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Foreword

In this report the properties of commuting transformations are
studied. Without loss of generality we may always assume that the trans-—
formations under consideration form a commutative semigroup that contains
the identity map. For any set of pairwise commuting mappings of a set X
into itself generates a commutative semigroup; and the identity may always
be added to a commutative semigroup without damage to the commutativity.

The concept of a commutative transformation semigroup (F;X) of trans-
formations of a set X into itself involves, in a certain sense, two dif-
ferent notions: the set X that is transformed under F, and the abstract
commutative semigroup F (with composition as the operation of multipli-
cation). The relation between these two notions will be studied here.
There are then a few questions that arise naturally.

In the first place we may remark that every abstract commutative
semigroup (A,.) defines in a natural way a semigroup of transformation
of the set A into itself, If, for a€A, the mapping m(a) of A into itself
is defined by

m(a) (b) = a:-b,

and if furthermore

m(A) ={m(a) : aeA},

then the transformation semigroup (m(A),A) is almost the same as the ab-
stract semigroup (4,.).

Of course a converse of this construction should be considered: how
much can be said about a commutative transformation semigroup, using
only results about abstract semigroups. The second chapter is devoted to
a partial answer of this question. (In chapter 1 a number of definitions
and the basic notations are introduced.) The crucial proposition in
chapter 2 is proposition 2.2,1. It states that under a certain condition
(F;X) can be considered as an abstract semigroup, F being identified with
X in a natural way. This condition is the following: There must exist a
point in X, whose orbit under F is all of X.If this condition is not met,
we can in any case consider (F;X) as a subset of the product of a number
of abstract semigroups; the number of semigroups needed in this product
equals the number of orbits under F, necessary to cover X (cf. 2.5.4.).

This result enables us to give estimates for the cardinal number of a com-
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mutative transformation semigroup.

 In section 2.6 the results are applied to topological spaces, while
in 2.7 we show that some well-known computing processes are based on the
notion of commutativity.

In chapter 3 the approach is the following. It turns out that there
are certain subsets of X, called cycles, with the property that the map-
ping of F, if restricted in a suitable way to such a cycle, form a group.
These cycles are pairwise disjoint, and cover X. They are considered as
the point of a new set r . These elements of [’ can be considered as
groups, owing to the theory developed in chapter 2. In this way we ar-
rive at some natural homomorphisms of the semigroup F into products of
groups with zero (cf. 3.2.5.). Also a theorem on relations between the
cycles is derived (cf. 3.3.1.). It seems interesting that corollary
3.3.4 has a formal resemblance to the Gelfand-Naimark theorem, dealing
with the homomorphic representation of a complex Banach algebra B as a
space of complex-valued continuous functions on the (compact) maximal
ideal space of B. This resemblance is as follows. In 1.2.4, it is proved
that the maximal invariant sets under a transformation semigroup play the
role of maximal ideals. In 3.1.8.,on the other hand, it is shown that
there is a one to one correspondence between the maximal invariant sets
and the maximal cycles. Furthermore we may remark that the complex num-
bers are a group with zero under multiplication. Now corollary 3.3.4.
states that there exists a homomorphism (P of F into the set of functionms,
defined on the space of all maximal cycles under F, and taking values in
groups with zero (one to every maximal cycle). Theorem 3.3.5. also re-
minds one, by its structure, of the characterization of the kernel, of
the homomorphism from the Gelfand Naimark theorem. Of course our results
can not be applied to Banach algebras except after some suitable ''linear-
isation", ’

The end of the third chapter is concerned with applications to the
theory of abstract commutative semigroups.

We mentioned already that to every commutative transformation semi-
group we can associate a system of groups r‘ . This system P can be par-
tially ordered in a natural way. In this way a partially ordered set,

called the skeleton, is correlated to every commutative transformation
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semigroup. In chapter IV we study the relation between a semigroup and
its skeleton. A few examples are given, and in theorem 4.3.3. it is shown
which partially ordered sets can occur as skeletons of commutative trans-
formation semigroups.

In chapter 5 there'are some results concerning the existence of a
common fixed point of a system of commutative mappings. This chapter was
inspired by the so-called "Isbell problem'. This problem is as follows:
is it true or not that every two commuting continuous mappings of the
closed unit segment into itself have a common fixed point? This problem
seems still to be unsolved. In theorem 5.2.2. we prove a result that
assures the existence of a common fixed point under certain very general
conditions. Theorem 5.2.4. deals specifically with the existence of a
common fixed point on the closed unit segment.

In chapter 6, finally, the above methods are applied in order to
estimate the number of mappings in a commutative system of transformations
of a finite set into itself. The best estimate is obtained in 6.1.13. This
estimate is simplified (but also made less precise) in 6.1.14.

I wish to express my gratefulness to Prof. M. Katgtov, who stimulated
the research, the results of which are contained in this report, and to
Prof. J. de Groot, who enabled me to finish this work in the pleasant
atmosphere of the Mathematical Centre in Amsterdam. Furthermore I wish to
thank my colleagues C. Sc. Zden&k Frolik and Mrs. A.B. Paalman-de Miranda
for many good advices they gave me during my work.

I want to thank especially P.C. Baayen, who was of great help to me.
The whole of chapter 3 was written in collaboration with him. We also
worked out together in close cooperation the sum- and product-constructions,.
The example of a non-realisable skeleton is also due to Mr. Baayen. Further-
more he gave me much assistance by reading through and checking the whole

of this report, and by improving some of the proofs.

Amsterdam, November 29, 1962
Zden&k Hedrlin



1. Definitions and notation

1.1, Systems of mappings, mappings restricted to subsets, invariant sets

1.1.1, If X is a set, then XX will denote the set of all mappings of X into
X .

X. If F&€X , we shall write sometimes (F;X) instead of F to stress the

relation between F and X,

If f,geX, then fog denotes the mapping
fog (x) = £(g(x)) for every xe X,
This operation, called composition of mappings, is associative!
fo(goh) = (fog)oh

for all £, g, nexx.
The identity map of X onto itself is denoted by i. It has the property

foi=1io0f=1* for all fexx.

If fexx, we define

fzfof N fOI‘ n=1,2,..- .
It follows from the associativity of composition of mappings that

m+n

m n
f = foft

-1 x
An element feXx is called invertible if there exists:an feX such that

fof =fof=1;

-1
the mapping f then is uniquely determined and is called the inverse of f,

A mapping fe XX is invertible if and only if it is both 1.1 and onto.
A subset F of fx is called a commutative system of mappings of X into
itself if for any f,géF,

fog=gof.

A system FCXX is called a maximal commutative system, if it is a
commutative system and if Fc chx, where G is commutative, implies that
F=G,



1.1.2. If £EX: and Ye X, then the set {f(y):y ey} will be denoted by
£(Y)., If Fc:XX and x € X, the set {i’(x) :fe F} will be denoted by F(x); this
set will be called the orbit of x under F. If Fc XX and YcX, then F(Y) will
denote the set {f(y) :f€F and er} .

Let D be an index set, and for every aé€ D, let Ya be a subset of X.

X
Then, for every FCX ,

(a) Ura)=rU v) ;
aeD a a a
(b) N FEIDF(NY) .
aeDd a a a

X
If f€X and YCX, then f‘Y denotes the mapping of Y into X such that
(le) (y) = £(y) for every yevY.

If FCX® and YCX, then F|Y denotes the set {fly : féF} , and F|| v
denotes the set {f'Y : feF and f(Y)CY} . As F" YCYY, two mappings in
F "Y may be composed.

It follows from the definition, that F(@)=0 for every FCXX.
Here @ denotes the empty set.

X
1.1.3. A set ZcX is called invariant under FcX if f(Z)c Z for every

f eF. Evidently @ and X are invariant under F, and if Z1 and Z2 are

invariant under F, so are Zlf\ 22 and Zlu ZZ'

If Z is invariant under F, and F,.©€ F, then Z is also invariant under

1
Fl' <
A subset Y of X is invariant under FCX if and only if F\Y = F"Y

A maximal invariant subset of X under F is an invariant subset Y of
X, Y # X, such that YCZCX, Z invariant under F, implies Z=Y or Z=X.

The empty set @ is a maximal invariant subset under F if and only if

¥ and X are the only invariant sets under F.



1.2, Semigroups, groups, homomorphisms, isomorphisms,

1.2.1. A semigroup (A;.) is a pair consisting of a non-void set A, and a

binary operation in A that is associative:
a.(b.c)=(a.b).c for all a,b,ce A,
A semigroup (A;.) is said to be commutative if
a.b = b.a for all a,beA,

If (A;.) is a semigroup, and if BCA, Cc A, then B.C will denote the set
{b.c : beB and cec}.

Let (A;.) be a commutative semigroup. A set BCA is called an ideal
of the semigroup if A.BCB. According to this definition, @ is always an
ideal. An ideal B of a commutative semigroup (A;.) is said to be maximal
if B # A and if A is the only ideal of (A;.),Strictly containing B.

There is at most one element a in a semigroup (A;.) such that
e.a = a.e = a for ‘all aeA.

If such an element exists it is called the unit element or unity of (A;.).
Let (A;.) be a semigroup with a unit element e. An element a of A is
called invertible if there exists a be€&A such that

a.b = b.a = e.

Then this element b is uniquely determined; it is called the inverse of a
and it is denoted by a .
If every element of a semigroup (A;.) has an inverse, the semigroup

is called a group.

1.2.2. Let (A;.) and (A';.) be two semigroups, and let ¢ be a map of the
set A into the set A'. The map @ is called a homomorphisy of the
semigroup (A;.) into the semigroup (A';.) if

@(a.b) = p(a). P(b)

for all a,b€A, The map @ is called an isomorphism of the semigroup (A;.)
~1
if it is a 1.1 map of the set A onto the set A', and if ® and @ are both

homomorphisms.



1.2.3, Let (A;.) be a semigroup. If a €A, then m(a) will denote the
mapping b-~»a.b of A into A:

m(a) (b) = a.b , for every beA.

Accordingly, m(A) is the subset of AA consisting of all mappings m(a),
a€A; instead of m(A) we will also write mA, As composition is an associative
binary operation in mA, the pair (mA;0) is a semigroup.

The semigroup (mA;o) contains the identity mapping if and only if

(A;.) has a unit element.

Lemma If (A;.) is a commutative semigroup with a unit element, then the

semigroups (A;.) and (mA;Q) are isomorphic.

Proof
The mapping m : a—»m(a) is a homomorphism of (A;.) onto (mA;o0); as
(A;.) has a unit element e, the map m is also 1.1, . For if m(a)=m(b),then
a=a.e=m(a) (e)=m(b) (e)=b.e=b.

It then follows that m exists and is again a homomorphism,

Remark The assumption that (A;.) has a unit element is essential, as is :.
seen from the following example. Let A consist of two points a,b, and let

. be the binary operation defined by the following multiplication table:

a

b.{| b |Db

Then the semigroup (mA;0) has only one element.

1.2,4, Lemma. Let (A;.) be a commutative semigroup. A set Bc A is an ideal
of (A;.) if and only if it is an invariant subset of A under mA,
The set B is a maximal ideal of A if and only if it is a maximal invariant

subset of A under (mA;A).



Proof
A subset B of A is an ideal of (A;.) if

BoA.B= (J a.B= |J) m2®;
a€A aeA

hence B is an ideal if and only if m(a) (B)C B for every m(a)e mA, that is,
if and only if B is invariant under mA.
It then follows at once that B is a maximal ideal of (mA;.) if and

only if it is a maximal fixed set under (mA;A).

Remark It follows that the study of ideals of commutative semigroups is

included in the study of invariant sets under systems of mappings.

1.3. Transformation semigroups

1.3.1. A system of mappings (F;X) is called a transformation semigroup if
(F;0) is a semigroup. The transformation semigroup (F;X) is said to
be commutative of the semigroup (F;o0) is commutative. Similarly (F;X) is
called a transformation group if (F;o0) is a group. If X is a non-void set,
then (XX;X) is a transformation semigroup.
If F contains the identity map, then this is the unit element of (F;o0).
However, if (F;o0) has a unit element, it need not be the identity map of

X onto itself, as is shown by the example in 1.2.3.

1.3.2. Let F' be a commutative system of mappings of X into itself. If F

is the set of all finite compositions fi o fé o fé O ... fﬂ ,

fiﬁ.F. for i=1,2,...,n, then (F;o0) is a semigroup, and it is the smallest
subsemigroup of Xx containing F'. This semigroup is called the semigroup

generated by F'.

1.3.3. If Fc:Xx is a maximal commutative system, then F is. a semigroup

under composition, and F contains the identity map.



1.3.4. If (F;X) is a commutative transformation semigroup, containing the
identity map, and if Y&X is invariant under F, then (F,Y;Y) is a

commutative transformation semigroup, containing the identity map.

However, if (F,X) is maximal, the transformation semigroup (FIY;Y) need

not be maximal,

Example. Let X={a,b,c,d} , and let F consist of the mappings fl,fz,fB,f4

defined as follows:

1
d d d
f2 b
f3 c d d d.

