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The Three Conjugates Theorem 

by R.D. Anderson ( 1) 

1. Introduction. In this paper we prove that for certain 

metric spaces (e.g. spheres) and naturally defined sets of· 

homeomorphisms of such spaces onto themselves, each (non-identity} 

element of the set is the product of three conjugates of any other 

(non-identity} element of the set <2 >. In fact, in Section 6 a 

slightly stronger version of such a proposition is proved. The 

arguments are elementary. In Section 8, it is proved that for 

many of the spaces and sets of homeomorphisms considered "three" 

is the best possible number, i.e. there exist homeomorphisms f 

and g such that f is not the product of two conjugates of g. 

In Section 2, properties of spaces and sets of homeomorphisms 

sufficient for the Three Conjugates Theorem to be true are listed. 

The spaces concerned all have· a form of "invertibility", i.e. for 

some set of neighborhoods forming a basis (with respect to a sub

set), the closure of each neighborhood is homeomorphic to the 

closure of its complement under a space homeomorphism. Thus the 

proposition in its form in this paper is not applicable to closed 

manifolds other than spheres (or cells) nor is it applicable to 

Euclidean spaces as such. 

Examples of spaces and sets of homeomorphisms for which the 

"Three Conjugates Theorem" is true are (3) 

(a) The Cantor Set C and the set of all homeomorphisms of C 

onto itself. ( 4) 

(1) Alfred P, Sloan Research Fellow. 

(2) A conjugate of h is a homeomorphism of the form tjl-1hli where tjl 
is a homeomorphism, In this paper all the conjugating homeomor
phisms (like tjl) will be of a particular simple type. 

(3} In Section 7, a more detailed discussion of the examples is 
given. 

(4) We could also cite the universal curve Mand the set of all 
homeomorphisms of M onto itself. But this example re~uires a 
somewhat more detailed structure than that given in Section 2. 
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( b) the n-sphere, Sn, n ~ 1 and the set of all those homeo

morphisms of Sn onto itself havinF the cell homeomorphism extehsion 

property ( 5), CHEP. For n=1 ,2 ,3, all orientation-preserving hbmeo

morphisms of Sn have the CHEP. For n • 3, it is not known whether 

such is the case, the CHEP for all orientation-preserving homeomor

phisms being equivalent to the affirmative annulus problem for 

spheres Cl j and [ YJ . The conditions of Section 2 are only 

applicable for n > 1 but the broad outlines of the argument given 

are valid for n=1. 

( c) Sn, n ~ 1, and the set. of all those orientation-reversing 

homeomorphisms which are subject to a condition like the CHEF. 

( d) In ( the closed n-cell) , n > 1 , and the set of all those 

orientation-preserving homeomorphisms which are not the identity 
n on the boundary of I and satisfy a version of the CHEP. As in the 

case for s1, the specific conditions of Section (2) are not ap

plicable to I 2 but the general argument is valid. 

(e) In, n > 1, and the set of all those orientation-reversing 

homeomorphisms which are subject to a condition like the CHEP. 

(f) the space of all rationals (or irrationals) on the line 

and the set of all homeomorphisms of such space. 

{g) the spaces of (a) - (f) above and sets of homeomorphisms 

with the added restriction that all homeomorphisms carry an ap

propriate dense subset onto itself. 

(5) A homeomor~hism h of Sn onto itself has the CHEP provided 
h = ae where a and e are homeomorphisms of sn onto itself and 
each of aand e is the identity on some open set. The name of this 
property comes from the alternative formulation that on any open 
cell Don which e is the identity, a restricted to Dish 
restricted to D and thus a extends h restricted to D to a homeo
morphism supported on a cell. In [3], Brown and Gluck study 
"stable" homeomorphisms of sn and give several important proper
ties of the set of stable homeomornhisms including the fact that 
such set is the set of homeomorphisms with the CHEP. Earlier in 
(4] , Gordon Fisher studied such homeomorphisms in a slightly 
different context. 
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In 1947, Ula.m and van Neumann asserted [s] that for the 

sphere, s2 , there is an N> 0 such that any orientation-pre

serving homeomorphism is the product of not more than N conju

gates of any other (not the identity). In a letter, Ulam 

stated that N could be taken as 23. As far as the author knows, 

the proof of their proposition has not been published. In [1], 
it was shown by methods considerably different from those of 

this paper, that, for instance, every orientation-p~eserving 

homeomorphism of s2 or s3 is the product of six conjugates of 

an arbitrary (non-identity) homeomorphism and its inverse. In 

[4] the methods of [1] were extended to Sn for the group of 

all homeomorphisms isotopic to the identity (equivalent to the 

group of all homeomorphisms with the CHEF). 

