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The Three Conjugates Theorem

by R.D. Anderson (1)

1. Introduction. In this paper we prove that for certain
metric spaces (e.g. spheres) and naturally defined sets of
homeomorphisms of such spaces onto themselves, each (non-identity)
element of the set is the product of three conjugates of any other
(non-identity) element of the set (2)

slightly stronger version of such a proposition is proved. The

. In fact, in Section 6 a

arguments are elementary. In Section 8, it is proved that for
many of the spaces and sets of homeomorphisms considered "three"
is the best possible number, i.e. there exist homeomorphisms f
and g such that f is not the product of two conjugates of g.

In Section 2, properties of spaces and sets of homeomorphisms
sufficient for the Three Conjugates Theorem to be true are listed.
The spaces concerned all have a form of "invertibility", i.e. for
some set of neighborhoods forming a basis (with respect to a sub=-
set), the closure of each neighborhood is homeomorphic to the
closure of its complement under a space homeomorphism. Thus the
proposition in its form in this paper is not applicable to closed
manifolds other than spheres (or cells) nor is it applicable to
Euclidean spaces as such.

Examples of spaces and sets of homeomorphisms for which the

(3)

(a) The Cantor Set C and the set of all homeomorphisms of C
(4)

"Three Conjugates Theorem" is true are

onto itself.

(1) Alfred P. Sloan Research Fellow.

(2) A conjugate of h is a homeomorphism of the formtp‘1hw where
is a homeomorphism. In this paper all the conjugating homeomor-
phisms (like ¥ ) will be of a particular simple type.

(3) In Section T, a more detailed discussion of the examples is
given.,

(4) We could also cite the universal curve M and the set of all |
homeomorphisms of M onto itself. But this example requires a
somewhat more detailed structure than that given in Section 2.
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(b) the n-sphere, S, n3 1 and the set of all those homeo-
morphisms of S" onto itself having the cell homeomorphism extension
property (5), CHEP. For n=1,2,3, all orientation-preserving homeo-
morphisms of S" have the CHEP. For n*>3, it is not known whether
such is the case, the CHEP for all orientation-preserving homeomor-
phisms being equivalent to the affirmative annulus problem for
spheres [ 2] and ['Y] . The conditions of Section 2 are only

applicable for n >»1 but the broad outlines of the argument given
are valid for n=1.

(c) Sn,xlz1, and the set of all those orientation-reversing

homeomorphisms which are subject to a condition like the CHEP.

(d4) I® (the closed n-cell), n 1, and the set of all those
orientation-preserving homeomorphisms which are not the identity
on the boundary of 1" anda satisfy a version of the CHEP. As in the
case for Sl, the specific conditions of Section (2) are not ap-

plicable. to I2 but the general argument is valid.

(e) I", n>1, and the set of all those orientation-reversing

homeomorphisms which are subject to a condition like the CHEP.

(f) the space of all rationals (or irrationals) on the line

and the set of all homeomorphisms of such space.

(g) the spaces of (a) - (f) above and sets of homeomorphisms
with the added restriction that all homeomorphisms carry an ap-

propriate dense subset onto itself.

(5) A homeomorphism h of s™ onto itself has the CHEP provided

h = af where o and B are homeomorphisms of SP onto itself and
each of ooand B is the identity on some open set. The name of this
property comes from the alternative formulation that on any open
cell D on which B is the identity, o restricted to D is h
restricted to D and thus o extends h restricted to D to a homeo-
morphism supported on a cell. In [3 ], Brown and Gluck study
"stable" homeomorphisms of S? and give several important proper-
ties of the set of stable homeomornhisms including the fact that
such set is the set of homeomorphisms with the CHEP. Earlier in
[4] , Gordon Fisher studied such homeomorphisms in a slightly
different context.
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In 1947, Ulam and von Neumann asserted [ 5] that for the
sphere, SE, there is an N> O such that any orientation-pre-~
serving homeomorphism is the product of not more than N conju=~
gates of any other (not the identity). In a letter, Ulam
stated that N could be taken as 23. As far as the author knows,
the proof of their proposition has not been published. In.[i] ’
it was shown by methods considerably different from those of
this paper, that, for instance, every orientation-preserving

homeomorphism of 82 or S3

is the product of six conjugates of
an arbitrary (non-identity) homeomorphism and its inverse. In
[h ] the methods of [1] were extended to S for the group of
all homeomorphisms isotopic to the identity (equivalent to the
group of all homeomorphisms with the CHEP).

In these earlier papers, algebraic methods employing com-
mutators were strongly used. This resulted in conjugates of the
inverse as well as of the original homeomorphism being necessary

in the arguments given.

