m+1

guish four cases, depending on the choice of m.

1)2()£m<2()+[hex] We choose N = 2()+2[ha]—-m Then
we have N > [ha] and

from below for suitably chosen integers N. We distin-

1 m+ N
I_Z\T Z xA(xn)—-cx]—-l—oc>0
fn=m+

2) 2 (2)+[ha}<m<2()+2[hoc] We choose N=2("7')—m.
Then we have N > 2k — 2[ha] and

1 m+N j [he] o
¥, 2  talm) = max T " T S T <%
Therefore, we obtain
m+ N

1—a
{.N Z+ xA(xn)—aIg“—2““=&-2_¢>O.

3) 2(5) + 20l = m<2(3) + b+ (hal. We choose N =2(*F 1) —m.
Then we have N > b — [ha] and

1 m+ N
¥ 2 ) —d—a>0.

n=m4
Math. Ann. 161 19
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4)2()+h+[haz]sm<2( We choose N=2(’“2”)+
+ 2[(h + 1)a] — m. Then we have N > 2{(h + 1)«] and

k+1)

;] mN 2{(h + D]
7,2, X4 2 T T e+ D

For large & the right member is close to -1—%—; > o. As a consequence, for large
h we obtain

1 mi¥ 1 2« z l—a
iwns§+1x‘i(wﬂ)~al§—§(——~——i+m-—ac)=-2—' 17w >0.

Choosi . ( 1 —u i.l—a
oosing now ¢ = min{a- 5 2’2 1Fa

positive integer N, for every integer m which is larger than a certain constant
M depending on N, we can find an integer N,, = N, such that

), we see that, given any

1 m-+ Nep
N

™ pe=mtl

tal) =z e

It is therefore not possible to select an infinite increasing sequence of integers
m; in such & way that the sequences P™§ (k= 1, 2, .. .) are equi-y-uniformly
distributed. Thus, £ is not almost u-well distributed.

Finally we show that the sequence & is not weakly u-well distributed. In
fact, we shall prove that, for every fixed integer ¥ = 1,

-1 1 (r+ 1N

2 2 2al@n)—aj=2a(l —a).

R-»oo R o= @ =y N + 1
To this purpose it will suffice to show the following: Given any integer b = 2,
leb (X n 115 -« > Zran n) (Th_y < T = 73) be those blocks of N consecutive ele-
ments of £ that have some overlap with the block of 2 [A «] consecutive elements
1y, and 2% — 2[ha] consecutive elements z;, but no overlap with the following

block of 2[{(k 4+ 1)a] consecutive elements y, and 2(k + 1) — 2[(h + 1)«]
consecutive elements z; in the same sequence £. Then

Jim — 5 Y e = 2401
im ———— = X)) — )= 20(l —a).
hroo Ta——They ,_,::1+1 aan-i-le " )
(We note that—«—-—-lsr,,mr,, 13 +1 From this follows hm (ra—rn_y)
= co and 1 noo(] LD
ot S
heroo Th—Tp-1 P tpgt 1l N »

n=rN+1

(r+1)N

""n“i’i R ,,_0 ‘N §+1XA(W,.)-¢{)-
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Indeed, if % is sufficiently large, for approximately 2[ha] (at least 2(ha] 2)

N N
1 @+DN
values of r{r,_y< r = r;) the difference d, = JT&"' Y qala)— ‘xl will have
o= rl\f +1
the value 1 — g, while for approximately 2h— ;‘ [ha] (at least gf:ﬁi"_@ﬂ _ 2)

values of r(r,_;<r < r;) this value will be « and for at most two values
of r, d, will be different from « and 1-— & but bounded above by 2. Thus
we obtain

1 oL ey
lim ——— — C: )-—aI
h—roo 'n—Th_ P Nnﬂ,N+1 "

- h—0 2h

N 2[ha}(l 2h —2[h
20— o) k@b =20 _ gy

This completes the proof.
In the mod1 case, a less abstract example of a sequence enjoying the pro-

perties mentioned in theorem 17 (having also served as a model for the con-
1

H ? ’

) . Sequences of this type have been consi-

struction carried out in the proof) is furnished by the sequence (0, 0

1 2 1 2 3 1
Ry S e Rl SR
dered in [16] in connection with the rearrangement of arbitrary sequences,
every where dense mod1, to mod1 uniformly distributed sequences.

Theorem 18. Suppose that p is not a point measure and that there exists
a p-well distributed sequence. Then there also exists an almost y-well but not
weakly p-well distributed sequence w ¢ X, constructed explicitely below, with the
following property: if M = (m,)7 ., is any infinite subsequence of the non-
negative integers such that w is almost p-well distributed (my)y-. 1, then M has
asymplotic density 0. Consequently we have A 2 AW, and W D AW.