£ d d d d

Then (F;X) is maximal, Y={b,c,d} is an invariant subset of X under F,

but (FJY;Y) is not maximal, as the mapping g

commutes with all mappings in FlY.

1.3.5. If (F;X) is a commutative transformation semigroup, and YcC X is
invariant under F, then the mapping f—>f|Y is a homomorphism of (F;o) onto

(F|Y;0).
1.3.6. A system of mappings (F;X) is called a maximal commutative

transformation group if (F;o) is a commutative group and if there is no

transformation group (G;X) such that FC G, F # G,

1.4, The product of a system of transformation semigroups

1.4.1. In this section and in the next one we consider a family
{(Fu;xu) ' & EA} of transformation semigroups; A is a non-void set of
X
indices, and F« C X“ X for each X € A, The identity map of Xu onto itself
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will be denoted by iy 3 1t is assumed that iy © Fu for each & 6 A,
The union of all sets Xu will be denoted by X :

(a) x= U x_
xea &

and the identity map of X onto itself will be denoted by i.

The cartesian product of sets Fu' OEA, is denoted by ”
XEA

If fe Tr Fy » then f  denotes the component of f in F , and we will
x&A «

also write (fu )

ya i d

o €A instead of f.

1.4.2. Proposition Let S be the following subset of ” Fu :
oe A

(a) S ‘“‘{(’u)au‘;ri Ry ¢ (Y, pen g lxnxet | x,n xp)}.

Furthermore, let Fc)e( be defined in the following manner:

X
(b) F= feX : (IseS)(VaeA(t|x =s) .
Then F is a semigroup of transformations of X into itself, containing

the identity map i. If F« is commutative for every WX €A, then F is also

commutative,
Proof
First we show the following : if s a(“u)u ‘AG S and t = (tu)uu\‘ 8, then
also (sd Otd)&éAe S.
] - é [
As the F, are semigroups, it is clear that (s‘L Otm)ucA «I‘IA F& .

Now take &, @ € A; we must show that
X = ot 1 XnX .
(c) suOtot‘xu.n s ﬁp Pl «" e
But we know that

X,

p=splxu" (!

(d) 5 l XN X

(e) t“\XunXPatP}Xul\xﬁ,

as s,t € S; this implies that x“nx is invariant under s ,IP »t, and

[ o «



. The assertion (c) now follows from (d) and (e).
It is evident that F is

t
fd
We now can prove that F is a semigroup.
e F. There exist s,t €S
non-void, as (iu.)ueA& S, and hence i€F. Take f,g ,

such that for every X €A
() f’X“=s“ , g‘}(mztd~ .
It follows that !(xﬁ)c)& and g(Xu)c X, hence

(g) foglxu=saotu .

s that £ o g€F.
As (am o tol)aeAe S, this show g
Finally, we assume that every Fot is commutative. Take again f,geF

and let s,teS such that (f) holds. Then it follows from (g) that

= = = f1X
:l’og‘){“--s“ot‘x tuos'x g o lu

for every x € A; hence f o g = g o £, Thus F is commutative.

1.4.3. Definition The transformation semigroup Fc.Xx, defined in
proposition 1.4.2. (by (a) and (b)), is called the product of the
transformation semigroups (Fa;xa),otG.A, and is denoted by

P F orTP{Fu :ueA}.

oeA L§

1.4.4, Let J be a family of subsets of a set X. A system FCXX is said to
be J-invariant if every member of J is an invariant set under F. The

system F is called a maximal commutative J-invariant system if it is

commutative and J-invariant, and if there is no commutative J-invariant
system chx such that Fe¢G, F £ G.
The maximal commutative system, defined in 1.1.1, evidently is a maximal
{ (%] } ~invariant system.

A maximal commutative J-invariant system is always a commutative

semigroup containing the identity mapping i : X¥-—>X.

1.4.5. It follows from the construction of F = TP Fc( that every set X(’l

is an invariant subset of X under F. Hence: *éA



Proposition. The transformation semigroup 1P F _is {x“ :OLGA} -

A [+ 3
invariant, e

1,4,6. Proposition. If the sets X‘x , X €A, are pairwise disjoint, then the

abstract semigroup (? Fy ,0) is isomorphic with the (unrestricted)

direct product of t}i abstract semigroups (F ,0).

Proof
If S and F are as in 1.4,2., then, under the assumption that the Xo

are pairwise disjoint, the set S is equal to the set I Fy . If we
oe A
define a multiplication. in S by

ot.)

s.t = (s, 0 t)y ear

then (S,.) is even isomorphic with the direct product of the semigroups
(Fu’ o). The proposition now follows from the fact that

(a) =t |X) o

is an isomorphism of (F,o0) onto (8,.).

1.4.7. Proposition. If X = X, for every o eA, then k4 Fy = N F.-
XEA oe A
Proof .
If again S and F are as defined in 1.4.2,, then (fu)ucAe S implies
= = X = X=1
r,= 1t |x i’u]XunXP AR REN | s
for all (x,ﬁe A. Conversely, if (fm)o&eA usAFOl , and fu A for all

® ,P€A, then (f )meA
®,BeA,implies £ € () FP

BeA

€ S. This proves the assertion, as fo( fp for all

1.5. The sum of a system of transformation semigroups

1.5.1., Definition. Let {(F ; &) :ueA} be a system of transformation

semigroups, and let X = U X . The transformation semigroup F¢ Xx,
neA
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gell.era«’tei:dk BW;‘(the 'Sét 5 ‘:_“, '; R T B S L S L S
X ey 3Y)
= : - X = i|X\X }
(a) T={tex : QueA)(ILOEIE X =1 and F[X\ZX |x\x )

is cailea the sum “of ‘the transformatlbn sémigrOUps (F X ), and is denoted

R LRI B Y717 BEELTL RIS W R I RURC R
by
(v 03 ,.{-,“‘ Ly ﬁA
otséA Foc oz g{F ‘o }

It follows from the deflnltlon that for every oL € A there is an

RN

isbimrphism ot PNt

. & *n P%‘A P
g

1.5.2. We are mainly interested in the case that' %AF ‘is a’'‘commutative
semigroup. By the above remark, evgrx 7« then has to be commutative., But
this is not sufficient; e.g. 1f$X1 Z X {O 1} , and if F1 consists only
of iuand:the map:fjcsuchithat: f; (% = ff (1).= .0, vhile F, consists of i
and the map f, such«that fh(O),,f; ﬁu(l)‘,—.y L,..then. (Fi’xl)“ .and..(F2 Xz) are -
commutative, but S{ F 2} is not cormnuta,tlve.l_ - o

The following conditlon on the fam11y {(F X ) e A} will turn out
to be sufficient, together with the commutativity of all F‘o"t 'y, in order to.

ensure that g F is commutative:

o €A
' d H s S e . - [ . . )
), for all o ﬁeA “the sets X o X{3 and X\ X(:\ ‘are. invariant subsets
of sz under Fo( ,and if fme Fo'\ and fﬁe F{:s , then fcx|x°(n X‘3 and
fPJ X otn X commute.,

P R R T N AR I S R P Hy
Lok R M

1.5.3. Propos1t1cm Let}{“(Fr X ) oaeA} be a :famlly of commutatlve

transformatlon semlgroups, ea.ch contalnlng the 1dent1ty mapping 10( :xu»xu,
and let condltmm (C§ bewsatasfled% Then o(§A i?ot ‘{5 a commutative
Lim ot .

transformation’ semlgroup containing the’ 1deh’ti?“by¢°map. -

Proof

Let T be as in 1.5.1., and let F be the subsemigroup of XX generated
by T. As it is evident'that ie F 'we have onl1y to show that F is commutative.
such that

let £, geF. n there ar : .
e B & ',l;he 1eTE, o e u,lBE:Aﬁand f‘fo(f;?,e FO(*« ? fﬁe Fﬁa Bt i
X : A3 L e i C
s 5 QSR EAVE 3 B Sl TR L R TN R ICE SO SPTITY B A R



11~

e Xe = % ok ‘ﬁ‘ - ﬂa ;
tlxnx = 1| x\x;

g] X\X_=1]x\X

B g

As condition (C) is assumed to be satisfied, f|X, n X, and
glx“n XP commute. Furthermore, f)X\(X“U XP) = g)x N U Xp)n
= i|X\(X“U X,). Hence we need only check what happens with points in
Xd\ X‘3 or in xﬁ\ Xu . Because of the symmetry of the situation, we may
restrict our attention to points in X‘\ X .

Let xeXu\ Xg . Then

(f o @d(x) = £(g(x)) = f(x) = ﬁKCX);

x x - 1
as &\ a is supposed to be invariant under F&, fu(x)e Xa\ XP ; hence
£, = g(g*(x)) = g(£(x)) = (g o ) (x).

This finishes the proof.

1.5.4. Proposition. If the sets Xu,eleA, are pairwise disjoint, then the

abstract semigroup ( § Fot ,O0) is isomorphic to the direct sum (restricted
oleA

direct product) of the abstract semigroups (F ,0),d&A.

Proot
Let T be defined by 1.5.1. . Let ¢ be the mapping 1.4.6.(a). Then ¢
maps T 1.1 onto the subset of JIA F« , consisting of all (t“)ch such
that f # i, for at most one « € A; and ¢ maps F 1.1. onto the subset of
T F, such that £, #1i, for only finitely many ® € A. It is immediately
ge‘é% that ‘f! F is a homomorphism of (F,0) into the direct product of the
(F,0); hence vl F is an isomorphism, and @ (F) is exactly the direct sum

of the (Fu. ,0).

1.5.5. Proposition. Assume Xu = X, for every o« € A, .Then condition (C) is

satisfied if and only if U F is commutative, and ) F is the
o e A oe A
subsemigroup of XX generated by U Fo& .
oteA
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Proof: evident.

1.6, The relations

1)

1.6,1. Let R be a relation”’ defined in a set X. For YcX, R(Y) will denote

the set
R(Y) ={xeX : (3yev) vy Rw}.

Instead of R({y}) we will write R(y).
In particular, let E be an equivalence relation defined in X. Then
for xe X, E(x) is the equivalence class containing x. The set of all these

equivalence classes will be denoted by X/E.

1.6.2, Let FCXX. An relation R between elements of X is said to be
compatible with F if

xRy =» £(x) R £(y)

for all x,yeX and all fe F, If R is an equivalence relation E, then it
follows that for every fe&F there is a uniquely determined map
¢ : X/E = X/E such that

@(EE)) = E@x))

for:all x€¢E. This map ¢ will be denoted by f/E. Furthermore, F/E denotes
the set
F/E ={£/E : feF}

of mappings of X/E into itself.

1.6.3. A relation R, defined in a set X, is called a weak partial ordering
(shortly: a w.p.o.) if it satisfies the following two conditions:

(a) =xRx for every xé€X;

(b) xRy, yRz = xRz, for all x,y,z eX;

o 1. 2o g O

1) in this section by ''relation' always is meant a binary relation.
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If Ris a w.p.o. then the relation E defined by

R’
xERy &> xRy andyRx
is an equivalence relation in X. The corresponding set of equivalence classes

X/ER will be denoted by XR.

In XR a partial ordering < R can be defined such that:

E(x) éR E(g) <> x Ry.

The partially ordered set (XR’ 3 R) is called the skeleton of the weakly
partially ordered set (X,R).

1.6.4. If the w.p.o. R in X is compatible with Fec )8(, we will write F
instead of F/ER (and f£_ instead of F/ER, for 1e&PF).

R
R

Proposition: If R is compatible with F, then E’R is compatible with F, and

4R is compatible with FR.

Proof
Suppose R is compatible with F, Then

x ER y=>x Ry &y Rx=>f(x)R £(y) & £(y)R £(x) =»f(x) E £(y).

Hence ER is compatible with F. And

E(x) "<‘R E(y)=>x Ry =3 f(x)R £(y) ng(E(x))=E(f(x)) .SR E(f(y))=
= fR(E(y)).

Hence is compatible with ER'

R
1.6.5. Let Fc‘.XX. Then )F’ will be the following relation on X:

x )F y & JfeF : f£(x)=y.

X
Proposition. For every FcX |, )F‘ is compatible with F,

The equivalence relation E) will be denoted by C

. - the set X/CF will
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be denoted by [ (F); and the partial ordering < )F in [ (F) will be

denoted by & . If feF, then f denotes the mapping f/CF of T (F) into

If there is no danger for confusion

we will simply write ), C ,[ and & , instesd of ), Cp, [(M), &

itself, and F denotes the set F/CF'
F’
respectively.

It may be remarked that )F(x) (as defined in 1.) coincides with

F(x).

1.6.6. A relation R between elements of a set X is called an N-relation if &
it is a w.p.o. and if it also satisfies the following property:

XEYI’ nyz-.-:%?zeX: lezJ ysz,
for all x,yl,yze X.

Proposition. If R is an N-relation, then SR is an N-relation,

1.6.7. Proposition.Let (F;X) be a commutative transformation semigroup
containing the identity map. Then \) F is an N-relation.

Proof The relation )F is reflexive as the identity mapping belongs to F.
)F transitive as F is a semigroup.

Let x R ¥y and x R Ygi that is fl(x)zyl, fz(x)=y2, fl , fze F. But then

zansz(x) fulfils the conditions le z and yzR z.