2, Description of General Structures

It will be understood throughout that all homeomorphisms
are of the space under consideration onto itself. Fur any space
X, e denotes the identity homeomorphism. For any homeomorphism
f of X and any Z¢X, f|Z denotes the homeomorphism f restricted
to (the domain) Z. For YcX, Y denotes the complement of Y and
Int Y denotes the interior of Y in X. If X is a space and YeC,
a homeomorphism f of X is said to be supported on Y provided
£y = e|Y .

In the definition belov and in the remainder of this paper
the following notation is adopted:

(a) X is a metric space and X' a subset of X containing no

isolated points (of X'),

(b) K is the set of closures of some open basis of X' in X
(with each element of the open basis containing a point
of X'),
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(c) G(X,X') is a non-null set of homeomorphisms of X onto

itself, each carrying X' onto X',

(a) GK is the set of all homeomorphisms supported on ele-

ments of K and carrying X' onto X', and
® . . e
(e) Gy is the set (and thus the group) of all finite pro-

ducts of elements of GK'

The set (X,X',K,G(X,X')) is called an A-quadruple provided
(1) for any keK, C1(k™ )& K, A
(2) for any ordered sextuple (k1 ’k2’k3’kh’k5’k6) of disjoint
elements of K, there exists k 4K such that (k1U k2uk3) c
Int k and kn(khu ksuk6) =@,

(3) for any ke K and ge G(X,X'), g(k)eK,
(4) for any 8128, ¢ G(X,X') and gt Gy, gg1,g1geG(X,X') and
€G
(5) for any kqsk,,ke K with (k1uk2)c: Int k and k # kq2Kps
there exists g ¢ G, with support on k such that g(k1) =k

K 2°?
and

(6) for any k<K, open set Uok and geG; with g(k) = k, there

exists hs.GK with support on U such that hlk = glk.

We henceforth assume the existence of an A-quadruple and
shall refer to Conditions(1) - (6) above.

Remark. The set X' may be thought of as the boundary of X if X

is an n-cell. In the examples (a), (b), (c¢), and (f) cited in

the introduction X' = X. With this understanding it is possible
to see that, except for st and 12, the A-quadruple can be inter-
preted in terms of these examples. A fuller discussion is given
in Section T. In general , the structure and the theorems are

not true for diffeomorphisms or piecewise-linear homeomorphisms
of s” (with all homeomorphisms concerned so restricted). The dif-
ficulty is that GK is the set of all homeomorphisms of a certain
type and the convergence criterion of Section (3) yields homeo-

morphisms not necessarily differentiable or piecestrise=linear.
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In fact, the Milnor example of non differentiably-related

diffeomorphisms of S7 shows that the result cannot be true

for diffeomorphisms in S7

T

even though orientation-preserving

diffeomorphisms of S' are known to have the CHEP.

Remark: From condition (3) it follows that every conjugate of
an element of G(X,X') by an element of GK“ is an element of
G(X,X').

Remark: From conditions (3) and (4) it follows that for ke X
and g ng, g(k) 2 K and from condition (4) that any product of
an element of G(X,X') and an element of Qg'is an element of
G(X,X*").

Remark: Condition (1) in the presence of Conditions (2) and (5)
and the fact that K is the set of closures of an open basis of

X' in X is a condition for invertibility of the space X.

We could use a somewhat weaker form of (1) asserting that
C1(k™ ) is non-null and a subset of some element of K. For con-
venience we use condition (1) as written. We note that mani-
folds other than spheres (or cells) do not, in general, satisfy

the condition of invertibility.

Remark: It follows, from the definitions and conventions, that
all homeomorphisms under consideration must be of X onto X and
must carry X' onto X'. Any homeomorphism of X onto X constructed
by a convergence process must be checked for this second con-

dition.

Remark: Condition (2) in light of the other conditions cannot

be achieved for X = 81 = X' or X = 12 and X' = 8. Alternative
conditions are possible to give in such cases and the theorems
are true as stated. Condition (2) is intended primarily for

use in Section 5 and for proving Lemma 32.In both instances

the results are easily seen true for X = S1 or X = 12. We

stated the conditions for an A-quadruple in as simple and in-
tuitive a way as we could so that it would be easy to verify that

the conditions are achieved in the higher-dimensional cases.
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3. Convergence of a sequence of homeomorphisms

In Lemma 3.2 and in Section 6, sequences of homeomorphismé
will be set up with the intention that such sequences converge
to homeomorphisms. The nature of the constructions require only
a rather weak convergence lemma. We state it and regard the

proof as obvious.

Lemma 3.1: Let X and Y be spaces. Let {Ai} ggg_{Bi} be nested
sequences of closed sets in X and Y respectively such that
dia A, > 0, dia B, > O, andnA.#(é#nB.eLet{h}bea
sequence of homeomorphlsms of X onto Y such that h~1 h and

1+1
hi+1h;1 are supported on subsets of Ai and Bi respectlvely.
Then {hi} converges to a homeomorphism h of X onto ¥ with

h(n Ai) = n B, and for each x eX with x # nA;, h(x) = hi(x)

for all sufficiently large 1i.