In these earlier papers, algebraic methods employing com

mutators were strongly used. This resulted in conjugates of the 

inverse as well as of the original homeomorphism being necessary 

in the arguments given, 

2, Description of General Structures 

It will be understood throughout that all homeomorphisms 

are of the space under consideration onto itself. F~r any space 

X, e denotes the identity homeomorphism. For any homeomorphism 

f of X and any ZcX, fjZ denotes the homeomorphism f restricted 

to (the domain) z. For YcX, Y- denotes the complement of Y and 

Int Y denotes the interior of Yin X. If Xis a space and Yee, 

a homeomorphism f of Xis said to be supported on Y provided 

fjY- = elY- • 
In the definition below and in the remainder of this paper 

the following notation is adopted: 

(a) Xis a metric space and X' a subset of X containing no 

isolated points (of X'), 

(b) K is the set of closures of some open basis of X' in X 
(with each element of the open basis containing a point 

of X'), 
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(c) G(X,X') is a non-null set of homeomorphisms of X onto 

itself, each carrying X' onto X', 

(d) GK is the set of all homeomorphisms supported on ele

ments of Kand carrying X' onto X', and 

(e) a; is the set (and thus the group) of all finite pro

ducts of elements of GK. 

The set (X,X' ,K,G(X,X')) is called an A-quadruple provided 

( 1 ) for any k e. K, Cl ( k"' ) • K, 

(2) for any ordered sextuple (k1,k2 ,k3 ,k4,k5,k6) of disjoint 

elements of K, there exists kf.K such that (k1 Vk2 Vk3)c: 

Int k and k n ( k 4 U k 5 U k 6) = (/), 

(3) for any k '- K and gt. G(X,X'), g(k) t. K, 

(4) for any g 1 ,g2 cG(X,X') and g1.GK' gµ- 1 ,g1gE-G(X,X') and 

* g1g2' g2g1' GK, 

(5) for any k1,k2 ,k,K with (k1uk2)cint k and k 'f k1,k2 , 

there exists g ~GK with support on k such that g(k1) = k2, 

and 

* (6) for any k 1c.K, open set U::> k and g., GK with g(k) = k, there 

exists h '- GK with support on U such that hj k = g I k. 

We henceforth assume the existence of an A-quadruple and 

shall refer to Conditions(1) - (6) above. 

Remark. The set X' may be thou~ht of as the boundary of X if X 

is an n-cell. In the examples (a), (b), (c), and (f) cited in 

the introduction X' = X. With this understanding it is possible 

to see that, except for s1 and r2 , the A-quadruple can be inter

preted in terms of these examples. A fuller discussion is given 

in Section 7. In general , the structure and the theorems are 

not true for diffeomorphisms or piecewise-linear homeomorphisms 

of Sn (with all homeomorphisms concerned so restricted). The dif

ficulty is that GK is the set of all homeomorphisms of a certain 

type and the convergence criterion of Section (3) yields homeo

morphisms not necessarily differentiable or piece,,rt.Tise-linear. 
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In fact, the Milnor example of non differentiably-related 

diffeomorphisms of s7 shows that the result cannot be true 

for diffeomorphisms in 87 even though orientation-preserving 

diffeomorphisms of s7 are known to have the CHEP. 

Remark: From condition (3) it follows that every conjugate of 

an element of G(X,X') by an element of GK* is an element of 

G(X,X'). 

Remark: From conditions (3) and (4) it follows that for ka. K 

and g la;, g(k) ~ K and from condition ( 4) that any product of 

an element of G(X,X') and an element of a;_ is an element of 

G(X,X'). 

Remark: Condition (1) in the presence of Conditions (2) and (5) 

and the fact that K is the set of closures of an open basis of 

X' in X is a condition for invertibility of the space x. 
We could use a somewhat weaker form of (1) asserting that 

Cl(k"' ) is non-null and a subset of some element of K. For con-

venience we use condition (1) as written. We note that mani

folds other than spheres (or cells) do not, in general, satisfy 

the condition of invertibility. 

Remark: It follows, from the definitions and conventions, that 

all homeomorphisms under consideration must be of X onto X and 

must carry X' onto X'. Any homeomorphism of X onto X constructed 

by a convergence process must be checked for this second con

dition. 

Remark: Condition (2) in light of the other conditions cannot 

be achieved for X = 81 = X' or X = r2 and X' = s1. Alternative 

conditions are possible to give in such cases and the theorems 

are true as stated. Condition (2) is intended primarily for 

use in Section 5 and for proving Lemma 3 2. In both instances 

the results are easily seen true for X = S 1 or X = I 2 • We 

stated the conditions for an A-quadruple in as simple and in

tuitive a way as we could so that it would be easy to verify that 

the conditions are achieved in the higher-dimensional cases. 
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3. Convergence of a se4uence of homeomorphisms 

In Lemma 3.2 and in Section 6, sequences of homeomorphisms 

will be set up with the intention that such sequences converge 

to homeomorphisms. The nature of the constructions require only 

a rather weak convergence lemma. We state it and regard the 

proof as obvious. 

Lemma 3.1: ~ X ~ Y be spaces. Let {Ai} ~ {Bi} be nested 

sequences of closed sets in X and Y respectively such that 

dia A. -+ 0, dia B. -+ 0, and f"I A. =/: r/J =/: f\ B. • Let { h. } be a 
--1 --1 -- 1 1-- 1---

sequence of homeomorphisms of X onto Y such that hi!ihi and 
-1 . 

hi+lhi are supported on subsets of Ai and Bi respectively. 