Proof. As in the proof of theorem 17, let 4 be a closed subset of X with
#-zero boundary and such that 0 < u(4) = a < 1, and let B be the closure of
the complement of 4. Let & = ()7 ; be a sequence which is u-well distributed

In X, let = (y;){>, be %‘« p-well distributed in 4 and let { = (z,)n~1 be

i—, u-well distributed in B (cf. lemma 3). We construct the sequence

® = (4,); -, by induction as follows: Let u; = 2,. If 4, . . ., up (B = 1) have
already been chosen such as to comprise certain initial segments of the sequences
& mand §,leb upey g, ..., Ups 4 gpr4 1 DE the next 642 4 1 consecutive z,’s, and
leb wp gpatg, ..., gy consists of the 2h% -+ 2 consecutive blocks of 24
elements each (referred to in the following as ‘“yz-blocks”), which in turn consist
of the next 2[ha] consecutive y,’s and, immediately following, the next
2h — 2 [ha] consecutive z,’s not yet incorporated into the sequence w to be
constructed.
We shall first show that the sequence w is almost p-well distributed (A5
To this purpose, given any f € C(X) and any ¢ > 0, we choose N, such that,
19*
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uniformlyin 2 =1, 2, .

1 E+N

¥ 2 f@)—ul)]se

E=kh+1

1 R+ N 1

N f(?/z)—';l‘(fXA)lés forall N=N;.
I=h+1

h+ N

¥ ) Ty w5 ¢

m=~h41

Furthermore, we choose the integer H such that min (2 [H «],2H—2[Ha])= N,

and such that max (6};1 - 1 [ZZ] —1], [ RE— ——1! s ¢ for all b = H.
Let now A= H and N = N, be given. We deﬁne N, to be the number of
z;'s among the elements wuz q, ..., Up . y. Furthermore, consider the yz-

blocks completely covered by these elements and let N, and N, be the number
of the y,’s and z,’s contained in all of these yz-blocks respectively. We set
N,=N,+N,and N,=N—N,— N,— N,. Then we have

1 M+ N N, 1
¥, %, f—p)=F [Tv;.i:f(xaw(f)] +

+z\lf;,{N[ Z o) — u(fu)]Jr[fzvv —l]""“}

[ e —1=g b (fxB>]+[(—1__—N;W7—1]u<fxB)}+
+L [2 f(un)—N.,mn] ,

Here the sums 3, 3, 3’ are extended over the corresponding N,, N,, N,
v

& 2
elements z,, y,, 2, respectively. The second and third member disappear if
N < 6h*+ 1+ 2h; the fourth member also may disappear and contains a
sum 3 over N, tail elements where N, (if positive) is less than the number

“
of elements in the unfinished yz-block. Taking absolute values, because of
Nz N and 642+ 1 = min(2[h«], 2k —2[ha]) = N, we obtain

1 MtN

7,2, fo)— )]sy

R “{—%H:ﬁ;—l!lmih
Rer e [t — 1) +
2h

it 2=

-+

+

—1{If1 + el -
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Let the integer ¢ = 1 be chosen such that (A + 71— 10 <A+ N < (b + 94
We then have, for some integer § = 0,
Ny,=2h2R+2)+ 2+ 1) 2GR+ 12+2)+ - +2(+i—1)-]
Ny =2[ha] 2R+ 2) + 2[(h + 1)a] 2( + 1)*+ 2) + -+ + + 2[(A+i—1)a]"j
N,=20—[hal) CR2+2)+ 2R +1—[h+ D) CR+12+2)+ -+

+2h+t—1—[h+i—1)al) ]
and therefore
. (M [(h 4+ i——l)a])

min (5=, . T

N
Y < max

N ([hha}’” [(h—{—i—l)a]).

= TR Fi—1

v

By our choice of A= H we conclude t;;:, -—1] = & and, analogously,

(T;%)‘zv““llé ¢. Thus we obtain
] MW
|’1{7“ P f(”fn)—,u(f)lée+3s|[fll forall N = N,
n=h+1

and for all 2 =z H. This proves that  is almost y-well distributed (A5 ,.

Suppose next that the subsequence M = (m,);.., of the non-negative
integers has positive upper asymptotic density. We shall show that the se-
quences P™q (k= 1,2,...) cannot be equi-y-uniformly distributed. Con-
sider the set of positive integers N = {n:ht —6(h — 1) < n < h* 4 642 for
some h=1,2,...}. Since N has asymptotic density zero, infinitely many
my, € MW must lie outside of N and therefore satisfy the inequality

A4+-6R2+1<Sm < (h+12—6k2—1 (A= 1 aninteger)
g

It follows that the element u,, . ; belongs to some yz-block of length 2% and,
since my + 4k < (h 4 1), the elements u,, ., (1 < n < 4h) cover at least
one complete yz-block of length 2%. Since this happens for infinitely many %,
by the same reasoning as in the proof of theorem 17, the sequences P™w
(k=1,2,...) cannot be equi-u-uniformly distributed.

Finally, since the elements x; form a subsequence of asymptotic density 0
in @, by the same reasoning as in the proof of theorem 17 we find that

.1 Rl @+n¥

dm g Xy X talw)—aj=2e1—a).
for all N = 1. Thus, the sequence w cannot be weakly u-well distributed.
This completes the proof.

The preceding discussion still leaves some open questions concerning the
remaining possible inclusions between the classes A and AIB; on the one
hand and 098 on the other hand. Apart from these we mention one particular
question which so far has not been taken up: Suppose that X satisfies the
second axiom of countability. Does there always exist a u-well distributed
sequence ? In a recent publication, written after completion of the present
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paper, Baayex and Hepriix [1] showed that the answer is yes. Thus the
hypothesis of existence of a u-well distributed sequence in theorem 14 and
theorem 18 (as well as the hypothesis of existence of a u-uniformly distributed
sequence in theorem 17) may be replaced by the second countability axiom.
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