In the applications of this lemma, X and Y will be the same
space X and N Ai and N Bi will be points of X',

Suppose g and y are homeomorphisms of X onto X. Suppose
for some set W, ve(W) € W. Then if dia (yg) (W) > O and

i )O(wg) (W) is a point we say that g telescopes W with respect
to ¢y .

Lemma 3.2: Let ¢1aGK be such that for some AO,WO,ZOe.K with

] = é T
A.On v, @ ,and .zoc wc, ] (Ao)c Int W\ zo° Let k,k ¢ K be such
that k:bko and A v Wo < Int k‘\ko. Let 8, be any homeomorphism

with support on k and with & (W ) = o° Then there exists an

element g-G with g supported on k, g(w ) = Al and g|W = gélw;

such that g telescopes W with respect to ¥ and N (wg) (W )
and n(gy)* (A ) are elements of X',

Proof. By hypothesis, g(wo) = A . Ve introduce notation as
follows:

W(Ao) = W1
go(W1) = A1

v(a,) =W,
go(we) = Aé°
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Int Wo properly contains W, and Int AO properly contains A1.

1
The analogous statements for i and i+1 will be assumed in

what follows.
Let pe X' n Int A1° Let A

contained in Int A

5 € K such that p ¢Int Ag, A2

13 dia A 1 and diaw(Ag) < 3. Condition (5)
implies the existence of g% GK with support on A1 such that

') = * = ® =
g1(A2) A,. Hence for g, 8,849 g1(w2) A, We note that

is properly

since g4 is supported on A,, then g:' may differ from g only

1 9
. . * -1
in ranse A1 and domain W1. Thus g1'1°go and 848, are supported

on W1 and A1 respectively.

We now set up an induction in an analogous manner. Let

— * - 1
v(a) = Wi,, and g; (W, ) =A! .. Let A, &K such that
p &Int Ai+1’ Ai+1, is properly contained in Int Ai’ dia Ai+1<

1
o1
and dia lp(Ai_H )< — - As before Condition (5) implies the

. ¥ e 1 =
existence of g; ¢ GK*vrth sufport *on Ai such that gi(AiH)
= A,,, Hence for g.”= g:+85_1» gi(wiﬂ) = A, Since g; is
*®

supported on Ai’ then g; may differ from g;'_1 only in range
-1

. * :
Ai and domain Wi. Thus g: ° g;_ and g. o gi"_1’1 are supported

on W. and A. respectively. But dia W. < — Snd dia A.< — and
1 1 1 1~ 1 1-1
thus except possibly for n wi and N Ai as elements o% x!
the conditions of Lemma 3.1 are met. But, for each i, pcAi and
p &X', Hence n A; €X' and n A, = p. Also y(p) =n W, and by
hypothesis ¢ carries X' onto X'. Thus Lemma 3.1 implies Lemma

3.2,

k. The Conjugation Modification Procedure

In this section we have the following standing hypotheses.

Let a,8 & G(X,X') and let k be an element of K such that (6)

(1) [(a)(B)](k) = k and
(2) [(8)7 (k) v (a)(x)]n k = ¢ and ((8) 7' (k) U () (k) U k)

is contained in some element of K.

(6) Here, as later, for o 2G(X,X'), (et) denotes a conjugate of g
by an element of G*and (a)(B) denotes the composition homeo-
morphism of (B) followed by (a).
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Lemma 4.1: Let w be an element of GK_ supported on a subset A
of k. Then w(a )w-1(8) is a (twofold) product of conjugates
of o and B by elements of GI: and

(1) w o™ @)k is wl@) @)k,

(2) wlea )™ @) K is (@)™ ()| K
and (3) w(a) - (8)| x differs from @)@®)| K

only on the domain (B )~1(4) to the range (u)(4).

Proof of Lemma

We first notc that w (o )w-1(6 ) = [0 )w'1] (B) and thus is
a (twofold) product of suitable conjugates of @ and B. Also,
for any x ¢(8)-1(A), (B)(x)¢# A and thus as w7V is supported on
A, w “18)(x) = (8)(x) and for any y&G(X,X') yw—1(8)(x) = (8 ) (x)
from which (1) follows. But (2) alsofollows since the remark
above implies that (a )w_1(8) carries k onto k and thus k onto
k and since  is supported on k then w[(a)w—1(6)]lk~=
= (o )(13"1(B)|k~ . Finally the same remark implies (3) with respect
to the domain 3-1(A) and since ®(A) is the image of 6_1(A) under
(¢)(B), the lemma follows.

Lemma 4.2: Let weé G£§ be supported on an open set U=k such that

(k) = & and U (B~ (U)ua(U)) = @, Then w(a)e™ (8) is a (twofold)
product of conjugates of ¢and B by elements of GI: and

w(ew ' @)k is ©(@)(8)] k.