Then {hi} converges to a homeomorphism h of X onto Y with 

h(r\ A.) = n B. and for each x f.X with x :fi f"I A., h(x) = h. (x) 
1 l - .l 1 

for all sufficiently large i. 

In the applications of this lemma, X and Y will be the same 

space X and n A. and n B. will be points of X'. 
l l 

Suppose g and~ are homeomorphisms of X onto X. Suppose 

for some set W, $g(W) c W. Then if dia {$g)i(W)-+ 0 and 

i~O(tjJg)l.(W) is a point we say that g telescopes W with respect 

to~. 

Lemma 3.2: Let tjJ a. GK be such the.t for some A ,W ,Z ~ K with 
0 0 0 --

A I'\ W = ¢ ,and . Z c W , lj, ( A ) c Int W \ Z • Let k, k ~ K be such 
0 0 --o O O O o-- 0 

that k :::> k and A v W c:. Int k \ k • Let g be any homeomorphism o-- 0 0 -- 0 

with support on k and with g (W) =A. Then there exists an ----------- · ...,... _____ ··o o o 
element g•G;with g supported on k, g(W0 ) = A0 and glw~ ~ ,g6 lw~ 
such that g telescopes W with respect to tjJ and f\ ( tjlg) 1 (W ) 

. ----- 0 0 

and f\{giJi) 1 {A) are elements of X'. 
-- 0 

Proof. By hypothesis, g(W) =A. We introduce notation as 
0 0 

follows: 
1J.,(A0 ) = w1 

g0 (w1 ) = A1 
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Int W0 properly contains w1 and Int A0 properly contains A1• 

The analoeous statements for i and i+1 will be assumed in 

what follows. 

Let p E. X I f"I Int A1• Let A2 -e. K such that p ~ Int A2 , A2 is properly 

contained in Int A1, dia A2< ! and dia iµ (A2 ) < !. Condition (5) 

implies the existence of e1 & GK with support on A1 such that 

g 1(A2) = A2 • Hence for g 1if. = g 1g0 , g;(w2 ) = A2 • We note that 
~ since g 1 is supported on A1, then g1 may differ from g0 only 

,\(.• 1 -1 
in ran~e A1 and domain w1 • Thus~,- .g0 and g1g0 are supported 

on w1 and A1 respectively. 

We now set up an induction in an analogous manner. Let 

1/J(A.) = w. 1 and g."" 1(w. 1) = A! 1 • Let A.+1~ K such that 
i i+ i- i+ i+ i 1 

p .t.Int A.+ 1 , A.+1 is properly contained in Int A., dia A-+,< 2 i 
i J. 1 i ]. 

and dia ,1,(A. 1 )< - .• As before Condition (5) implies the 
'I' i+ i --

existence of gi "' 2G; with support on Ai such that gi (Al_+1) = 
* • *( ) . . = Ai+,• Hence for gi = gi.gi-l' gi Wi+ 1 = Ai+l" Since gi is 

supported on Ai' then gi may differ from gi_1 only in range 
• 1 ~ - 1 * +r * -1 A. and domain 'i~ . • Thus g. o g. 1 and g. o g. 1 are supported 

1 1 1. i- . 1 1.- 1 
on W. and A. respectively. But dia W. < -. and dia A.< -.-1 and 

i i 1 21-c i i-

thus except possibly for f\ W. and n A. as elements o~ X' 
J. J. 

the conditions of Lemma 3.1 are met. But, for each i, p ~ A. and 
J. 

p tX'. Hence /\ A. E. X' and f\ A. = p. Also tJ; (p) = n W. and by 
J. J. 1 

hypothesis 1jJ carries X' onto X'. Thus Lemma 3.1 implies Lemma 

3.2. 

4. The Conjugation Modification Procedure 

In this section we have the following standing hypotheses. 

Let a,S ~ G(X,X') and let k be an element of K such that (6) 

( 1 ) [ ( a ) ( S ) ] ( k) = k and 

(2) [(B)-1(k) U (a)(k)}f'I k = (/J and ((s)-1(k) U (a)(k) Uk) 

is contained in some element of K. 

(6) Here, as later, for a aG(X,X'), (~) denotes a conjugate of ex 
by an element of G;and (a)($) denotes the composition homeo
morphism of (S) followed by (ex). 
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Lemma 4. 1 : Let w be an element of GK supported on a subset A 

of k. Then w (et. )w _, (13) is a ( twofold) product of conjugates 

of Cl 

and 

only 

w-and 13 by elements of GK and 

(1) w(a)w- 1 (13))k isw(a)(l3)jk, 

(2) w (et. )w-1 (13 )I k .. is (et. )w-1 (s )I k~ 

(3) w (et. )w -l (S )I k~ differs from _(a )(13 )I k~ 

on the domain (13 )- 1 (A) to the range (a )(A). 