1.6.8. Proposition. Let (F;X) be commutative transformation semigroup
containing the identity map, and let E be an equivalence relation on X that
is compatible with F. Then (FE;XE) is a commutative transformation semigroup

containing the identity map.

1.6.9. Proposition. Let (F;X) be a commutative transformation semigroup
containing the identity map. Then

(a) x )F y 39 &) )F £(y) for every x,ye X, feF,
(b) fxX)=x =3 Vy, X )F v, f(y=y,

(e) £(x) ‘)F y = yef(X), for every f€F.
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Proof .
(a) y=g(x) =) f(y)=f o g(x)=g o(f(x)),
(b) y=g(x)=g o f(x) =1f o g (x) = £(y),

(c) y=g o f(x) = y=f o g(x).

1.6.10. Proposition, Let (F;x) be a transformation semigroup containing the
identity map. Then the relation M on x,

xMyé&pIzeX, x )F""’y)r' ,

is an equivalence relation, that is compatible with F. Moreover, F/M
consists only of the identity map.

Proof.

M is evidently reflexive and symmetric, We must prove that M is

transitive. Let x, M Xy, X M x_. Then there exist z_, 126 X, fl ,

1 2 ¥ %3 1 2’ &

gzéF such that
fixp=zys 1=z, g (x))=2,, g,(x))=z,.
Then
g ©° fz(x2)=g1 o fl(xl)zf2 o xl(xz)nfz o ‘3(x3);

hence xl M x3.

If x M y then evidently f(x)M f(y) for every f€F, as f(z) has the
property required by definition of M.
As f(x)M x for every x€X and fe F, we have £f/M=i/M for every fe€F,

1.6.11, Proposition. M is the smallest equivalence relation R which is
compatible with (F;X) and F/R= {1/3,}.

1.6.12, Example. Let Y be an invariant set under F. Then an equivalence
relation, again denoted by Y, is defined as follows:
x Yy € either x=y or both xe€Y and yeY.

This relation is compatible with F,
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2. Orbits of commutative transformation sSemigroups

Throughout this chapter we shall assume that F is a commutative semigroup
of transformations of a given set X into itself, containing the identity

transformation.

2.1. The parameter of a semigroup

2.1.1. The orbit of a point xeX under F is the set F(x). If F is a

semigroup, then every orbit F(x) is an invariant subset.

A system of orbits {F(x) P X6€ Y} , when Yc X, is called an F~cover of X if

F(Y)=X. If F contains the identity map, then X admits at least one F-cover,
An F-cover -3 . {F(x) : xeY} is called disjoint if F(x)a F(y)=¢

for all x # y, x and y €Y.

2.1.2. If f£(x)=g(x), for some x €X and f,g€F, then f|F(x)=g|F(x).

Proof

Let y ¢ F(x). Then y=h(x), for some heF, and

f(y)=f o h(x)=h o f(x)=h o g(x)=g o h(x)=g(y).

2.1.3. If A is any set, then )AI denotes the cardinal number of A.

The parameter of F is the least cardinal number & for which there-
exists an F-cover {F(x) : st} of X with lYl = & , This cardinal number
will be denoted by p(F).

The following fact is evident from the definition: If FC G, then
p(F) 3 p(®).

2.1.4. If {F(x) : xeY} is a disjoint F-cover, then |Y|= p(F).

Proof
Let {F(z): zé Z} be any F-cover such that |Z|=P(F)- We shall show that
every orbit F(z), z€ Z, is contained in an orbit F(x), xeY. Suppose this

were false. Then there would exist a zeZ, and x_,x_€Y, X, ¥ Xgs such that

1°72
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F(z)n F(xl) i 0,
F(z)n ?(xg) 0.

Let f ,f € F such that f (z)e F(xl) and x’a(m)l F(xa). Then

fl(fz(z))e F(x,)n F(x,), contradicting the assumption that {r(x):ch} is
disjoint.

2.1.5. If F is a group, then two orbits F(x), F(y) under P either coincide,
or they are disjoint,

Proof

Suppose F(x)Nn F(y) # @ ; then let z& F(x)n F(y). There exist fi,rﬂu ¥
such that zzfl (x)wrz(y). Then x= 1;1 ) rﬂ(y). which implies F(x)c F(y), and

-1
ymfz o fl (x), implying F(y)c F(x). So if F(x) and F(y) are not disjoint,
they coincide.

As an immediate consequence, we obtain the following:
If F is a group, then there exist disjoint F-covers,

For if Y is a set containing precisely one point from every orbit,
then {F(x): xeY} is such a disjoint F-cover.

2.1.6, If F(x)NF(y) # @ and F(y)n F(z) # @ then F(x)anF(z) # 8 .

Proof
Let f,g,h,jeF such that £(x)=g(y) and h(y)=j(z). Then

jof (x) =jogly) =go jly)=g o h(z),

which shows that F(x)nF(z) # @ .
2.1.7. If F(x)=X for every xeé X, then F is a group.

Proof
According to 2.1.2., two mappings f,g€F coincide as soon as they are

equal in one point of X.
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Now we will show that an arbitrary F has an inverse. Choose x_€X, and let

x=f(x ). By our assumption, there exists an f € F such that xo=f1 x). 1t

follows that flc f(x )=x ni(xo). Hence, by our previous remark flo f=1i, As
)

F is commutative, f o f =i also; this proves that f is the inverse of f,

1 1

2.2. Properties of semigroups with parameter 1.

2.2.1., If p(F)=1, then there exists a 1.1. mapping of F onto X.

Proof
As p(F)=1 there must exist a point e € X,such that F(e)=X. We define

@:F—X as follows:
P(£)=f(e) , for all feF.

Then ¢ maps F onto X, and ¢ is 1.1,, for if (p(f1)=<p(1’2), then fl(e)=f2(e),
and it follows from 2.1.2. that

f1=f1]F(e) = leF(e) =1,

An other formulation of this fact is the following.
2.2.2, p(F)=1 implies |F| =| x’ )

2.2.3. Let p(F)=1, We then can introduce a binary operation # in X as

follows:

-1 -1
X#y = CP[(p (x) o @ (Y)] )
where ¢ is the map defined in 2.1.1,

Proposition. ¢ is an isomorphism of (F;0) onto (X;*) and for every xeX
and f¢ F we have

P * x = £(x) ,
fop () =6 (1)),

Proof

It is immediate from the definition of # that (p is an isomorphism.
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Now be x¢ X and fe F. There exists a g¢ F such that g(e)=x. Then x= ¢,
and hence

@(f) = x= ¢ e P(g)=@(f o g)=t o gle)=f(x).

The second identity follows fromthe first by applying ?-1 .

2.2.4. If p(F)=1, then F is a maximal commutative system.

Proof

Let gaxx commute with every fe F, and let G be the commutative
semigroup generated by F and g. Then p(G)s p(F), hence p(G)=1,
Let e €X be such that F(e)=X; then for some f&F, f(e)=g(e). By 2.1.2,
(as G(e)=X) it follows that g = f; hence g&F.

2.3. The restriction of a transformation semigroup to one of its orbits.

As an orbit under F is an invariant subset, (!]r(x); F(x)) is a transformation
semigroup, and evidently its parameter is 1., Hence we can at once apply the
results of the previous paragraph.

2.3.1. ]F'l’(x)‘ = I F(x)‘ , for every xé€X.

2.3.2. F‘F(x) is a maximal commutative semigroup of mappings
of F(x) into itself.

2.3.3. In F(x) a binary operation % can be introduced in such a way that
(F(x); ») is isomorphic to (F|F(x); o).

2.4. Commutative semigroups that are maximal with respect to their system

of invariant sets.

In this section, (F;X) is a commutative transformation semigroup,
containing the identity transformation, and J will always denote a family

of subsets of X that are invariant under F,
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2,4,1. If J is such a family, then UJ will denote the set U{A : AeJ}- ,
and P (J) will denote the semigroup

P =TP{F|A caedt .

The following lemma is almost obvious:

Lemma feP (<> f|aeF|lA  for all AeJ.
From this lemma, the following propositions follow without difficulty:

Proposition. If U J=X, then FCT‘P(J)CXX.

(If UJ # X, then certainly not FCc P (J), as P (J) consists of mappings
of UJ into itself).
2.4.2. Proposition. Let both J_, and J2 consist. of subsets of X that are

€ J, implies LACRE Ly 3.

1

invariant under F. If UJl = UJZ’ then J1

2.4.3. If J1 and J2 are both families of subsets of a set X, we will say

that Jl is a refinement of J2, and write

i € i €
if for every Al J1 there is an A2 J‘2 such that Alc A2,

2.4.4, Proposition. Let both J_, and J_ consist of subsets of X that are

1 2
invariant under F. If UJ1= UJ_and J, £ J_, then 'IP(J]_U J2)= T (Jz).

2 1 2’

Proof

By proposition 2,4.2., TP(JIU JZ)CTP(JZ); on the other hand,

teP eV aes)elacrlm=(Yaesvi)laer|ae tePaus,). .

Example If X €J, then P(J) = F.

Remark If A is not an invariant subset of X, then FlA is not a semigroup.

However, if we define F|A= {f(A): feA and £(A)c A} , then F||A is a
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semigroup under composition, It is seen at once that
?{w;x). (F’lA;A)} =frer: tacatl;

hence if A is not invariant, F¢ P(F,F||A), although of course X VA = X.

2.4.5. Lemma Let J be the class of all subsets of X that are invariant
under F, and let J' be the class of all orbits under F, G>F,
Then G is a commutative J-invariant system if and only if G is a

commutative J' -invariant system.

Proof

As J'c J, every J-invariant system is J'-invariant. On the other hand,
if A€J, then

@) = v {6 : x&A}nU{BCJ' : Bea },
Hence every J'-invariant system is J-invariant,
2.,4,6, Theorem Let Fc xX be a commutative semigroup, containing the
identity map. Let J be the class of all subsets of X that are invariant

under F. Then there exists one and only one maximal commutative J-invariant

X
semigroup G X containing F; and
G=P {F‘F(x) : xex}.

Proof

Let g be any mapping X —» X that commutes with every f& F and that maps
every A€ J into itself. We will show that ge G.

Take any xe X, Then glF(x) maps F(x) into itself, as F(x)€é J, and
g|F(x) commutes with every mapping in F!F(x). But by 2.3.2, !'l"(x) is a
maximal commutative semigroup; hence g]F(x)c FiF(x). It now follows from
2.4.1 that geG,

An immediate consequence is that F < G (this also follows from pro-
position 2.4.1.). So it remains only to be proved that G is J-invariant.

But by proposition 1.2.5, G is J'-invariant, where J' n{l"(x) H xex} ;
now apply lemma 2.4.5.
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2.4.7. Corollary: If Fc Xx is a maximal commutative transformation semi-

group, then

F=P{rlre : xex}.

Theorem., If {F(x) : xeY} is an F-cover of X, thenTP{F]F(x) : xeY} is
the maximal commutative J-invariant semigroup containing F (where J is the

family of all subsets of X that are invariant under .

2.5. Estimate of | F|
2.5,1. If {F(x) : xeY} is an F-cover of X, then

iF|$ Tr |F(x)l .

xeY

For Fc xTeP,Y F{F(x), hence |F ‘s ‘ x“:,Y F|F(x)|s Ql-ylF‘F(x)l, and the

last expression equals WYlF(x)I, by 2.3.1.
Xxe

An immediate consequence is the following.
F
2.5.2. | ¥ |< ‘x‘p( ),

2.5.3. Let F be a maximal commutative system of mappings, and suppose X
admits a disjoint F-cover {F(x) : xeY} . Then

'F|= TT lF(x)‘ .

XeY

Proof 5

In this case, F = TP FlF(x); as the orbits F(x), x€Y, are dis-

xeY
joint, xTePY F]F(x) is isomorphic (and hence equipotent) to the full
direct product xey F]F(x).

2.5.4. Let {F(x) : xeY} be an orbit cover, and for every xeY let % be
the binary operation mentioned in 2.3.3 and 2.2.3. Then F can be iso-

morphically embedded into :]IY F(x).

Proof

F is contained in XTCPY FIF(X), and it follows from its definition

that this semigroup can be isomorphically embedded in TEY FIF(X). As
X

(FlF(x);o) is isomorphic with (F(x);#),the assertion follows.
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2.5.5. Let F be a group that is maximal, considered as & commutative
semigroup. Then
| F l > l X ‘ .

Proof

We may assume that X contains more than one point. Let {l"(x) : xtY}
be a disjoint F-cover of X. Then by 2.5.3,

I7)= Ty o]

xeY

As the F(x), xeY, are pairwise disjoint, we also have

lx‘“gyip(")"

Hence it suffices to show that [F(x)l » 2, for every xe¢ Y. But indeed,
if iF(x)lm 1 for some x€Y, then x is a common fixed point of all f eF;
the mapping g such that g(y) = x, for all y€X, then commutes with all
feF, and the assumption that F is a maximal commutative semigroup im-
plies ge F., However, as we supposed that X contains at least two

points, g is not invertible, contradicting the fact that F is a group.