Proof: Similar to a part of the proof of Lemma L.1.

5. The Cell-Support Lemmsa

Lemma 5.1. Leta,Be C(X,¥') be such that alX', B‘X' #e|x'.

Then for any k ,k'& K with k nk' = @ and (k v k')n X'#X', there
0’0 T —= "o Yo — © —_—

exist elements f,,f,.3% GY such that (£, 'of,)(f.~ Bf,) is supported
1272 % B SUCR RET 5y )ity B

-1
1
on ko and (f1 af1)(ko) u(f2 B f2)(ko)cké.
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Proof: Let p,qe X' be such that p,qf(p) and a(q) are all

distinct. By considering small enouch neirhborhoods of these
12 Koo
k3, k), » ks, ke of K with u(q)ikz, (k ) = k), pek, and

B(k1) = k3° By Condition 2 of Section 2, there exists an ele-

points, it follows that there exist disjoint elements k

ment Zoe K with Int ZOD k1u k2L1k5 and with Zo not inter-
secting k3U khu k6° But as k6'contains three disjoint ele-
ments k7 . k8 and k9 of K, then Condition 2 implies the

existence of an element Zée K with Int Zé:’k3u khu k. and Zé

9
not intersecting ZOU k,u k8°

T

Condition 5 asserts the existence of homeomorphisms Yo
and wé of GK supvorted on Z0 and Zé respectively and with
wo(k1) = k, and w'( ) = k). Then if ¢ = Vabos ¥ is an ele-
ment of G (it is supnorted on Cl(k )) and w(k1) = k,,
w(k3) = 1’&‘ But ¢ lay8 = (p7 ap)B carries k, onto itself and
is a product of a conjugate of B8 by one of a (in that order
of action on X).

Ue note that B(k ) and k, are disjoint and hence k,
and B~ (k ) must be diSJOint as they are the images of dis-

joint sets under B 1. Also
-1 _ -1 _
\p(k1) - kg, o (k.e) - k)_j, a.nd lp (kh) - k.

Also (w_1a~1w)(k1)[= k.]and k, vere chosen as disjoint which
implies, as above, that W~ aw)(k ) and k, are also disjoint.
Mow we shall use the modification procedure of Lemma,g.E
of Section 4 for some sufficiently small neighborhood U of k.
We note that (w—1aw)6 is the product of two elements of
G(X,X') and thus by Condition (4) is an element of G¥. Also

K
it carries k, onto k, and thus condition (6) of the definition

of A-quadruple anpli;s. Let u be an element of GK such that y
is sunported on U and k= (\p_1u¢) 8| k,. Then by Lemma §.2
[ u (w aw ulg is a homeomorphism which (obviously) is the
product of a conjugate of 8 by one of g (conjusations being
by elements of Gés with Q;—Hp-1 app B beinz the identity on
k, and with (8 _1(k1)U( '1¢"aw (1:1)'_] Nk, =@. Let K, be an

1
. *
element of K with k1 ¢ Int k1 and kT # k1.
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To establish the lemma it suffices to exhibit an

K

. ¥
element 2¢G_, such that A carries ko onto k1 and ké onto
01(1{1 ). Then

1

A N apnln = 07T e 07 T8 )

is, on the left side of the equation, the homeomorphism
de<ired and is, on the right, expressed as a product of a
conjugate of B by one of o . Since K is a basis for X' and
X' has no isolated points, there exist four sufficiently
small elements of K (Eo,ké,ﬁ,i') such that the sets
(ko,ké,ﬁo,gé),(Eo,ﬁé,R,R') and (R,R',kf}Cl(k;) are qua-
druples of elements of K with all elements of each qua-
druple disjoint from each other and in some element of K.
Thus for each quadruple there exist two more disjoint ele-
ments of K also disjoint from the elements of the quadruple.
Now the hypotheses for Condition 2 are set up and we may
by the use of Condition 2 and then Condition 5 as above
assert the existince of X1,k2,x3e.GK such that A1(ko) = ﬁo,
M) T%, Ak, = k&, re(fé;)) = k', (%) = k., and
A5k

- - *
Cl(%1). Then A= A3.A2.A1 carries ko onto k., and
ké onto Cl(k1)and is an element of G

1

&
K as was to be shown.

6. The Main Theorems and Their Corollaries

Theorem I:

Let ao,so,yo,éoc.G(X,X') with each different from e on X'.
Then there exist A,p 0,1 € Gy such that (A—1aok)(p“1aop) =
Ly TTTemeem—

= (0'1700)(r'1601),

Proof: By Lemma 5.1 and the properties of K, there exist

a .8,y 48 ¢ G(X,X') and A,B,V,W,Z,,Z, & K such that

1272

(1) a,8,y, and 8§ are conjusates of o 9B aY 0
%

K’

are disjoint,

)
respectively by elements of G

(2) A,B,V,W,Z, and 7,
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(3) ng = af and Mo =ydare supported on V and W
respectively '

and (L) (@(a)us~"(A))eInt V and (y B)us ™ (B)) e Int W.