Proof of Lemma 

We first note: that w (a }ii -1(13) = [w (a )w-1] (13) and thus is 

a (twofold) product of suitable conjugates of a and 13. Also, 

for any x, (13 )-1 (A), (13) (x) '(. A and thus as w-1 is supported on 

A, w - 1(S)(x) = (S)(x) and for anyyf.G(X,X')- yw-\s)(x) =y(13)(x) 

from which (1) follows. But (2) alsofollows since the remark 

above implies that (a)w-1(13) carries k onto k and thus k onto 

k~ and since w is supported on k then w[(a)w-1 (13)] lk~= 

= (a)w- 1(S))k~. Finally the same remark implies (3) with respect 

to the domain s-1(A) and since a(A) is the image of s-1(A) under 

(a)(S), the lemma follows. 

Lemma 4. 2: Let w, G~ be supported on an open set U => k such that 

w(k) = k and U n(s- (U)IJ a(u)) = (/J. ~ w(a)w-1(13) is a (twofold) 
~ 

product of conjugates of a and f3 by elements of GK and 

Proof: Similar to a part of the proof of Lemoa 4.1. 

5. The Cell-Support Lemma 

Lemma 5.1. Leta,Si!.G(X,X') be suc0_that alX', BIX' #elX', 
Then for any k ,k' ~ K with k n k 1 = r/J and (k u k' )11 X'#X', there 

00 --o O -- 0 0 . * ( -1 )( -1 ) . exist elements f 1 ,f2 • GK such that f 1 af 1 r2 Sf2 is supported 

on k' and (r-11cir1)(k )U(f2- 1 s-1r2 )(k )ck'. 
- o-- 0 0 0 
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Proof: Let p,qE. X' be such that p,qj3(p) and a(q) are all 

distinct. By considering small enou~h nei~hborhoods of these 

points, it follows that there exist disjoint elements k 1 , k2 , 

k3 , k4 , k 5, k6 of K with a(q).k2 , a-1(k2 ) = k4, p41-k, and 

B(k1 ) = k 3• By Condition 2 of Section 2, there exists an ele

ment Z0 ~ K with Int Z0 :> k1 u k2 u k 5 and with Z0 not inter

secting k 3 u k4u k6. But as k6 ·contains three disjoint ele-

ments k7 , k8 and k9 of K, then Condition 2 implies the 

existence of an element z; E. K with Int z; :> k3v k4 u k9 and z; 
not intersectino: Z0 v k7 u k8 • 

Condition 5 asserts the existence of homeomorphisms,,, - lf'o 

and w; of GK supuorted on Z0 and z; respectively and with 

ljJ 0 (k1) = k2 and ljJ;(k3 ) = k4 • Then if ljJ = 1); 1iµ 2 , ljJ is an ele

ment of GK (it is supported on Cl ( k7)) and iµ ( k 1) = k2 , 

( ) -1 ( -1 ) . . ljJ k3 = k 4 • But I); aljJB = I); aiµ S carries k1 onto itself and 

is a product of a conjugate of S by one of a (in that order 

of action on X). 

We note that S(k1) and k 1 are disjoint and hence k 1 

and B- 1(k 1) must be disjoint as they are the images of dis-
. . -1 
Joint sets under S • Also 

Also (ljJ-la-11jJ)(k1)[= kJand k 1 were chosen as disjoint which 

implies, as above, that (ljJ-\:1\jJ )(k1) and k 1 are also disjoint. 

now we shall use the modification nrocedure of Lemma lj.2 
of Section 4 for some sufficiently small neighborhood U of k 1 • 

We note that (ljJ -laljJ )S is the product of two elements of 

* G(X,X') and thus by Condition (4) is an element of GK. Also 

it carries k 1 onto k 1 and thus condition (6) of the definition 

of A-quadruple applies. Let µ be an element of GK such that µ 

is supported on U and µ I k 1 = (ljJ -\.w) BI k 1 • Then by Lemma 'J. 2 

[ µ - 7 (ljJ -laljJ )µ] B is a homeomorphism which (obviously) is the 

product of a conjup;ate of B by one of a ( conjul!,ations being 

by elements of G~ with (µ _,l/J -l a.ljJµ )B beinro: the identity on 

k 1 and with [B -l (k1 ) U (µ -\ -lmjJ'µ ) (k 1 )] n k1 = (/J. Let k7 be an 
* -li-e le men t of K with k 1 c Int k 1 and k 1 # k 1• 
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To establish the lemma it suffices to exhibit an 
-!f 

element >£GK such that A carries k0 onto k1 and k; onto 

Cl(k~). Then 

A-1[(ll-\p-1e1ipµ)8]A = (A-1µ- 11/i-1 aljiµ).){>.- 113).) 

is, on the left side of the equation, the homeomorphism 

de.•ired and is, on the right, expressed as a product of a 

conjup.;ate of f3 by one of ex. Since K is a basis for X' and 

X' has no isolated points, there exist four sufficiently 

small elements of K (k ,k',x,k') such that the sets 
0 0 

(k ,k',k ,k'),(k ,k',R,:R. 1 ) and (t,R. 1 ,k*1 ,c1(k~1) are qua-
o O O O O 0 

druples of elements of K with all elements of each qua-

druple disjoint from each other and in some element of K. 