2.6. Applications to topology

2.6.1. In this section, X will be a topological space. Then the pro-
duct topology of Xx induces a topology in every F € Xx This is the
topology of pointwise convergence: I«—-» f if and only if f‘(x)-—-v f(x)
for every xe X, where {fu ;uiD} is a net.

As before, we consider only subsets F of Xx that are commutative
semigroups under composition, containing the identity map. All mappings
in F are assumed to be continuous.

2.6.2, If p(F) = 1, then F (with the pointwise topology) is homeo-
morphic to X.

Proof
Let ¢ be the 1.1. map of F onto X considered in 2.2.1. Then ¢

is a homeomorphism.
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Let {fu ,uen} be a net, f,f, 6F for ¢&D. If £ (e) —>f(e), then
f“(x)—-r-f(x) for every xe€X. Clearly, for every x€X we can find géF

such that g(e) = x. We have

fu(x) = fu(g(e)) = g(fu(e))

and fu(x)-»f(x) , as g is assumed continuous. Therefore ¢ is open.
If fu(x) - f(x) for every x€X, f’fu e F, then Cp(fu)-—é- e,

and the assertion is proved.

2.6.3. If {F(x) : xéY} is an F-cover of X, then F is homeomorphic to

a subspace of X‘Y‘.

Proof
Let xeY. Then [FlF(x)] (x) = F(x). According to the preceding
proposition there exists a homeomorphism qox from F‘F(x) onto F(x).

Let us define the mapping ¢ coordinatewise:
(Px(f) = (px(f\F(x)) for every xeY.

1f fl,fzeF, fl # fz, then there exists x €Y such that fllF(x) # leF(x),
hence ¢_(f,) # (px(fz), as ¢_ is one-to-one. Therefore ¢ is one-to-
one mapping from F onto (P(F). It is sufficient to prove that p is
beth contiduous and open.

Let fq--» f, f’fv. e F., Then (px(f«)——y ?x(f) for every xeY.

Let @ (f,) —> ¢(9), f,fue F. To every z €X there exists xeY
such that z € F(x). We have vx(fu)-—ﬁ- gox(f), and fu(x)-—)-f(x). We can
write z = g(x), ge¢ F. Then fu(x) = £, [ g(x)] = g[fu(x)] , and

fu(z)--r f(z), as g is continuous. The proof is concluded.

As an immediate consequence we find the following.

2.6.4. F can be homeomorphically embedded in Xp(F).

2.6.5. Suppose there is a point e €X with a dense orbit: F(e) = X,

where F(e) denotes the closure of the set F(e). Then, for every
xle X, there is at most one continuous map g : X—»X that commutes

with every f € F, and that sends e into 'xl_ : gle) = X .



-25=

Proof

Assume two such maps, & and gy exist. Then, if féF,

g0 f(e) = f o g (e) = £(x)) (1=1,2).

Hence gl and gz coincide on the dense set F(e). This implies that (1 = ‘2'

2.6.6. If F(e) = X for some e¢X, then
Irl< |x].
This follows at once from the previous theorem.

2.6.7. Suppose F(x) = X, for every xeX. Then if x,ye X, there is at
most one continuous mapping g : X—»X that commutes with all f € F, such
that g(x) = y.

This follows at once from 2.6.4,

2.7. Examgles

2.7.1. Let X = (O,»), and let F consist of all mappings f{,

f(x) = x> s
with s € (-oo;+00).

Let eeX, e # 1. Then F(e) = X; hence p(F) = 1. The mapping ¢ :

f—>f(e) = e

-1
is a 1.1. mapping of F onto X. If aeX, then ¢ (a) is the mapping
-1 logea
P (a) = x —» X ;

and
logea.logeb

axbh = e -

From the equations

P * x = £(x),
fo® lx) =9 e tm,



-26-

. -1
we see that the value of f(x) can be determined if the mappings ¢, ¢
and one of the operations o and % are known. In this case the operation
o is easier of course, as it amounts to calculate f(x). In fact, this

method is often used in actual calculations, as there are tables for

¢.¢ .

2.7.2. A similar idea lies behind the theory of operators and of Laplace
transformation. It would be too complicated to exhibit this completely
here, howéver, we shall consider a discrete exaﬁgle.

Let X consist of all those sequences {an} o of real numbers, such
that a # 0 for only finitq@y many n. Then X can be considered as a
linear space.

Let the mapping f : X-—>X be defined as follows:

f{an}= {bn} , where b_ = o, bn =a _ (n=1,2,...).

Finally, let F be the set of all mappings X—= X of the form

S n

o
where s is any natural number, and the an are real numbers; here f = i.

If e ={‘1,0,0,... }, then evidently F(e) = X; hence p(F) = 1.
If a =-{ao,al,...} and b =~{bo,b1,...} , then

n
a%xb ={aobo ; albo + aobl; see kZo akbn_k;...} .

This is just the ordinary convolution of number sequences.

Now in F the composition of functions amounts to the simple
operation of multiplying two polynomials. This makes it easy to compute
the convolution., As a special case, consider the following operation:

givenlian}e)(, to evaluate ao+a +...+an_l. (In the case of true Laplace

1
transformation an analogous operation would be integration.) This
operation can be described with the use of convolution: if
s, = (1,1,1,...,1,0,0,...), then
D ——
n

ao+al+. . .+an_1 = { Sni!‘ a }n_l
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where a a{un} . In order to calculate this sum, we can use the l.1. map@
to go back to F:

¢ s wa) = 97s) 0 ¢ ),

-1
and the operation s 1s reduced to the multiplication of ¢ "(a) by a
polynomial (namely ?"1(5“)),
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3. Cycles and structure of commutative transformation semigroups

In this section it is always assumed that X is a set, and that F ig

a commutative semigroup of mappings X—»X, containing the identity map i,

3.1. Cycles of F in X.

3.1.1. When F is a semigroup, we introduced a weak partial ordering in X

as follows:

x), 7€ (3LEN(y = £Gx).

As usual, two points x,y €X are called equivalent according to this
ordering, denoted xCy, if both x )F y and y )F x. The equivalence classes
are called the cycles of F in X; the set of all cycles is denoted by F(F),
or shortly by [' if there is no danger of confusion. The cycle to which

x € X belongs is denoted by C(x); explicitly, we have
C(x) ={y£X: (3£,,£,6 F)(£,(x) =y and £,(y) = x).

The set ['(F) is partially ordered in a natural way, namely, if we de-

fine
Cx) » C(y)e&e>x )F y.

We will call the (strongly) partial ordered set (I (F); >) the
skeleton of the weakly ordered set (X;)F), or also the skeleton of X

under F,

3.1.2. Proposition. f|C(x)e F " Cx)&s (Jyecx))(£(y)eCcx)).

Proof

By definition, f|C(x) €F||cIE&> Wy €C(x)) (£(3) €C(x)) . This
evidently implies the right hand condition. Conversely, assume

f(y)€ C(x), for a certain y eC(x). Then there exists maps £ ,f,&F
such that

y = fl(x) and x = fzo f(y).

Let z€ C(x). We must show that f(z)e C(x).
As z€ C(x), there are maps f3,f4e F such that

2z =f (x) and x = f o f = = =
3 90 £(y) fzofofl(x) = fzofoflo f4(z) =

fzo f10f4(f(z)),
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and this shows that f(z)e C(x).

3.1.3. Proposition. yeC(x)=(F | C(x)Xy) = C(x).
Proof

If z €C(x), then z = fl(x) for some flc F. A8 yeC(x), x = fa(y)
for some tzs F. Then f Ofg(y) = z &C(x); hence, by 3.1.3,

1
flo 12 C(x) e Fgc(x). Thus xt(?éC(x))(y).

3.1.4. Theorem. For every cycle C in X, Fic is a group.

The proof is immediate from 2.1.7. and 3.1.3.

3.1.5. The proposition 3.1.2. shows that for every C & [’ (F) and for
every f & F there are only two possibilities: either f£(C) € C or £(C)nC
= @. Actually, this follows already from the fact that the cycles are
the equivalence classes of the weak partial ordering of X introduced in
1.6.5. From this there follows even more: for all xeé X and all fe F we

have

f(C(x)) € C(f(x)).

In general, it need not be true that £(C(x)) = C(f(x)).

Example. Let X ={1;2;3;4;5} , let F consist of the mappings 11,12,13,
f4,f5 defined as follows:

1 2 3 4 3
fl 1 2 3 4 5
fz 2 1 3 4 5
i'3 3 3 3 4 5
:t"4 4 4 4 5 3
f5 5 5 5 3 4

It is immediately checked that F is a commutative semigroup of map~
pings X—>X. There are two cycles: C1 = {”1;2} . C2 u{3;4;5} ; and
for instance fs(C(l)) #C(25(1)).

Thus, in general the sets £(C), C €[, are not themselves cycles.

Nevertheless, they share some properties with cycles, as is shown by
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the following theorem.

3.1.6. Theorem, For every f€F and for every cer’, F n f(C) is a group,
and there is a natural homomorphism of F [|C onto F || £(C).

Proof

Take C€(" and f€F.

In the first place, we have

£ ] cerflc=s ft@er |2,

as flof(C) = £ ofl(C)c:i’(C).
Now let yl,yze £f(C). We will show the existence of an fle F such that
fllf(C)eFﬂ £(C) and £, (y,) = y,. By 2.1.7, this vill show that F J £
is a group.

Let y, = f(xl) and y, = i’(xz), X ,%,€ C. By 3.1.3 there is an
f, € F such that f, l CeF“ C and fl(xl) =X
fl f(C)eF uf(C); and

2° By the above remarks,

fl(yl) = flo f(xl) = fofl(xl) = f(xz) = Yy-

Next, we remark that f1|c - lec eF|c, for f,,2,6 F implies
fllf(c) = £,]£(C) . Hence we may define a map ¢: F “ C—F nf(C) by
putting

(p(fl(C) = fllf(C).

This map is obviously a homomorphism: if fll CEF “C and
f,|CeF |, then

PO o (1,00 = @z 08,|0) = £ 0f, |2(C) =

1% |
= (1, |£©@)0 2y |20 = ¢tz |0 0 gz, |0,

It only remains to show that ? is onto.
Let geFﬂf(C). Take y, € £(C), and let y, = g(y,). By the above
th i =
ere is an fleF such that fllc eFﬂC and fliCeFﬂ C and fl(yl) = Yy-
Then CP(fl) = fI(f(C)eF“f(C) and (Cp(fl))(yl) = Y5, Which shows that
(p(fl) = g.
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3.1.7, If for some cycle C it happens that f(C)c C for all feF, this
means exactly that in skeleton ([';2) of X the cycle C is minimal. We
will denote by Pm the subset of [' consisting of all minimal cycles:

P ={cef‘: £(C) ¢ C for all rep}.

Furthermore, we will write r'o for the set P\f"l.

The maximal elements of ([';z) are the cycles C such that Ca>£(C'),
cel , T€F, implies C = C', From this it follows that if C is maximal,
then X \ C is an invariant subset in X under F,

The set of all maximal cycles will be denoted by PM'

3.1.8. Theorem. A subset C of X is a maximal cycle if and only if X \ C

is a maximal invariant subset.

Proot

First assume C to be a maximal cycle. We saw already that X \ C is
invariant under F, If xe C, then F((X\C)U{x }) = (X\C) VU F(x) =
(X\C)UC = X; hence X\ C is a maximal invariant subset.

Conversely, suppose that X \ C is a maximal invariant subset. We
first show that then C is a cycle. Indeed, if C were not a cycle then
there would exist x,y € C such that f(x) # y, for all f eF, But then
(F\C)U F(x) would be an invariant subset distinct from X and strictly
containing X \ C.

Finally, we prove that C is a maximal cycle. Suppose C2f(C'), for
some C'e¢ " and some f € F. Then we cannot have C'¢ X\ C; but C'nC # ¢=>
C'=C,

3.1.8. Proposition. Every orbit contains at most one minimal cycle.

Proof

Let F(x)DC,, F(x)>C_., C,,C.€ Fm. Then fl(x) e C

1’ 2) 1) 2 1, fz(X)e 02,
fl,fzéF. Then, flo fz(x)ecz, and flofz(x) = fzofl(x)acl. Hence,

Cl = 02'
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3.2. The nuclei of F.

3.2.1. Let G be an abstract semigroup, and let O be an element not
contained in G. If we define in G U'{O} 2 multiplication as follows:

if a,beG a.b = ab where ab is the product in G;
0.,.a = a,0 =0,0 =0 for all ae€ G;

then Gu{o} is a semigro::p, containing G as a subsemigroup. We say

that this semigroup is obtained from G by adjoining & zero element.
Every semigroup that can be obtained from a group in such a way

will be called "par abus de language', a group with zero. For example,

every ring is a group with zero under multiplication.

3.2.2, If Ce Po’ let Z(C) be the semigroup obtained from F UC by
adjoining a zero element. If Ce Fm, let Z(C) be the group F “C
As it will not cause confusion, for every C € Fo we will denote

the zero-element adjoined to obtain Z(C) by the same symbol O.