-4
Either for e:sxry Al € Int A with A!¢K, a(Aé) = B(Aé)

or for some A &K with A cInt A, a(A)a 8—1(Ao) = @, We
may make a similar remark about Bo,‘y(BO) and 6-1(Bo).

We let Ao,Boe.K with.Aoc Int A and Boc Int B and sup-
pose, without loss of generality, that either Case I:
Y(Bo) n 6-1(30) = ¢ or Case1II: for all A', B(')4:1K, AlcInt A
and B! c Int B_, a(a!) = B (A!) and v(B!) = 8~ (31).
Case II would occur if a,8,y and § were all involutions.

Let, by Condition 2, k,,k, &K such that (VUBUZ1)C
Int k, and (A UWUZQ)n k_1 = ¢ and also (AUWUZB)cInt k
and (k1L)ZhL)ZS)r\k2 = ¢ where Z3,Zh,Z c 7, are disjoint

5 2

elements of K. Let, by Condition (5), ™, be an element of

’ w1th'n1(Bo) = V. Also let g, be an ele-

ment of G, supported on k, with gO(W) = A_. Consider
y“1—13—1 as P of Lemma 3.2 and consider wgo(W) as W_ of

2

GK supported on k

that Lemma. Let g be the telescoping homeomorphism promised
7 = il

by Lemma 3.2. Then p| W = ¢ |W_.

For Case II we consider g = g' and omit the next step. For

Case I, we consider, using primed notation for that of Lemma

3.2, g as a new g! and 6—1w1_1a as a new V'. Consider

P! gé(w) as Wé for the application of Lemma 3.2. We note that
W{F)WO = (. Let g' be the telescoping homeomorphism promised

by the Lemma. Then we let m=rm_g' = «'n, and note that 7 is an

1 1

element of G, as m, and g' are elements of GK supported on k

K 1 1
and k2 respectively and are both the identity on Zh“
Ve now consider the final step of the construction. Let
-1 . -1 .
Wy = ﬂuoﬂ . Clearly w, 18 supported on AO. Then awo B 1is

supported on V and awo'1B|V = u.a wo-1B|V. Let awo—16 =

and let ¢o = W_Tn

1

1T Then ¢o is supported on B_ and

-1._ . -1 . -1
% ¢o = W, 1s supported on W. Also y¢o 5[ W is ¢oy ¢0 5[ W

and may differ from B, only on domain 6—1(BO) to range y(Bo).
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Let w1 = Wu1ﬂ—1 and w, is supported on A and may differ
fro? w_ only on domain :6 (B ) to range ny(Bo). Thus
w1' 1may differ from1wo- only on domain ﬂy(Bo) to rance

- (B ). Then aw, B =, is supported on V and may differ

from n, only on domain 8 T Y(B ) to ranece omd 1(B ). Con-

tinuine we let ¢ W—1n2W and ¢ may differ from ¢ only

1
on domain 7~ '8 'm Y(B ) to range ™ o § 1(B ). Thus ¢
may dlffer from ¢ -1 onlv on domain ™ 1aﬂ 8§~ (B ) to range

n'1 - wy(BO) and u2 = Y¢ s may differ from Hy only on
-1 1
m

domain &~ (B ) to range ym “le-1n Y(BO).

It is clear that the procedure can be iterated,ui Pro-
ducing w, producing LT producing ¢i producing Mo
Cons1der the sequence {u } . For each 12 0,
T 1r=Tamis™T( B) andu., u"
is supported on (ym~ an‘ Y(B ). From the definition of =,
a(yr g7 mt (W )s X' and.n(d w'1aﬂ)i(wé)a X'. For i> 1,
we may write (6 ﬂ- am)ts” (B ) as (6™ 'a] 1r)i-1(di-1 “Tams™! )(B )F
Also 87 Yi=To me™ ,Bo)c Wo and Yn'16_ ﬂ y(B )e w'. Thus the
conditions of Lemma 3.1 are satisfied and {ul} converses to
a homeomorphism ¥ carryings t\(6°1v"1aﬂ\ (W') onto

n(YW’1B -1

is supported on (6~

myt (W ) and with for each other p01nt wof W
u(w) = ui-w) for all sufficiently larese 1. But w,n and ¢
may be similarly defined.
From the (almost) pointwise agreement of w,n, and ¢ with
weyns, and ¢, (resmectively) for sufficiently laree i it fol-

“Ts= . Also w=my “—1,

lows immediately that aw™'8=n and Yo
¢=ﬂ-1ﬂﬂ and U is supported on W, © is supported on V, w is
supported on AO and ¢ is supported on BO° Thus

nonV

waw'16 w on Ao and

e otherwise

U onW
on B
o)

oy 8

1
©

e otherwise .