Thus for each quadruple there exist two more disjoint ele

ments of K also disjoint from the elements of the quadruple. 

Now the hypotheses for Condition 2 are set up and we may 

by the use of Condition 2 and then Condition 5 as above 

assert the existence of A 1,). 2 ,). 3 G:. GK such that A 1 (k0 ) = k.0 , 

A 1 ( k;) = k ~ , A 2 ( k O ) = k , '. 2 ( k ~) = K ' , ). 3 ( K) = k;, and 
( A. I) ( ~ ) • tf, ). 3 k = Cl k1 • Then >-= ). 3.). 2 .>. 1 carries k0 onto k1 and 

k; onto Cl(k~)and is an element of GK• as was to be shown. 

6. The Main Theorems and Their Corollaries 

Theorem I: 

Let a ,S ,Y ,o '- G(X,X') with each different from eon X'. 
--0000 1 1 

Then there exist A ,P ,a ,r ~ G.~ such that (>. - a >.) (p - a p ) = 
1 1 " 0 0 

= (cr - y cr )( t - o -r ) • 
0 0 

Proof: By Lerr;;•1a 5.1 and the properties of K, there exist 

a,(3,y,cS s.G(X,X') and A,B,V,w,z1,z2 -.K such that 

( 1) a ,8 ,y , and o are conjuiz:ates of a ,a ,Y ,o 
0 0 0 0 

respectively by elements of GK~ 

(2) A,B,V,w,z1 and z2 are disjoint, 
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( 3) 11 = a.8 and µ =yo are supported on V and W 
0 0 

respectively 

and (4) (a. (A)u 8 - 1 (A)) c Int V and (y (B) U o - 1 (B)) c Int W. 
_,.. 

Either for e.,..::ry A' C. Int A with A' 'd-K, a(A') = 8(A') 
O O 1 O 0 

or for some A ~ K with A c Int A, c.-dA'n 8- (A)= r/J. We 
0 0 ")/ 0 

may make a similar remark about B , y (B ) and o -l (B ) • 
0 0 0 

We let A ,B c. K with A c Int A and B c Int B and sup-o O O 0 

pose, without loss of generality, that either Case I: 

y ( B ) Ii o -1 ( B ) = (/J or Case II: for all A' , B' ~ K, A' c. Int A 
0 0 l O 01 0 0 

and BI c Int B , a. (A' ) = 8 - (A' ) and y ( B' ) = o - ( B' ) • 
0 0 0 0 0 0 

Case II would occur if a ,8 ,Y and o were all involutions. 

Let, by Condition 2, k 1 ,k2 E-K such that (VuBuZ1)c 

Int k 1 and (Au Wu z2 ) n k1 = r/J and also (Av W v z3 ) c. Int k2 

and (k1 u z4 IJ z5) n k2 = ¢ where z3 ,z4 ,z5 c z2 are disjoint 

elements of K. Let, by Condition (5), TT 1 be an element of 

GK supported on k 1 with TT 1 (B0 ) = V. Also let g0 be an ele

ment of GK supported on k2 with g0 (W) = A0 • Consider 
-1 -1 ( ) yn 1 B as 1/J of Lemma 3 .2 and consider lj, g0 H as W0 of 

that Lemm.a. Let g be the telescoping homeomorphism promised 

by Lemma 3,2. Then P:I W~ = r 0 lw~. 
For Case II we consider g = g' and omit the next step. For 

Case I, we consider, usin?,: primed notation for that of Lemma 
-1 -1 3,2, gas a new g; and o n1 a as a new I),'. Consider 

1), 1 g~(W) as W~ for the apnlication of Lemma 3.2. We note that 

W' nw = (/J. Let g' be the telescoping homeomorphism promised 
.· 0 

by the Lemma. Then we let n=n 1~• = ~•n 1 and note that TT is an 

element of GK as n1 and g' are elements of GK supported on k1 

and k2 respectively and are both the identity on z4. 
We now consider the final step of the construction. Let 

-1 Clearly w is supported on A. Then aw 8 is -1 w0 = TI-µ 0 1T 

supported on 
o 1 1 o o_ 1 

V and a.w - 8IV = w a, w - 8IV, Let aw 8 = n 
0 0 0 0 1 

-1 and let¢ = TI 11 1n • Then ¢0 is supported on B0 and 
_, o . _, I . -1 I 

y ¢0 cS= µ 1 is supported on W. Also y¢ 0 cS W 1s ¢0 y ¢0 o W 

and may differ from µ only on domain o- 1 (B) to range y(B ). 
0 0 0 
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-1 Let w1 = nµ 1n and w1 is supported on A0 and may differ 

from w only on domain no-1{B) to range ny(B ). Thus 
0 0 0 

-1 . _, . ( ) w1 may differ from w0 only on domain ny B0 to ran~e 
-1( ) -1 nlli B0 • Then o.w 1 B = n2 is supported on V and may differ 

from n1 only on domain e-1n y(B) to ran~e o.no-1 (B ). Con-
o 0 

tinuin,: we let qi 1 = 1r-1n21r and qi 1 may differ from qi O only 
. -1 -1 ( ) -1 t-1( ) -1 on domain 1T B ,r y B0 to range n a 71' 1, B • Thus $ 1 