Theorem. Let G €' , and let ¢ be the mapping F—» Z(C) defined as

follows:

if £(C)eC, then ¢(f) = f|C;
iif £(C)nC = @, then @(£) = O,

Then ¢ is homomorphism of F onto Z(C).

Proof.

If£ Cel ~ then always £(C)cC, and it is clear that f—» f|c is
a homomorphism of F onto F “ C =2().

I£Cel andif () #0and @(£,) # 0, then it is again
evident that (p(flo f2)= (go(fl))o (<p(:f2)). Assume now that e.g.
Qp(fl) = 0. Then we must prove that (P(flo fz) = O in order to show
that again (p(flo fz) =(p(f1)o (P(fz). Suppose (P(fl o fz) # 0, or
equivalently, fl o fz(C)CC. Take x € G; then C = C(x), and as
I, o fz(x)eC there exists an fe F such that x = £ o f, o fz(x) =
=f o fz(fl(x)). But this shows that T, (x) € C(x), contrary to our
assumption that ?(fl) = 0,
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Finally, it is obvious that also for C 6'10 the mapping
¢ F—Z(C) is onto.

3.2.3. Let S(F) be the (unrestricted) direct product

s = Jl 2@,

Furthermore, let Sm(F) be the (unrestricted) direct product

Sm(F) = Cer‘ Z(E),
m
except if Pm =@; if Pm = @, let Sm(F) be an one-element group.
Similarly, SM(F) will denote a one-element group if f'u = @, and will
denote the direct product

SM(F) = SUP y z(6)

if T‘M:éa.

Then S(F) and SM(F) are commutative semigroups and Sm(F) is a
commutative group. If there is no danger of confusion we will just
write S,Sm and SM'

We will interprete S, Sm and SM as spaces of cuntions, defined
on [, Pm or PM’ and taking their values in the semigroup Z(C). For
instance, if s€S we will write s(C) for the component of s in Z(C).
Thus, s —-v-sl Pm is the canonical homomorphism of S onto Sm’ if

Pm;éd.

N
3.2.4, Definition. If f€F, then let f be the element of S(F) defined
as follows:

feoy=tlc if £(C) € C;

A
£(C)

0 if f(C)NC = @.

A e ~
Furthermore, let f' = f |I‘m, if rm # @; else, let f' be the unique

element of S .
m

A
For every C € ', the mapping f—> £(C) is a homomorphism of F
A
onto Z(C) by theorem 3.1.8. Hence the mapping f— f is a homomorphism
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A
of F into S(F), and the mapping f —» £' is a homomorphism of F into Sm(F).

3.2.5. Definition. The nucleus N(F) of F is the subset

N(F) ={feF : $(C) = O for all Ce Fo}

*
of F. The extended nucleus N (F) of F is the set

+#* A
N (F) ={feF : £(C) = O for some C ¢ Po}'

3.2.6. Theorem. Each of the sets N,N* is either empty or an ideal of F,

and Nc N°; and N = 0 < P = @. Furthermore, F\ N* is a sub-semigroup
of F, and the restriction of the map f-—rf to F\N is a 1.1. homomor-

phism of F\N" into S(F).

Proof

It is obvious that NcN® and that N'= Ge> r = @. The fact that N
and N* , if non-void, are ideals follows from the fact that £(C) = O im-
plies g o £f(C) = g(C) . £(C) = O for all ge¥F, If f,geF\N*, then
£(C) ¢ C and g(C)e C for all Cel' ; hence f o g(C)c C for all Cel' , or
fog F\N*. This shows that F\N* is a sub-semigroup of F.

Finally, we must show that the map f—-ylf\ is 1.1. on F\N*. But if
f # g, where f,geF\N*, then there is an xe X such that f(x) # g(x).

~

It follows that %(C(x)) = flC(x) # glc(x) = E(C(x)); hence £ # g.

3.2.7. .Remark. In general, the mapping f—-—»? is not 1.1, on all of F.
Example. Let X be the set of non-negative integers. Let £ : X—>X be
the mapping

f(o)=0; f(n)= n+l if n#0.

Let F be the commutative semigroup consisting of i and all iterates

K (k=1,2,...). Then T o® ={{n }:n# o} and ['_(P) —{{o}} A1l

k
mappings f (k=1,2, ) are pairwise distinct; however, f = f for
all k.

3.2.8. Also, the mapping f—f', restricted to F\N*, in general is not
*
a 1.1, map of F\N into Sm(F), even if Fm £ 0.
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Example. . . . Let X be the set of all pairs (n,m) such that n i8 a non-
negative integer and m=0,1 or 2. Let £ : X—sX be defined as follows:

£(0,m) = (O,m) for w=0,1,28;
f(n,m) = (n,m+1) for nd0 and m=0,1;
f(n,2) = (n,0) for n £ 0,

Define g : X—»X as follows:

g(0,m) = O,m) for m=0,1,2;
g(n,m) = (n+l,m) for n£0 and m=0,1,2,

Then f,g and i generate a commutative semigroup Fc xx; " (P) consists of
all triples {(n,m) fm o= 0,1,2} with n»0, and Fm(F) n{{(0,0)} ) {(0,1)},

#®
{(0,2)} . Although f and 2 are in F\N and f # f°, we have f|C = :tzlc -

A 2‘
= ilC for all C&Pm; hence f' = £° |

3.2.9. In the proof of the next theorem we need some new notation. If
cel" , let M(C) be the following subset of X:

M) =Ujcel : c'» c}.

In other words, M(C) z{xex : (3 feF)(f(x)eC)} .
Furthermore, put

- U
uoo X\Cer‘m M(C).

3.2.10. Lemma. For each C G.Pm, the subset M(C) of X is invariant under F.
Similarly, Moo is invariant under F.

Proof
First assume C & Pm; let x € M(C) and f ¢ F, We must show that
f(x) € M(C). Let flf. F such that fl(x)ec. Then 1‘1 o f(x) = f o fl(x)cc

as C is minimal.
Next, let xeuw and f e F. Then t(x)eum, for if f(x)e M(C) for
some C € Fm’ then we would have C€ C(£(x)) € C(x), which implies x & M(C).

3.2.11. Theorem. Let F C Xx be a commutative semigroup containing the iden-
tity map. Then there is & commutative semigroup G, FchXx, with the fol-
lowing properties:
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@ T @ =T _m;
() F nC = G "C for every Cef'm; hence Sm(G) = Sm(F);

(c) the homomorphism g-—sg' of G into Sm(G) is onto.

Proof

We define a:set G, Fc:Gc:xx, as follows:

X
¢c={gex : (Vcel )(Irem|M© = glucc)) ana
(Ftem|n = g\Moo)}.
It will be shown that G satisfies all requirements.

First we prove that G is a semigroup. Let gl,gBGG. Take a C¢& Pm’
and let £ ,f,€F such that fJ‘M(C) = gJIM(C),(jzl,Z,...). Then
fj(M(C))CZM(C) (j=1,2,...) by lemma 3.2.10, and it follows that
g © gz\M(C) = fl o leM(C). In the same way, if f_ &F such that

1] — — t 1
leMoo = gleoo , we find that g © gleoo = fl o fz Moo’ Hence
g, ] gzeG.

In an exactly analogous way one shows that G is commutative. It is
evident that G meets the requirements (a) and (b). We will show now that
G also satisfies (c). As this is evident if [‘m = @, we may assume

N #e.

Let seSm(g). For every C (—.r‘m, let fCeF such that fc C = s(C).

Then a mapping f : XX is defined by putting

£{m(c)
f'Moo

~
Then f € G, and obviously f'

fC}M(c);

1|Mm.

]

S.

-%
3.2.12, Corollary. If N (F) = @, then F is contained in a commutative

group of mappings X—=X.

Proof
N*(F) = @ is equivalent to PO(F) = @; we see from the above con-
struction that this implies FO(G) = @. Hence Sm(G) = S(G). Then (using

theorem 3.2.6. the mapping g — g' is a 1.1. homomorphism of G onto a
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group; this implies that G is a group.

3.2.13.Corollary. If F is a maximal commutative semigroup of mappings
Ay
X-+»X then the homomorphism f ~sf' of ¥ into sn(l’) is onto,

(.3
It does not follow from N (F) = @ that F is itself a group.

Example. Let X be the set of all pairs {n,m) such that n,m are natural
numbers and n»m., Let £ : X-»X be defined as follows:

f(n,m) = (n,m+l) if mem;
f(n,n) = (n,1).

Let F be the commutative semigroup consisting of i and all iterates

k

£ (k31). Then C(n,m) = {(n,k) : 1¢ken}; hence I' =@, which is
-

equivalent to N = @ (theorem 4). But F is not a group, for obviously

f has no inverse in F.

3.2.14. The converse of corollary 3.2.12.is false: if P is contained in

a commutative group G c xx, it is8 not necessarily true that N¥P) = 0.
Example. Let X consist of all pairs (n,m) such that n is an integer and
m =0 or 1. Define f : X—»X by

f(n,0) = (n,1) for all n;

£(n,1) = (n,0) for all n,
Define g : X—»X as follows:

g(n,m) = (n+l,m) for every (n,m)e X,
Then i,f and g generate a commutative semigroup F. As C(n,m) =
{(n,O),(n,l)} for every (n,m)€& X, we see that g(C)nC = ¢ for all
¥

Ce N(F). Hence geN (F), so N (F) # @.

Nevertheless, F is contained in a commutative group G. For if

h : X=X is the mapping

h(n,m) = (n-1,m) for every (n,m)&X,

then it is easily checked that i,f,g and h generate a commutative

group containing F.
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3.2.15. However, although the converse of corollary 3.2.12. is false;

there is a weaker statement which is almost trivially true.

*
Theorem. If F is a group, then N (F) = 0.

Proof ~
FaY ~ _1
For no Ce" and fe F it can occur that £(C) = 0, as £(C).f "(C) =
A
i(Cc) £ 0.

3.2.16. Theorem. If FC XX is a maximal commutative group, and the
mappings f¢ F have no common fixed point, then F is a maximal commutative

semigroup.

Proof
»
By theorem 3.2.15. N (F) = @, It then follows from theorem 3.2.11,
A
that the homomorphism f--»f is an isomorphism of F onto the group
S(F) = S _(F).
" X
Suppose F is properly contained in a commutative semigroup GcX ;
let g€ G\F. Then there must exist an x€ X such that g(x) ¢ Clx); let

C1 = C(g(x)). As there is no common fixed point, C, contains more than

1

one point; let yEC,, y # g(x).

1)
A

As f—f is onto, there exists an f&F such that fog(x) = y and
f‘C(x) = i'C(x). Then g o £f(x) = g(x) #y = £ o g(x), contradicting the

assumption that G is commutative.

If F has a common fixed point, then the agsertion is obviously false
as soon as X contains more than one point. For if xo is the common fixed
point, the mapping f such that f(x) = X, for all xe€X commutes with every
map in F, and it cannot be contained in F as f is not 1.1. and all map-

pings in F are invertible.

3.3. Transformation semigroups F such that N(F) = N*?F)

The transformation semigroups F for which the extended nucleus N
L
coincides with the nucleus N have a number of nice properties. For in

this case we often need only study the maximal and minimal cycles, as

follows from the next theorem.

3.3.1. Theorem. If N(F) = N'(F), and if C(£(x)) & M, then C(£(x)) =

= fC(x), and the group F “C(f(x)) is a homomorphic image of the group
F‘C(x).
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Proof

*
Assume N(F) = N (F), and let c(f(x))ePo. Let C = C(x); by 3.1.5.(a)
fCcC(f(x)); we will show that f maps C onto €(f(x)).

Take ye C(£(x)). Then there exists an f,€ F such that f (f(x)) =

As f (C(£(x)) # 0, and as C(f(x))e [ o’ We see that f1¢N *; hence
:f (C) # O, which means that £ ©) c C In particular, i’l(x)e C; as
y = fl o f(x) = f(fl(x)), we f1nd that y € £(C).

The last assertion of the theorem is an immediate consequence of

theorem 3.1.6.

3.3.2. As an immediate application, consider the case that C(x) is finite.
Then if N(F) = Nf(F) and if C(£(x)) is not minimal, it follows from
theorem 3.3.1. that the number of elements of C(f(x)) is a divisor of
the number of elements of C(x). (There is a 1.1. correspondence between
the elements of C and the elements of F “C, for every C€[').

The following consequence of theorem 3.3.1. is of more importance.
If N = N*, we need only consider those cycles under F that are either
maximal or minimal, assuming that there are enough maximal cycles; in a
certain sense, the homomorphism of F into G‘E‘ ol Z(C) is just as good,
in this case, as the representation f—»f of F into all of S(F). This

is expressed by the following theorem.

*
3.3.3. Theorem. Assume N(F) = N (F), and suppose that for every €&’
there exists a CMe FM such that C <€ CM' Then the image of F in:S(F)
N~
under the map f—>f is isomorphic to the image of F in cep ul Z(C)
m

under the map f —» £ \(l"m v PM).