-1 —1

F ana (Yn -1 y(B ) as (yn—1 _1ﬁ (ym "Y)(Bo)'
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A - -1 - - - - - -
Finglly = 1waw BrT= ¢vd 16 for w 1maw 1Bﬂ= (m 1wn)¢ 1aw 1Bn)
and

n-1wﬂ=n=y¢_16 and ﬂ-1aw-18n= n-1uﬂ= ¢

and n¢=¢n as n and are supported on disjoint sets. Also

1waw'1ﬂ)(ﬂ-18ﬂ) and

7™ wow™ g may be written as (7
¢y¢°16 may be written as 6y¢ -1)(5). Since ¢,w,m& G ; the
conjugating homeomorphisms are all elements of GKfand the
theorem is established.

Theorem II:

Let o,B,Y,08¢G(X,X') with none of @,B8,Y,8 beineg the iden-

tity on {'Then ais the product of a conjugate of § by a conjugate

of Yby a conjugate of B.

Proof: Let 6-1 =0, 0= B ,y=Y and § = § of Theorem I.
° SRS -2 DO DR -1
Then for ‘some A,0,0,TeC.% (v~ 8 y)(p 'ap) = (0~ yo)( ' &1)

K’
and
-1 -1, - - - -
o= oA 8N To(o" o) e p( 1 1) 0!
= (pA_1BAp-1)(po-1ycp-1)(OT_1610_1) with

-1 -1 - .. . .
Ao ,0p  ,TP 1 and theilr inverses all 1in Gg'51nce A, 0,1

and p are.

Theorem III:

Let a,,B8, & C(X,X') with a,‘fX',61 |X'¢e‘}2'.Thena1 is the pro-

duct of three conjugates of 61.

Prog¢i't Theorem III is an immediate corollary of Theorem IT
letting B=y=6= B anda= a.
It is interesting to note that for G(X,X') = Gét it is
not known, either in general or in the cases of the specific
examples, whether the identity e is the product of three con-
jugates of B .It seems possible that e is a true exception.
In a slightly different situation, sugcested by Theofem 11,
in many of the examplas e is the only exception. It will be

shovn in Section 8 that for many of the examples, there exist
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homeomorphisms h and y such that h is not the product of two
conjusates of y. Then e is not the product of a conjugate

of h-1 by a conjugate of y by a conjugate of y for if so,

h would be the product of two conjucgates of y.

The following corollary is already known for most of the

examples mentioned [1], [2], and [4] .

Corollary I.
The group Ggeis algebraically simpleif X = X'.

Proof. Let B# e be an element of a normal subgroup N. Then
every element of Gztis in N for each is the product of three
conjugates of B where the conjugating homeomorphisms are

elements of Gki

The following corollary is also known [ 47.

Corollary II.

B . - .
IfX = 8", every element of Gy 1s _isotopic to the identity.

" We may note that the nature of the isotopy can be par-
ticularly simple. Let hﬁ(%:tm any homeomorphism with a nice
geometric isotopy to the identity (and there exist many such).
Then an arbitrary element of Gg can be isotopied back to the
identity by dealing with the three conjugates of h consecutively
and thus having only two levels of "singularities", namely as
one goes from the coordinate system of one conjugate to the

coordinate system of the next.

7. The Cases of the Ixamples of Section 1

a) X = X' = C, the Cantor Set. K is the set of all non-null
open and closed sets whose complements are non-null. G(X,X')
is the set of all homeomorphisms of C onto itself. Since the
elements of K are all open and closed and freely admit homeo-~
morphisms onto each other, there is no difficulty in verifying

that G; = G(X,X') and Gguis the set of all homeomorphisms with
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the CHEP. Also the conditions (1) - (6) are all satisfied,
e.g. (6) is immediate since h|k~ can be taken to be e|k".
The condition in (5) that Ky sk, # k is designed for examples
of this type.

(b) Let X = X' = 8", the n-sphere, n >1. K is the set of all
images of a canonical hemisphere under homeomorphisms each of
which is the finite product of homeomorphisms supported on
cells. G and G;' are thus well-defined and we let C(X,X') =
= Ggﬁ In [3)in their study -f stable homeomorphisms, Brown
and Gluck give their Theorem 3.2 and its corollary. The
theorem implies immediately that the Conditions (5) and (6)
are satisfied. The Corollary implies that all elements of
G(X,X ')= { the set of all stable homeomorphisms} have the
CHEP. Conditions 1,3 and 4 are obvious from our definition.
For Condition 2 we note that as the cells k1’°°°’k6 are all
disjoint there exist disjoint neighborhoods U1""’U6 with
kictg) 15156, such that, for each i, ki can be contracted
in U; toward a point of k. (Note that each k, is a topolo~
gical hemisphere in S™). Then there exists a thin tame (or

flat) cell containing the contracted k1, k, and k3 and miss-

2
ing the contracted ku,k5 and k6. Then under the anti-contract-

ions this cell becomes the desired cell for Condition 2.