. -1 . - 1 .i--9( ) may differ from ct> only on domain n air u B to range 
C o · 

-1 -1 ( ) -1 . n a ny B0 and µ2 = yqi 1 o may differ from µ 1 only on 
. -1 -1 -1( ) -1 -1 ( ) domain o n a.ire B0 to ran~e y,r a ir y B0 • 

It is clear that the procedure can be iteratEd,~i pro

ducin~ wi producin~ ni+l producing qii producin~ µi+l" 

Consider the sequence {µ.} • For each i~ o, 
-1 . ( -1 -1i )i -1( ) -1 µ.+ 1µ. is supported on o ,r 0.1T o B and u.+1µ. 
l. i 1 • 0 i i 

is supported on {y1r- B'rrf y{B ) • From the definition of 1T, 
( -1 -1 )i{ ) ( _9 _, )i( ) . n Y1T S 1r W c XI and f\ o 1r cm \)' i. X'. For i> 1 , 

. { ~, -1 )i -1( ) ( -1 ~1 )i-1( -1 -1 _,)( ) we may write o 1T o.1r o B as o ,r air o n ano B r 
0 0 

Also o-\r-1o. 1To-1~B )<:::W and y1r-1e-1n y(B )c:.w•. Thus the 
0 0 0 0 

conditions of Lemma 3.1 are satisfied and {µ.} conver~es to l . 

a homeomorphismµ 
n(yn-la-1n)i(W) 

0 

µ(w) = µ. t'w) for 
l 

. ( -1 _, \i( ) carry1nl'.< f\ o n o.1r W' onto ' . 0 

and with for each other point w of W 

all sufficiently lar~e i. But w,n and$ 

may be similarly defined. 

From the (almost) pointwise agreement of w ,n, and .P with 

w.,n., and$. (res~ectivel~) for sufficiently lar~e i it fol-
1 1 1 1 -1 -1 

lows immediately that aw- S=n and Yet> o= µ. Also w=nµ 1T , 

ct>=ir- 1nn andµ is supported on W, n is supported on V, w is 

supported on A 
0 

and ct> is supported on B • Thus 
0 

waw-\3 1~ on V 
on A and 

0 

e otherwise 

, r on W 
qiycj)- 0 = ct> on B 

0 

e otherwise • 

f 1 1 i - 1 - 1, i-1 ( -1 - 1 ) ( ) and (y,r- 8- n) y(B0 ) as {y,r B w y1r B ny Bo• 
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. -1 -1 -1 -1 -1 ( -1 ) ,_ _, -1 ) F1nali.ly 'IT waw Bir- <PY<P o for ,r waw 81T= 1T w1T ~• aw $,r 

and 
-1 -1 -1 -1 -1 

'IT wr-n=y<f> o and 'IT aw 8'1T= n µir= <P 

and n<P=<Pn as n and <Pare supported on disjoint sets. Also 

-1 -1 . ( -1 _, )( -1 ) 
1T waw 81r may be written as 1T waw 1T 1T 131T and 

cpycp- 1o may be written as ~Y<P - 1)(o). Since <P,w,n~GK; the 

conjugating homeomorphisms are all elements of a;and the 

theorem is established. 

Theorem II: 

Let a,f3,y,o~G(X,X') with none of a,B,y,o being the iden

tity on X'.Then ais the product of a conjur;ate of o by a conjugate 

of yby a conjugate of 8. 

-1 Proof: Let 13 =a, a= 8 ,Y = y and o = o of Theorem I. 
0 0 1 o, 1 0 1 1 

Then for·some A,p,cr,re.GK~ (y- 8- y)(p- ap) =(a-yo)( -r- ot) 

and 

Ct = ( -1 ) _, ( -1 ) -1 ( -1 ) -1 p ). B). p p cr yo p p t o-r p 

( -1 -1)( -1 -1)( -1 -1) = p). 13).p pcr ycrp pt o-rp with 

, -1 -1 -1 . . . • . , AP ,ap ,TP and their inverses all in GK since A,o,t 

and pare. 

Theorem III: 

Let a1, B1 ~ G(X,X') with a)X', 81 lx 1 #cl1: 1 ,Theri a1 is the pro

duct of three conjuP,ates of e1 • 

Proc.:': Theorem III is an immediate corollary of Theorem II 

letting B= y = o = 81 and a= a1• 

It is interesting to note that for G(X,X') = GK~ it is 

not knovm, either in general or in the cases of the specific 

examples, whether the identity e is the product of three con

jugates of 8. It seems possible that e is a true exception. 

In a slightly different situation, sug~ested by Theorem II, 

in many of the exampl:s e is the only exception. It will be 

shovm in Section 8 that for many of the examples, there exist 
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homeomorphisms h and) such that h is not the product of two 

conjugates of y • Then e is not the product of a conjugate 
-1 of h by a conjugate of y by a conjugate of ~ for if so, 

h would be the product of two conju~ates of y. 