Proof
As s -—-—»-sl(r' u r' ) is a homomorphism of S(F) onto 'V‘C-'e—]}'MuP z(C),
we need only to prove that this map, restrlcted to {f : feF} is 1.1.
Hence take f,gé F such that f # g As X = U C, there is a ce [

such that flC # glC. If Ce Pm’ it follows that
N A
(a) tler by £g|Mulp;

if there is no C¢& Pm such that flC # glC, we must distinguish two cases.
In the first place, it is possible that f(C)AC # &, for some C el
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N = !‘* it follows that ?(C) = 0 for all C & r'\f'm; furthermore
f(C) = g(C) for all ceF Hence g(C) # O for all C&[', as we assumed
t 4 s. In particular, if Ce f’ \ F‘ (such C exist, as "\ Pm £ @), then
f(C) = O # g(C), which again implies (a).

In the second place, it may happen that ?(C) # 0 and E(C) £ 0 for
all ce " , Let Ce M such that f’C # glC, and let CMe FM such that
C‘C“. Then f'(:M # glcu, by theorem 3.3.1. and this again proves (a).

3.3.4. Corollary. Suppose F satisfies the following three conditions:

(a) N(F) = N¥(P);
(b) for every C &l there exists a C, € f‘M such that C€¢Cy
(c) every C € Pm consists of only one point.

A
Then the image of F in S(F) under the homomorphism f—f is isomorphic.

A
to the image of F in SH(F) under the homomorphism f-—=f l F‘M.

Using theorem 3.1.8., this corollary could be stated in another form,

in which maximal invariant subsets of X figure instead of maximal cycles.

3.3.5. If X is finite, it is easy to characterize N(F). In fact, a
weaker assumption that the finiteness of X is sufficient. Let us call a
partially ordered set (S,£ ) chain-finite if every subset of S that is
linearly ordered under £ is finite. Then the following holds:

Theorem. If the skeleton (F, £) is chain-finite, then

N = {fsr t (Vx cX)(fn(x) CCG.UF C for some natural number n)}
m

Proof

Assume f€ N, and let xeX., If £(C(x)) ¢ C(x), then C(x) € l" nd
£(x) tccUr' C. If £(C(x)) 9{ C(x), then €(f(x))<¢ C(x). If C(£f(x)) 6 f‘
then £(x)€& B(£(x))e UP C; else C(£(x))< C(£(x)).

m

’

Ce

Now the chain C(x) 2 C(f(x)) 2» C(f (x)) ... must be finite, hence
there is a natural number n such that C(f" (x)) = C(f"(x)). Then
n ~ n .
C(f (x)) & r and f € U
(£ (x)) n’ (x) cer C.
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Conversely, suppose that for every xeX there exist a natural number
n
n such that £ (x)e CU C. Then it follows that fe N, for if C(x) # f‘

el
f(C(x)) € Cc(x) would 1mpTy £° (x)e C(x) for all natural numbers n.

3.4. Abstract commutative semigroups

Let (A,.) be a commutative semigroup with identity e. If a€ A we will

denote by ma, see 1.2.3., the mapping

(ma)x = ax

of A into A.

We can interprete the theory of the previous sections in the case
where F = (mA,0) and X=A. It then turns out that the cycles of F in A
coincide with certain subsets of A studied in the theory of abstract

semigroups.

3.4.1. In this latter theory the following two equivalence relations -(:
and ﬁ are defined. One says that a.[b if a and b generate the same prin-
cipal right ideal in (A,.):

a«.[b @{a} U Aa ={b} U Ab,
and analogously one says that aﬁb if a and b generate the same principal
right ideal in (A,.):
aﬁb@{a} aA = {b} U bA.

As (A,.) is commutative and has an identity element, ae&aA = Aa;

hence the equivalence relations uC and ﬁ coincide, and
al b «> aflbe>ad = bA.

On the other hand,

2CB <« (ImxeFM (Imye F) ((mx)a = b and (my)b = a)

e>(3xeA)(JyeA)(xa = b and yb = a)
&> b€ aA and a €bA
&> al = bA;
L ”
hence the equivalence relation C coincides both with and with ,
and the cycles are exactly the oC -sets or /‘Z -sets.
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3.4.2. Theorem, The skeleton ([, €) of A under F is directed below.
Proof

Let Cl,Czér' . Take xd.&c1 and yﬁcz; as xy = (mx)y = (my)x, we have
Clxy)e €.'11 and C(xy)€ c,.

Corollary. There is at most one minimal cycle.
Corollary. Bither M_ = A or M, = @.

3.4.3, By theorem 3.2.15., if (A,.) is a group then Fo = ¢ and hence |’
consists only of the minimal cycle. On the other hand if (A,.) has only
one ¢ycle then it is a group, for in this case A = C(e), and C(e), the

set of all invertible elements in A, is always a group.

3.4.4, In the theory of abstract semigroups the concept of quasi-in-
vertible is defined. Reduced to the commutative case, an element a of
8 commutative semigroup (A,.) is said to be quasi-invertible if there
exists an a*d A such that

®
8 &Xx = X
for all xeA.

In our considerations, we need a weaker concept.

Definition. An element a of a commutative semigroup (A,.) is called

locally invertible if there exists an x # O and an a* in A such that
u*u = X,

3.4.8. Theorem. Let (A,.) be a commutative semigroup with a zero and an
identity element. Then N(mA) is the set of all ma (a€A) such that a is
Bot locally invertible,

Proot

If a is a locally invertible element, then there are an x £ O and
an u‘* in A such that a'ax = X.

As x £ 0, C(x) is not the minimal cycle C(0) = {0} ; and x = a*ax
implies ax @ C(x), hemce (ma)(C(x))cC(x); thus ma’.‘N(mA).

If a is not locally invertible, then for every x # 0,
(ma)C(x) N C(x) = @; hence ma ¢ N(mA) .
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3.4.6. Theorem. Let (A,.) be a commutative semigroup with a zero and an
identity element. Then N(mA) = N*(mA) if and only if every locally in-

vertible element is invertible.

Proot

Suppose N(mA) = N¥(mA), and let a be locally invertible. Then for
some x # O and some aﬁ&A, 2 ax = X. This means that (ma)C(x)cC(x); as
C(x) is not minimal, it follows that (ma)C(1)CC(l). Hence a = a.1€C(1);
i.e. a is invertible.

Conversely, suppose every locally invertible element is invertible,
Assume N # N*; then there exists an a€ A such that mae N*\ N. But then
there must exist x,y €A, x # O, such that

(ma)C(x) <C(x), (ma)C(y)NC(y) = d.

From (ma)C(x)<C(x) it follows that there is an a® such that

x = (ma") (ma) (x) = a*ax; hence a is locally invertible. But then a is in-
vertible; let a_l be its inverse. Then y = a—l.ay = (ma-l)(ma)y, which
shows that (ma)y€C(y) : contradiction.

3.4.7. Example. If (A,.) is a commutative cancellation semigroup with

zero and identity, then N(mA) = N*kmA).

In the case of abstract semigroups, corollary 3.2,12 reduces to the
&
following: N (mA) = @ if and only if every non-zero element is invertible.

As a corollary of theorem 3.4.2. we obtain

3.4.8. Theorem. In a finite commutative semigroup (A,.) with O and 1,

an element a is not locally invertible if and only if it is nilpotent:

an =0 for some natural number n.
Similarly the other results of the previous sections can be applied
to the case of abstract commutative semigroups with identity; the theory
of these semigroups in a certain sense is contained in the theory of

commutative transformation semigroups.
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4, Realization of relations

4.1, Definitions

4.1.1. In 1.4.5. we showed that to every commutative semigroup of trans-

formations (F;X) we can adjoin a relation )F as follows:

x )F ye> (IfeF) () = y).

Now we can ask, which relations on the set X can be obtained by this

process. Precisely:

Definition. Let R be a binary relation on the set X. The relation is said
to be realisable by a commutative transformation semigroup, or shortly
to be realisable, if there exists a commutative transformation semigroup

(F;X) containing the identity mapping such that

X Ry<&px )F y.

4.1.2, The following conditions are necessary for R in order to be
realisable:

(a) x R x for every x€Y,

() xRy, yRz=>xR z,

(c) nyl, nyzﬁ(azeX)(lez,ysz).

In other words: R must be an N-relation.

The proof follows immediately from 1.6.7.

4.1.3. Using the notation from 1.6. and 3.1.1., we have the following
proposition:

If R is realisable by (F;x) then (X'R; sR) is realisable by (F; I' (F)).

The following simple example shows that if (XR;sR) is realisable by
(G;xn), there need not exist a realisation of R by an (F;X) such that
(G;xﬂ) = (F; P(F)), even if R itself is an N-relation.

Example. Let X =

{1;2;3;4;5;6} and let the relation R be defined as
follows
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[T A VI
¥ W X W T
J T ™ AW o
g © X T T

g W W W v

XR contains three sets, namely X1 ={ 1;2} , Kz ={3;4;5} , x3 .—.{e} .

The relation P = 2 R is the following relation:

x1 x2 x3
xl P P P
x2 P

X P

X ¥ X3
S e 3
€y | *2 *3 X3
€3 | X3 *3 %3

Then (G;XR) is a realization of the relation 2 _. Let us suppose that

R

R is realisable by a system (F;X) such that (F; P(F)) = (G;XR). It is
*

easily seen that N(F) = N (F). According to 3.3.2., the cardinal [Xll

must be divisible by [X,| , and this is impossible as lxll =2, | x2|= 3.

4.1.,4. Let R be an N-relation on a set X. According to 1.6.10 we shall

define a relation MR on x as follows:

xMRyétrazex:sz,sz.
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1t is obvious that ll8 is an equivalence relation. Evidently,
*x Ry == x HR y.

Iheorem, Let R be an N-relation, R is realisable if and only if R,
restricted to ln(x}, is realisable for every x€ X.

Proof
1f R is realisable by (F;X), then R on MR(x) is evidently realisable
by (P‘HR(;R}; HR(x)), as IR(x) is invariant under F,

Suppose R,restricted to KR(X)’ can be realized by (Fx;M.R(x)). Let
¥, YCX be a subset of X such that YN HR(x) contains precisely one point
for every x@ X. Then

Y (F ;x eY)

realises F.

4.2, Dependence of cycles; non-realisable skeletons.

4.2.1, The example in 4.1.3. suggests the introduction of a notion of
dependence of cycles.

Definition, Let (F;X) be a commutative transformation semigroup con-
taining the identity mapping. Let C(x),C(y) be cycles under (F;X). The
cycle C(x) is said to be dependent on C(y) if there exists a mapping
feF such that‘_f(C(x)) = C(y).

Evidently each cycle is dependent on itself.

4.2.3. Proposition. If C(x) is dependent on C(y) then F "C(x) is a homo-
morphic image of Fac‘(y).

Proot

By 3.1.6., it is enough to prove that there exifts an f € F such
that £(C(y)) = C(x). Let € F be such mapping that f(C(x)) = C(y). Then
also C(x) = £(C(y)) and the proposition is proved.

4.2.3. The cycle C(x) is called independent if C(x) is the only cycle
on which C(x) depends.

F is said independent if every cycle defined by F is independent.
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Theorem. Let R be an N-relation on a countable set X, such that
Xl,Xzé XR, X0 X2 = @ implies that lxll and ]xz‘ are two different
prime numbers. If R can be realised by (F;X), then F must be in-

dependent.

Proof

Let us suppose that (F;X) is not independent. Then there exist

Xl’xz'wﬁz such that xlaéxz, x1 depending on x2. But this leads to a
contradiction, as Fl\xl must be a homomorphic image of F uxz, which
is not possible as Fllxl and FI‘Xz are finite groups of the different

prime orders.

4.2.4, In this section we prove the existence of an N-relation, which

cannot be realized by any independent (F;X).

Lemma., Let X ={1;2;3;4;5;6} . Let R be the following relation

A O b WD =
E A TS
W oW o
W W W W W oW o

Then R is an N-relation and R cannot be realized by any independent F.

Proof
Let us assume that R can be realized by any independent F. There

must exist mappings fz,f3e F such that f2(1) = 2 and f3(1) =3, As F

is supposed to be independent, the following must hold:
fz(z) = 2, f3(3) = 3,

For if not, then 2 or 3 would depend on 1. According to 1,6.9. (bh) we
have fz(f;) = 4, f2(5) =5, f2(6) =6, f3(4) =4, £,(5) =5, f3(6) =6,

Of course, also

f_o f3(1) = f

9 o fz(l)

3

which is the same as
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13(2) = 1'2(3) .

As the points 4 and 5 play in the relation R the same role, we can assume

that fa(S) = 13(2) 4 4. (If not we can assume 12(3) = f3(2) #5.)

There must exist a mapping f, €& F such that 14(1) = 4. As f, must
commute with fa and fa we have

2‘(3) =f, 0 !ﬁ(l) = 12 o 14(1) = f2(4) = 4

4

14(3) = t‘ o 13(1) =f o0 14(1) = f3(4) = 4

3

Now, - -
12 o !4(3) 12(4) 4,

But the value of £‘ o t2(3) cannot be 4 as 12(3) could be either 5
or 8, and if the image of one of these points is 4, then this point
would have to be in relation R with 4, but this is not true. This is a

contradiction.