(c¢) Let X,X',K,G, and G be as in (b) but let G(X,X') be the
set of all homeomorphisms which are the product of some geo-
metric orientation-reversing involution h and an element of
GK% Then Condition (4) is satisfied and the other conditions
follow as in example (b). If g is any orientation-reversing
homeomorphism we note that g.h will be orientation-preserving
and goh either is an element of iy

K
obviously g e G(X,X') and if not then g ¢ G(X,X'). But the

or it is not. If so, then

second alternative can only occur if some orientation-pre-
serving homeomorphism does not have the CHEP (or, equivalently,

if the affirmative annulus conjecture is not true). Conversely,
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if some orientation-preserving homeomorphism does not have
the CHEP then its product by h nroduces such a g.

D ons2, X' = Bary I = 8*7', K is the set of all

(d) X =1
images of a canonical half-cell of 1" under homeomorphisms
vhich are the finite product of homeomorphisms each of which
is the identity in some neichborhood of some moint of Bdry

1%, Finally, G(X,X') = c;

Conditions (1), (3) and (4) are obvious from the defi-
nitions given. Condition (2) follows from an argument like
that given for Condition (2) in Example (b) above. Conditions
(5) and (6) follow by arsuments like those leading to the
Brown-Gluck Theorem for S° (referred to in (b)). The argu-
ments (not given here) are non-trivial but routine and devend

on the basic structure of "stable" homeomorphisms.

(e) Tet X,X',K,G, and G;; be as in (d) but let G(X,X') be
the set of all homeomorphisms each of which is *he product
of some geometric orientation-reversing involution h and an
element of GKt Further considerations are like those of

example (c).

(f) Let X = X' be the space of rationals (or irrationals)
on the line. Let K be the set of closed and open proper sub-
sets of X. Then considerations like those of example (a) lead

to verification of Conditions (1) to (6).

(g) Let X be a space of (a) - (f) and let X" be a countable

dense subset of the original X' such that "enough" homeomorphisms
exist carrying X onto X and X" onto X". We are to treat X"

as if it were X'. The convergence lemmas imply that the set

X' (or X") must be homogeneous in X. It is not difficult to
verify that Conditions 1 - 6 can be satisfied in such cases

nor is it difficult to give some additional examples in the

same spirit. We could, for instance, let X = 82 or 83 and let
X' be a tame (or seometric) Cantor Set C in such space, with
G(X,X') beine the set of orientation-preserving homeomorphisms

of X which carry X' onto X'.
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8. The Necessity for the Use of at Least Three

Conjugates

In this section we establish that there exist homeo-
morphisms of C, 8%, I", the rationals, the irratimmals,
etc. which are not the product of two involutions. Thus,
in general, three is the least number of conjugates of an
arbitrary homeomorphism which can be used to produce another
arbitrary homeomorphism.

Let Y be an abstract set (no topology) and let h be a
1-1 transformation of Y onto itself. For each ye Y, the
orbit Oéy) of y under h is the set of all images of y under

. . -1
e, lterates of h, or iterates of h

. If Oh(y) is finite,
then the elements of Qéy)are eyclically permuted by h. If
Oh(y) is infinite, then on Oh(y), h is equivalent to a trans-

lation on the set of integers on the line.

Lemma 8.1: Suppose h = A
Then

1A2 with A1 and Ag,both involutions.

(1) each of x1 and A2 carries each orbit under h onto an

orbit of the same cardinality and carries such orbit back to

the original one,
(2) for any orbit O, (v), A [0, (y)]= A, [0, (y)], end

(3) each of A1 and Ae reverses the order of orbits under h and

(4) if either carries an orbit onto itself then one of Aq and

Ao has a fixed point on that orbit.

Sketch of Proof: Let yoe Y and let ¥; denote hi(yo).
Suppose AQ(yO) = z_. Let z; denote hl(zo)° Since Az(yo) =z,
then x1(zo) =y, for A2, = h. Since Ay is an involution,
Ae(zo) =y, and then 11(y0) = z, also. But also since

A1(z1) = y,» then Ae(y_1) = z,, and since A1(y1) = z_ then
Ae(z_1) = y,. Also since A2(z1) = y_q then A1(y_1) = z, etc.
The above pattern is valid even if zoe.oh(yo). The Lemma

follows directly from these considerations.



-18-

‘Remark:If Y is a metric space, then to show that there exists

a homeomorphism h of Y such that h is not the product of two
involutions, it suffices to exhibit an h with one or more dis-
tinctive orbits each dense in a closed set such that no in-
volution can reverse the sense of such orbits or carry such
orbits onto others.