The following corollary is already known for most of the 

examples mentioned [ 1 J , [ 2 J , and [ 4 J 
Corollary I. 

The group G * is algebraically simple if X = X'. K ----'----------'"----_.... __ 

Proof. Let S ~ e be an element of a normal subgroup N. Then 

every element of G; is in N for each is the product of three 

conjup:ates of 6 where the conjup:at ing homeomorphisms are 
¥

elements of GK. 

The following corollary is also known [ 4] . 

Corollary II. 

If X 
ii' 

every element of GK is isotopic to the identity. 

We may note that the nature of the isotopy can be par

ticularly simple. Let h ':. G; be any homeomorphis-ai with a nice 

geometric isotopy to the identity (and there exist many such). 

Then an arbitrary element of G; can be isotopied back to the 

identity by dealing with the three conjugates of h consecutively 

and thus havinp; only two levels of "sinf:ularities", namely as 

one goes from the coordinate system of one conjugate to the 

coordinate system of the next. 

7. The Cases of the Examples of Section 1 

a) X = X' = C, the Cantor Set. K is the set of all non-null 

open and closed sets whose complements are non-nullo G(X,X') 

is the set of all homeomorphisms of C onto itself. Since the 

elements of Kare all open and closed and freely admit homeo

morphisms onto each other, there is no difficulty in verifying 
* ( ) ¾· that GK= G X,X' and OK is the set of all homeomorphisms with 
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the CHEP. Also the conditions (1) - (6) are all satisfi~d, 

e.g. (6) is immediate since hlk~ can be taken to be elkN. 

The condition in (5) that k1,k2 ; k is designed for examples 

of this type. 

(b) Let X = X' = Sn, the n-spbere, n > 1. K is the set of all 

images of a canonical hemisphere under homeomorphisms each of 

which is the finite product of homeomorphisms supported on 

cells. GK and a;- are . thus well-defined and we let C ( X ,X' ) = 

= a;. In C 3 J in their study , ·f stable homeomorphisms• Brown 

and Gluck give their Theorem 3.2 and its corollary. The 

theorem implies immediately that the Conditions (5) and (6) 
are satisfied. The Corollary implies that all elements of 

G(X,X ')= { the set of all stable homeomorphisms} have the 

CHEF. Conditions 1,3 and 4 are obvious from our definition. 

For Condition 2 we note that as the cells k1, ••• ,k6 are all 

disjoint there exist disjoint neighborhoods u1, ••• ,u6 with 

k. c U., 1 :S i ~ 6, such that, for each i, k. can be contracted 
l. l. l. 

in u. toward a point of k .• (Note that each k. is a topolo-
1. 1 l. 

gical hemisphere in Sn). Then there exists a thin tame (or 

flat) cell containing the contracted k1, k2 and k3 and miss

ing the contracted k4,k5 and k6• Then under the anti-contract

ions this cell becomes the desired cell for Condition 2. 

(c) Let X,X',K,GK and a;be as in (b) but let G(X,X') be the 

set of all homeomorphisms which are the product of some geo

metric orientation-reversing involution hand an element of 

GK~ Then Condition (4) is satisfied and the other conditions 

follow as in example (b). If g is any orientation-reversing 

homeomorphism we note that g 0 h will be orientation-preserving 

and f-•h either is an element of a;or it is not. If so, then 

obviously g ~ G(X,X') and if not then g 1 G(X,X'). But the 

second alternative can only occur if some orientation-pre

serving homeomorphism does not have the CHEF (or, equivalently, 

if the affirmative annulus conjecture is not true). Conversely, 
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if some orientation-preserving homeomorphism does not have 

the CHEP then its product by h produces such a~-

( ) n n n-1 . d X = I , n > 2, X' = Bdry I = S , K 1s the set of all 

imap,es of a canonical half-cell of In under homeomorphisms 

which are the finite product of homeomorn.hisms each of which 

is the identity in some nei~hborhood of some ~oint of Bdry 
n * I. Finally, G(X,X') = GK. 

Conditions (1), (3) and (4) are obvious from the defi

nitions 17,iven. Condition (2) follows from an arp-ument like 

that given for Condition (2) 1n Example (b) above. Conditions 

(5) and (6) follow by ar~uments like those leading to the 

Brown-Gluck Theorem for Sn (referred to in (b)). The argu

ments (not given here) are non-trivial but routine and depend 

on the basic structure of "stable" homeomorphisms. 

(e) Let X,X' ,K,GK and a; be as in (d) but let G(X,X') be 

the set of all homeomorphisms each of which is ~~e product 

of some geometric orientation-reversing involution hand an 

element of GK~ Further considerations are like those of 

example ( c) • 

(f) Let X = X' be the space of rationals (or irrationals) 

on the line. Let K be the set of closed and open proper sub

sets of X. Then considerations like those of example (a) lead 

to verification of Conditions (1) to (6). 