4.2.5. Theorem. There exists an N-relation, which cannot be realized by
Rt

any independent F. ’ " . Substituting cycles

with different prime numbers of points for the points of this skeleton,

we get a non-realisable N-relation. This fact follows from 4.2.3.

4.2.8, Now we shall exhibit an example of a non-realisable skeleton.
This example was given by P.C. Baayen.

Let X -~{1,2,3,4,5,6,7} and let a relation R be given as follows

1 2 3 4 5 6 7
1{ R R R R R R R
2 R R R R R
3 R R R R R
4 R R
5 R R
6 R R
7 R
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Evidently R is an N-relation, XR = X, a.R = R, as no R is below the

diagonal. The proof is based on the propositions 1.6.9. (a),(b) and (c).
We shall write only (a), (b),(c).

Let us suppose that R is realisable by (F;X). There must exist a
mapping fzé F, such that fz(l) = 2,

First we shall prove that f2(2) # 7, Let f2(2) = 7. Then f2(4) =
=£,(5) = £,(6) = 7 by (a). By (c), {4;5;6}Cf2(x), and this is impos-

sible as only the point 3 can be carried by fz into the set {4;5;6}-.

Let £,(2)¢ {4;5;6} . As the points 4,5,6 play a symmetrical role
in R, we can assume that £,(2) = 4. By (c), {5;6} < £,(X), but only
the point 3 can be carried into{-S;G} . Therefore we can assume that
f2(6) = 6, as the situation is again symmetrical with regard to 5 and
6. But 2 R 6, and therefore there must exist a mapping g€ F such that
g(2) = 6. Evidently g # f,.

But

g0f2(2) = g(4) =f_ o g(2) =1£,(6) =6,

2 2

Evidently g(4) # 6, as 4 is not in the relation R with 6.

Therefore f2(2) = 2, By (a), f2(3)e.{ 3;4;5;6} . Let f2(3) = 3. There
must exist a mapping h € F such that h(1) = 3.

Then

f2 o h(1) = f2(3) =3 =ho fz(l) = h(2).

But this is impossible as 2 is not in the relation R with 3.

The only remaining case is f2(3) = 4, as the situation is symmetrical
with respect to 4,5,6. As fz(z) = 2, it follows that f2(5) = 5 from
(b). There must exist g€ F such that g(3) = 5. Then

g(4).

f2 o g(8) = f2 o(8) =5=go0 f2(3)

This is not possible as 4 is not in the relation R with 5. The proof

is completed.

4,3. Realisable relations

4.,3.1. Let R be an N-relation on a set X. We know that the set XR is

partially ordered by the relation aR.
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Lot ¥ be a subset of XR' An element ER(x)é XR is called a lower
bound of a subset Y if ER(x)f xi, for every Xia Y. A lower bound ER(y)
is called a greatest bound or meet of Y, if ER(y)) ER(x) for every
lower bound En(x) of Y.

The meet of a set Y R{ER(x); ER(y)}- we shall denote by ER(x)/\ ER(y).
The partially ordered set xn is called a lower semi lattice, if every
two-¢lement set {ER(x)} of XR has & meet in XR. It follows that every
finite subset of XR has a meet.

4.3.2, Let L be a lower semi lattice the elementsof which are disjoint
abstract commutative groups G . Let X = G LL L Gm . We can introduce
on X a binary relation R putting o

ny@xeGd,yeGﬁ, G“) Gﬁ'

Then the relation R is realisable by a commutative transformation

semigroup.

Proof
Let us denote by j [Gﬂ.} the unit element of Gx and by Ge( N GP
the group that is the meet of Go( and GI3 in the semi laatice L.
It xeX, say x& G, , and if Gze L, we will define Gz(x) by
Gz(x) = X if Gl( Gz

6, (x) = j [GZ] otherwise.
Then for any x¢X we define a mapping :IE'x : X—3» X as follows:
£ = (GlAGZ)(x) . (Gll\ Gz) (y)

it xtﬁl, y @ Gz. The dot here denotes the group multiplication in
GlA Gz.

We assert that fx o fy = fy o fx, for all x,yeX. Say xeGl,
ye Gz, and take any zeX; say ze G3.

rx o ty(z) = fx‘%" Ga)(y)'(Gz" 03)(z) =

= (GA GAG) (). (G A GM G3) (). (6 A G, AG) (2) =

= fy o fx(z)_
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Hence the fx’ x eX, generate a commutative semigroup F, It is evident

that (F;X) realises the relation R. For if
xeGI; yer, where GlaG , then i’y(x),= v,

while if G1 = G2 we have fz(x) =y, where z = x 1.y. On the other hand,

if Gl and G2 are not comparable, we cannot obtain y as an image of x

under any fe&F,

4.3.3. Let R be an N-relation on set X. Let (XR; 4R) be a lower semi

lattice. Then R is realisable.

Proof

It can be easily proved that for every cardinal number t, there

exists a commutative group G such that (Gl: t.

Let ER(x) € XR. According to the previous remark we can consider
a binary operation, such'that (ER(x); .) is an abstract group. This

process can be applied for every ER(x)&X Hence, we obtain X as a

R.
union of disjoint groups, such that the system of the groups forms,
according to the assumption, a lower semi lattice,

Evidently,
xRy &> ER(x); ER(y).

Applying 4.3.2 we get the assertion of the theorem.
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5. Pimed points of commutative mappings

consider again a commutative transformation

where X is an arbitrary

$.1. In this section we shall
semigroup (F;X) containing the identity mapping i,

(TN
$.1.1. Let us denmote by I(f) the set of all fixed points of the mapping

cen () u{ x;8(x) = x } .

Propo. sition. Por every £&F I(f) is an invariant set under (F;X).

Proof
Let x = £(x). Then for each gé&F we have

g(x) = go £f(x) = f{g(x)] s

and therefore g(x)e I(f).
A point x is mmw_; Common ﬂf?‘f‘d point of F if and‘ onl;f if ‘f(:-xo)':: ‘xo
fér edery f€F. i N .

X is & common fixed point if and only if xoc fer I(L).

x, i®s a ocommon fixed point if and only if {xo} is a minimal cycle.

$,1.2, Prom the previous proposition we immediately have the following:
Proposition. Let (F;X) be a commutative transformation semigroup. Let some

{4 ¥ have precisely one fixed point X, . Then all mappings from (F;X) have
xo as a common fixed point.

8.1.3, The proposition 5.1.2. can be applied in every situation where
there i® & theorem, which asserts that there exists only one fixed point
for some mapping. For example:

Mwium. Lot (x;f) be a complete metric space, p Dbe the metric. Let
f be a Lipschitz mapping from X into X with constant & < 1. That is

f{t(xl);t(xa}]G « J6’(::1;3:3) for any x_,x_€X.

1’72

Then every mapping g from X into X (continuity is not assumed)
commBting with f possesses a fixed point.
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5.1.4. Let f € (F;X), ]I(f)l = m, where m is a natural number. Then for
every mapping g€F there exists a natural number k, 1€ ks$m, and a

point xod,x such that

k
X, = i’(xo) = g(xo).

Proof

As I(f).is invariant, g carries all points of I(f) into I(f). As
I(f) has only m points some power of g, less them or equal to m, must
have a fixed point in I(f). But this is the assertion of the proposition.

5.1.5. We can discuss the existence of a common fixed point in the ter-—
minology of commutative mappings of the fact that (F;X) has a common
fixed point x, if and only if the constant mapping 1’0, such that

fo(x) =x for each x €X, commutes with every mapping from F.

5.1.6, In every semigroup (F;X) we can introduce the notion of divisibil-
ity. Let f,g € F, We shall say that f devides g (in F), if and only if
there exists an he F such that g = hof.

Every mapping feF, which can be devided by all mapping from F,
shall be called a common multiple.

We denote the set of common multiples in F by r(F); this set is
called the retract of F.

5.1.7. r(F) is an ideal in (F;o0).
r(F) = F if and only if F is a group.

5.1.8. The set r(F) can be void; an example is provided by the multi-

plicative semigroup of natural numbers.

5.1.9. Let (F;X) have a common fixed point. Then there exists a com-

mutative transformation semigroup (G;X), G D F, such that r(G) # @.

Proof

Let xo be the common fixed point.of F. Let g be’ the mapping fromcX
into X, sue¢h that g(x) = xc;;fbr each x €X. Then g commutes with each
mapping in F (see 5.1.5.) and therefore G = {Fu g} is a semigroup with
the required property (as ger(G)).
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%.1.10. I1f F is a finite semigroup, the r(F) # @, as the composition of
all mappings in F belongs to F and in the same time t‘p r{(F).

%.1.11. Proposition. Every mapping in r(F) maps each point into a minimal

cycle,

Proof
It is sufficient to prove that for each x€X, geF, f€&r(F) there
exists an hé F such that

f(x) = h o g o f(x).
But £ is devided by g o £, as f is assumed to be a common multiple,
Therefore such an h&F exists,

5.1.12. Let 11,126 r(F), xeX . Then fl(x) and fz(x) belong to the same

minimal cycle.
The proof follows immediately from the fact that the orbit of each

point can contain at most one minimal cycle (see 3.1.8).

5.1.13. r(F)(x) is a minimal cycle for every x €X.

Proof

C(£(x)), £ @ x(F), is a minimal cycle by 5.1.11. Let ye C(f(x));
then for some g,heF, y = g o f(x) and £(x) = h(y). But g o f er(F) as
r(F) is an ideal of (F;o0).

5.1.14, r(F) # @ implies Moo = @,

The inverse statement is not true. In general M00 may be void while

r{F) is empty , 88 can be seen from the example in 3.2.13,

5.2. In this section we shall formulate a few propositions about com-

mutative transformationrsemigroups (F;X), such that each mapping from F
has at least one fixed point.

5.2.1, 1f (F;X) is a commutative semigroup of transformations and if
every mapping f &F has a fixed point, then (F;X) need not have a common

fixed point. This is easily seen from the following two examples,
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a) Let X ={21;2;3;4;5;6} and let (F;X) be given by the following table

W A

HoOoN N R
I N e
B W o W w
W o W o e

22 DIV S I e 14
(3 S B < > I « ) I K]

(F; X) is ev1dent1y a commutatlve semigroup of transformations. Every

mapplng fe.F has*?f flxed p01nt But there exists no common fixed point.
In this case the mapping g

g 2 1 4
commutes with F, and g has no fixed point.

b) Let X be the set of all non-negative integers. The binary operation
X »y = max(x,y) X,y €X

is commutative and associative. Therefore (X; #) is a commutative semi-
group. Using the notation introduced in 1.2.3., (m(X);0) is a commuta-
tive semigroup of transformation. The orbit of O under (m(X);o0) is X,
Hence by 2.2.4. (m(X);0) is a maximal commutative semigroup. Every
mapping of (m(X) ;o) has a fixed point, but there exists no common
fixed point.

In the first example we see, that if we embed the system in a
maximal commutative system, then not all mappings will have a fixed
point anymore.

In the second example the common fixed point is as it were pushed

away to infinity.

5.2.2. Theorem. Let (F;X) be a commutative transformation semigroup

satisfying the following conditions:

(a) every f eIP{FlF(x); xex} has a fixed point
(b) r(F) # 4.

Then all mappings in F have a common fixed point.
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Proof
If there exists a minimal cycle containing only one point,. then

this point is a common fixed point by 5.1.1.

Let us assume that every minimal cycle has more than one point.

In 1.6.10. we defined for every (F;X) a relation M . The classes of
equivalent points according to M are disjoint and cover X. Let Y be
one of these classes.

Y contains at least one minimal cycle, as Y is invariant and r(F)#@.
According to the definition of the relation M, Y cannot contain more than
one minimal cycle, as no two points from disjoint minimal cycles can be
in the relation M to each other. Therefore Y contains precisely one
minimal cycle.

Let fe r(F). Then !‘Y has either no fixed point or it is the
identity mapping on the minimal cycle which is contained in Y. This
assertion we can prove as follows. f}Y cannot have a fixed point out-
side of the minimal cycle, as, by 5.1.11., le maps every point of Y
into a minimal cycle. Let us denote by CY the unique minimal cycle in
Y. By 3.1.4., F“CY is a group, and as CY is minimal we have

FlCY = F‘CY.
Evidently p(Flc)) = 1.
Therefore every mapping f €F restricted on C_ is either identity or has

Y
no fixed point in CY As (.‘.Y contains more than two points there must

exist a mapping g€ F such that g}CY has no fixed point.

Let us define on Y a mapping h.Y as follows:

by = 2]y 1z 2]y # ic,
= o le l =
by = € it z|c, 1|cY.
Evidently hY has no fixed point in Y and commutes with every mapping
in Y. Such a mapping hY is defined for every equivalence class accord-

ing to M. As these classes cover X and are disjoint, we can define a
mapping h on X as follows:

hly =n .
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Then h commutes with each mapping in F.
Moreover h belongs to P(FIF(x);xeX), as h preserves orbits (see 2,4.6.).
But h has no fixed point. This is a contradiction. Thus one of the mini-

mal cycles has to have only one point, and the theorem is proved.

5.2.3. Theorem. Let (F;X) be a maximal system of commutative transfor-
mations of a finite set X into itself. Let each mapping from (F;X) have

a fixed point, Then all mappings from (F;X) have a common fixed point.