Let o be an irrational rotation of the circle § ,. Let
%,“.&j,jz3bejoﬂﬂmlm&w&§£i%ﬁ§$%¥%%hmmn
of L, carries U Oi onto itself. Since all the orbits under o
are geometric copies of each other and are rigid in both
directions, any involution permuting orbits must be an iso-
metry. Hence it is not difficult to exhibit such O1"°"Oj
which are "irrationally related". '

Let Y be a map of a circle I , onto 21 such that for eéch

point p of W Oi,lp-1(p) is an ari and for each other point q,
w'1(q) is degenerate. Let Bj be a homeomormhism of 22 onto
itself uniquely induced by aon z, except on the interiors of
the non-depgenerate inverses under y . But an extension is
clearly possible to such sets. A necessary and sufficient

(1)

two points do not belong to the same point-inverse under .

condition thattwo points be distal under Bj is that the

But then any involution X of % ., which carries orbits under Bj

2
onto orbits under % cannot carry an orbit projecting under

y onto 0.,0,,... Or O. onto an orbit not projecting under
1272 ] v

onto 01,0 so0e OF Oj° Hence X induces an o-orbit preserving

2
involution of 21\L10j vhich in turn induces one onﬁ_z1 con-
trary to the selection of O.l,OQ,Ho,OJ.° Hence Bj is not the

product of two involutions on 22.

For any orbit 0% under R . which comes from an orbit under
a other than 01,02,0.0,05, Cl O* is a Cantor Set C. The homeo-
morphism Bj cut down to C also admits no involutions permuting

orbits for such would induce one on I, and then on 21. Thus

we have examples of homeomorphisms on2C and S1 which are not
products of two involutions. Also the homeomorphisms on C can
be cut down to non-closed subsets of C homeomorphic to the
rationals or irrationals on the line with such restricted homeo-

morphisms also not the product of two involutions.

(7) %,y are distal under 8. provided that for some ¢ > O and each i,
~o<i<oo, a(Bi(x),sily))>e.
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To get a homeomorphism of s® which is not a product of
two involutions, we may use the homeomorphisms Bj on copies of
22 in ™. Suppose Bj acts on a geometric circle 81(j) in18n.
Then Bj can be extended to any smgl} neighborhood Uj of 8 (j)
in such a ‘J%?%%%f%o%%qsr%fUhjl%sfle}i%%eai‘n%‘liced or moves
under the extension toward a point near or on the boundary of
U.. Under the inverse of the extension such points move toward
(a2 subset of) 81(j). Thus the orbits on 81(j) are distinctive.
Further for j, # 32, no involution can carry 81(j?, to S1(j2)
since B and B. are essentially different homeomorphisms.
Consider1a count%ble null-collection {81(j)} of disjoint
isolated circles the closure of whose union contains two
(n-1)-spheres S?_1 and 52—1 disjoint from the circles. Define
B. on S1(j) and extend as above to a small neighborhood of
éw(j) disjoint from S?_1,Sg—1

Then the composite of these extended homeomorphisms (extended

and the other small neighborhoods.

itself by the identity elsewvhere) is a homeomorphism h of g?
which as we shall verify is not the product of two involutions.

First if h =X A . is such product then each of)\.1 and.l2 must

12
carry each S1(j) onto itself and must therefore be the identity
on each 81(j) and thus be the identity on S?-1 and 82-1. But

then as the fixed point set contains two (n-1)-spheres each of
the involutions must be the identity on Sn, a contradiction.
From such an h on the (n-1)-sphere regarded as the boundary
of 1" there may be constructed (by inward projection of h toward
the center of I") an h on I which is not the product of two
involutions.
Thus in the cases of the examples, the number "three" of

the Three Conjugates Theorems is the lowest possible number.
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Q. Questions and Comments

Does there exist any (nice) space admitting many honeo-
morphisms such that for any a,8having the CHEP, o,8 # e, o
is the product of two conjusates of B? For C or s™ ana a
havine the CHEP, is e the nroduct of three conjusates of a?
(It is not difficult to find some B such that e is the pro-
duct of 3 conjugates of B). In research now continuing,
Ellard Munrally has shown by methods originally suszgested
by those of this paper but without using homeomorphisms which
are the identity in :;%pen set, that a dilation is vhe pro-
duct of conjusates of two arbitrary (non-identity) "stable"
homeomorvhisms of S (or C), and hence that every "stable"
homeomorphism of 8% (or C) is the product of two conjugates
of a dilation. What homeomorphisms have one or both of these

properties of dilations?

While the apparatus of this naper is set up in terms of
metric svaces, which include the more interesting examples,
we really only need to assume that our space X is first~
countable Hausdorff. The additional restrictions immosed by
the conditions of the A-quadruple, of course, limit the type
of space very substantially. The theorems are true for certain

non-metric zero-dimensional spaces.
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