Proof
By 1.3.3 (F;X) is a transformation semigroup. By 2.4.7.
TP(FIF(X');XG,X) = F, By 5.1.10. r(F) # @, Therefore we can apply 5.2.2.

5.2.4. Proposition. Every orbit under F can contain at most one common

fixed point. The proof follows immediately from 3.1.8.

5.2, In this section we shall show an application of the methods intro-

duced before. Our aim is to prove the theorem 5.2.4.

5,2.1. Let (F;X) be a conmutative transformation semigroup containing

the identity mapping. If x ¢ X, F(xo) = X, x'eX, then either

(a) FIF(x’) is a group or
(b) for some yeX, x'géF(y).

If (b) does not hold, then X'é F(x) for every x&€X, Clearly,
F(F(x)) c F(x) for every x&X. Put X'=F(X'), F' = F|X', Evidently,
X' = F'(x¥') and, for any x&X',

x' =F' &) CFF®)cF &),

hence F'(x) = X',
Therefore the orbit of every x €X' under F' is X', By 2.1.7. F'

is a group.

5.2.2. Let (G;X) be a commutative transformation group of continuous
mappings of a given bounded connected subset Y of the real line into
itself; let Y contain more than one point. Let G(e) = Y for some e eVY.

Then Y is an open interval. If we put Yy = (a;b), then
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1im f£(x) = a, lim £(x) =b , for every f € G,
X =p G+ X = b-
Proot
Every fe G is a one-to-one mapping from Y Qnto Y, and the values
of two different mappings from G are distinct at every point. As the
identity mapping belongs to G, every f«G in an increasing function.
Let ¥ = [& h] As every mapping f€ G is onto, 1lim f£(x) = a and
lim £(x) = b, From a&Y¥, it would follow that 3(a)° a, as f is con-
ﬁ‘ﬁﬁ‘@&s; and therefore that G(a) = a. As Y contains more than one point

we would have G(a) # Y; hence a ¢ Y. The same is valid for b.

5.2.3. Let XO be a compact interval of the real line, c¢ its centre.
Let F be a commutative transformation semigroup of continuous map-
pings containing the identity mapping.

Suppose that, for some x € XO, F(xo) is connected, F_(;c:)‘ =
then either

(&) F(e) = ¢, or

(b) the endpoints of the interval F(c) are common fixed points
of F, or

(c) there exists xla F(xo) such that F(xl) is connected, and
d(F(x))) € 3d(X ),

where by d we denote the diameter of the set.
Proof

For any xcx the set F(x) is connected since, for some fe F,
F(x) = F(£(x, ) = I(F(x o))+ Consider the semigroup F FIF(x ).

By 5.2.1,, either F lF(c) is a group or there exists x € F(x ) such

that c#F(x ). In the first case apply 5.2.2..(The case F(c) = ¢ is
trivial,) In the second case

d(F(xl)):'- id(F(xo)) = id(xo) since ¢ non € F(xl).

5.2.4, Th@aram. Let (F;X) be a commutative transformation semigroup
of continuous mappings containing the identity mapping; let X be a
Compact interval. If F(e) is connected for some e€X, then all map-
pings in F have a common fixed point,
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Proof

Ve put Xo = F(e) and consider the semigroup leo. Let ¢ be the
centre of F(e). By 5.2.3., either the endpoints of F(c) (or ¢ itself)
are fixed under F, or there exists XleF(e) such that

d(F(x;)) & id(Xo) ,

and Xl = F(xl) satisfied the conditions required for Xo in 5,2.3,
Proceeding by induction, either we obtain, at some step, a fixed

point for F, or a sequence of intervals {Xn} is obtained with

(2) an xn+1 !

(b) d(Xn+1).-‘§ %d(xn) s

(c) F(xn)c Xn'
10')

In this last case, clearly, rQl Xn is a one point set {z} , and

z is a common fixed point of F.
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8. The number of commutative transformations of a finite set into itself

Throughout this section X will be a finite set and F a commutative
transformation semigroup containing the identity mapping. Evidently, F
must be also finite. The aim of this chapter is to estimate the number of
commuting mappings on X, If we assume that F is a group, then the number

can be estimated very easily, using some previous results.

k
6.1.1. Theorem. Let F be a group. Then lrfs. ;C[l- n,, Khere the n,,
i=1,2,...,k, are natural numbers such that ; n, = ] X' .
1=l

The proof follows immediately from the fact that the orbits are
the cycles by 3.2.15. If we put n, = lci! , then we know that ’FICi' =
u]ﬂCJ u]cii , by 2.3.1. Forming P = P (F|c,;i=1,2,...,k), we get
k

TT = "W"‘F‘ :

iml

6.1.2, To make a similar estimate for a semigroup is not so simple, as,
in general, the orbits are not the cycles. The estimate of ‘FI is based,
roughly, speaking, on the induction according to the number of maximal
orbits. But first we must introduce a new notion and to prove a few lemmas,

We shall say that F(y) = Y is a maximal orbit if C(y) e PM'

As X is assumed to be finite, the maximal orbits cover X. There exist no

more than |X| different maximal orbits.
n

6.1.3. Let Yi’ i=1,2,...,n, and Z be orbits and let Y = H Yi' Then

lYnlezﬂlFlYnz

z 2,

Proot
The set Y n Z is evidently invariant under F, and therefore F
restricted to this set is a commutative transformation semigroup contain-
ing the identity mapping, by 1.3.4. Hence, lFlY N Zla 1.. Let us suppose
that !F'Ynzt = 1. Then FlYnZ contains only the identity mapping, and
all points in YnZ are the common fixed points under F, hence they are

minimal cycles. The orbit Z cannot contain more than one minimal cycle,
by 3.1.8. Hemce, |F|vnz|y 2.
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1

6.1.4. Let Yi,Z., 1,2,...,m, j=1,2,...,n, be orbits under F. Let

Y = ilj Y, Z= UZJ., | Flynz|=s.

J=1
Then
lFlYUZ!éIFlYl ‘F]z‘ for s¢1,
IF]Yuzli(IFlqu)dFlz | -1) +1 for s»2.
Proof |

Let s¢ 1. For every f€F [YUZ there exist £ & F|Y and £, ¢ F|z,
such that le = fl,f Z = f2. Hence, every feFlYUZ, is uniquely defined
by a pair fl,fz. The number of such pairs is at most IFIY' . ‘F‘Zl .

Let s> 2, We can devide all mappings from FlY in disjoint classes
putting two mappings in the same class, if the restrictions to YnZ are
equal. We get precisely s-classes. The same we can do for F]Z. If we
denote the cardinals of classes of F|Y by My sMyyees,My and the cardinal

of classes of FlZ by n,05...,0,, We get the following:

(a) m, 21, i=l,1,...,s, nj;l, j=1,2,...,s,

(®) }s: my =|F|Y‘| ’ i oy =|FIZI .
i=1

Every mapping from F\YUZ is uniquely determined by a pair of mappings,
one from F‘Y and one from FIZ, such that both mappings must have the

same restriction to Yn z. Hence,
s
<
|Flvuz|s Z; m .o,

It can be proved by elementary methods that the expression on the
right hand side, has its maximum for s=2, m, =]F|Y| -1, my =1,

n =IF|Z'— 1, n, = 1.

Hence, the proposition is proved.

n
6.1.5. Let Z’Yi’ i=1,2,...,n, be orbits and let Y = i(;’l Yi.
e |e|vvz|¢|rlylr|z| 1t |vnz|e1,

[Flvuz|¢ (rlyl-vdrlz] -0 + 111 |ynz|> 2.
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Proof

This is an immediately consequence of 6.1.3. and 6.1.4.

6.1.8, Let us denote by a(t;r), t,r-natural numbers, t» r, the following
function
a(t;r) = max IF] ,

where the maximum is taken over all commutative semigroups of mappings
(F;X), containing the identity map, such that ,X‘ = t and such that
there exists precisely r maximal orbits under F.

Evidently a(t;r)2 1, for every pair of natural numbers t,r,tz r. To

see this, we_can take r disjoint cgmutativa algebraic groups G1’G2’ ""Gr’
guch that lGil = t. Then (F; U Gi) = TP(m(Gi);Gi) has the required

- i
properties.i 1 =1

Moreover, a(t;l) = t, as in this case p(F) = 1, for all F over
which the maximum is taken, and a(t;t) = 1, as it can only be true for

Foao {1} that the number of maximal orbits is equal to t.
6.1.7. Let t»r 22, Then

(a) a(t;r) & max

a(x+s;r-1)(y+s), where x+s+y=t; 12 s» O;y>1;x3 r-1
X y:8

(a(x+s;r-1)-1) (y+s-1)+1, where x+s+y=t;s 2; y3 1;
x» r-1
All numbers, x,y,s are supposed to be integers.
Proof
Let (F;X) have the following properties:
(a) |X] = ¢
(b) there oxisgnfmciwly r different maximal orbits, Y1’Y2’ cee,Y _1,Z.
Let us denote 191 Yi = ¥, If we denote lYnZ] =8, IY] = X+s8, ‘Z = y+s,

we have
t=x+y + s,

Every Yi is an orbit of a point, which does not belong to YJ., J#i or
to Z. Therefore
X + 8»r-1 + s, and hence x» r-1.

According to definition we have
lF‘ Y!“ a(x+s;r-1)
;F, Zlﬂ a(y+ﬂ;1) = y+8,
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The estimate of a(t;r) follows immediately from 6.1.5.

6.1.8. For all natural numbers k,r, let us define the function b(k+r;r)
as follows:

b(k+1;1) = k+l
b(k+r-y;r~1) (1+y) , where 1lg y¢ k
b(k+r;r) = max ? ! N
! v,8 { b(k+r-y;r~1)-1) (y+s-1)+1); where s »2, ,
3

14 y € k-s+1
y,8 being natural numbers,
6.1.9. b(k+r;r)> a(k+r;r) for every pair of natural numbers k, Tr.

Proof

The assertion is true for r=1. Let us assume r 3 2, and suppose

that the assertion is true for r-1.

Let us consider the expression from 6.1.7.(a):

max [a(x-i-s;r—l) (y+s)] , where x+s+y=t, 12 s20, x»r-1.

Putting t =r+k, we can replace this expression by
max [a(r+k-y;r—1) (y+s)] , 12s%0, ys k-s+1 .
Using 6.1.6. we can easily verify that this expression is equal to

max [a(r+k-y;r—1] (y+l)] .
l1¢<y4k .

According to the assumption we can write

max [a(r+k—y;r—1) (y+1)] ¢ max [b(r+k-y;r—1) (y+1)] .
1€ ysk 1 y<&k

The rest of the proof is evident from the definitions.

r
6.1.10. Proposition. b(r+l;r) = 2

r-1
b(r+2;r) == .3

I .
b(r+k;r) = k +1, r» 3.

The equations can be obtained by elementary methods from definition

6.1.8.

6.1.11. Theorem. Let r,k be arbitrary natural numbers. Then there

exists a commutative transformation semigroup (F;X), I Xl = r+k,



wfide
which has precisely r different maximal orbits, such that
| 7] = pirek;r).

Proof

(a) Let k=1, r arbitrary. Let X -(o;x;a;...r} .
Let "t; {o;l} ), 1«1,2,.,.,7, bo the system of two mappings

, defined by the table

R".f‘.
lo i
tg]o i
11 o 0
Then ('(t‘; 1=1,3,...,7);X)
has the regquired properties,

(d) Let k=3, X -{0;1;8;...»1;:;!#1} .
let r‘; 1=1,2,...,r1 have the same meaning as in (a).
Let (u;{o;r;r»x} ) be defined as follows

[0 r o rel
.l 0O r r+1
o 0 r
‘3 o 0 0

Then
(P(r‘;l;a-x.a. ceo,=1);X)

has the regquired properties.
{(¢) Let k¥ 3 and X -{1.!.3.....&,.1.1'....,nr}
et X -{1;3;3;...&;%} i=1,2,...,r, and let
1
'1 -{ 1;!?;...22} where
t31) =1, 1=1,2
‘ = » = ? poun.k

3 L for j=1,2,...,k.
(‘(n‘) 3

1ty -'{r‘.tul,l,....r} v {:} , where by i we denote the
identity map on X, then |F] = x"s1,
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6.1.12. Corollary. a(k+r;r) = b(k+r;r) for every pair of natural numbers
k,r.

6.1.13. Theorem. Let (F;X) be a commutative system of mappings from a
finite set X into itself. Then

lF‘l§ 2lx) -1 if 15 (x\ 6 ,

lF‘ £ gaX(lx\!);T)rﬂ it |x|z 7.

Ir=l,45¢494,
For every finite X there exists an F such that the equality holds.

Proof

Evidently, lFl é_lm%x b(lfiir). Computing this expression we get
B ]

ge ey

the assertion of the theorem.

6.1.14. Theorem. Let (F;X) be a commutative system of mappings from a
finite set X into itself. Let |X| 2 4. Then

| 7| £ (x]-0:

The proof follows immediately from 6.1.13. It is necessary to

remark that this estimate is very rough.
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