(g) Let X be a space of (a) - (f) and let X" be a countable 

dense subset of the orip;inal X' such that "enough" homeomorphisms 

exist carrying X onto X and X" onto X". We are to treat X" 

as if it were X'. The conver~ence lemmas imply that the set 

X' (or X") must be homogeneous in X. It is not difficult to 

verify that Conditions 1 - 6 can be satisfied in such cases 

nor is it difficult to give some additional examples in the 

same spirit. We could, for instance, let X = s2 or s3 and let 

X' be a tame (or eeometric) Cantor Set C in such space, with 

G(X,X') beinp the set of orientation-preserving homeomorphisms 

of X which carry X' onto X' • 
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8. The Necessity for the Use of at Least Three 

Conjugates 

In this section we establish that there exist homeo

morphisms of C, Sn, In, the rationals, the irraticnals, 

etc. which are not the product of two involutions, Thus, 

in general, three is the least number of conjugates of an 

arbitrary homeomorphism which can be used to ·produce another 

arbitrary homeomorphism. 

Let Y be an abstract set (no topology) and let h be a 

1-1 trans format fon of Y onto it self. For each y fi- Y, the 

orbit O~y) of y under his the set of all images of y under 

e, iterates of h, or iterates of h-1 • If Oh(y) is finite, 

then the elements of OJy)are cyclically permuted by h. If 

Oh(y) is infinite, then on Oh(y), his equivalent to a trans

lation on the set of integers on the line. 

Lemma 8.1: Suppose h = A1A2 with A1 and A2 .both involutions. 

Then 

(1) each of A1 and A2 carries each orbit under h onto an 

orbit of the same cardinality and carries such orbit back to 

the original one, 

(2) for any orbit Oh(y), A1[o'h{y)]= A2 [oh(y)J, and 

(3) each of A1 ~ A2 reverses the order of orbits underhand 

(4) if either carries an orbit onto itself then one of A1~ 

A2 has a fixed point on that orbit. 

Sketch of Proof: Let y0 1E. Y and let yi denote hi(y0 ). 

Suppose A2(y0 ) = z0 • Let zi denote h1 (z0 ). Since A2(y0 ) = z0 , 

then A1(z0 ) = y1 for A1A2 = h. Since A2 is an involution, 

A2(z0 ) = y0 and then A1(y0 ) = z1 also. But also since 

A1(z 1) = y0 , then A2(y_1) = z1, and since A1(y1) = z0 then 

A2(z_1) = y1• Also since A2(z 1) = y_1 then A1(y_1) = z2 etc. 

The above pattern is valid even if z ~ Oh(y ) • The Lemma 
0 0 

follows directly from these considerations. 
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Remark:If Y is a metric space, then to show that there exists 

a homeomorphism h of Y such that his not the product of two 

involutions, it suffices to exhibit an h with one or more dis

tinctive orbits each dense in a closed set such that no in

volution can reverse the sense of such orbits or carry such 

orbits onto others. 

Leto. be an irrational rotation of the circle E 1• Let 
. . . a.-orbit :or.eservinP.: . 01, ••• ,oj, J::::3 be J orbits undera.sucn tna't no-p-nvolution 

of r: 1 carries u Oi onto itself. Since all the orbits under a 

are geometric copies of each other and are rigid in both 

directions, any involution permutin~ orbits must be an iso

metry. Hence it is not difficult to exhibit such 01 , ••• ,0j 

which are "irrationally related". 

Let 1jJ be a map of a circle E 2 onto E 1 such that for each 
. -1( ) . t point p of IJ Oi, 1jJ -r:, is an arc and for each other poin · q, 

- 1 ( ) • 1/J q is de,q;enerate. Let a . be a 
J 

itself uniquely induced by a on E 1 

homeomornhism of E 2 onto 

except on the interiors of 

the non-degenerate.inverses under 1jJ. But an extension is 

clearly possible to such sets. A necessary and sufficient 

condition thattwo points be distal (7) under 8. is that the 
J 

two points do not belonp; to the same point-inverse under 1jJ. 

But then any involution :>t of E 2 which carries orbits under Bj 

onto orbits under ~ cannot carry an orbit projecting under 
J 

1jJ onto o1,o2 , ••• or Oj onto an orbit not projectinp. under• 

onto O 1 ,o2 , ••• or O j. ~fence :>t induces an et-orbit preserving 

involution of I: 1, u O j which in turn induces one on,i 1 con

trary to the selection of o1 ,o2 , ... ,oj. Hence (3 j is not the 

product of two involutions on E 2 • 

For any orbit o* under f3 • which comes from an orbit under 
J lf-

(l other than o1,o2 , ••• ,oj, Cl O is a Cantor Set C. The homeo-

morphism Sj cut down to C also admits no involutions permutin~ 

orbits for such would induce one on E 2 and then on E 1• Thus 

we have examples of homeomorphisms on C and s1 which are not 

products of two involutions. Also the homeomorphisms on C can 

be cut down to non-closed subsets of C homeomorphic to the 

rationals or irrationals on the line with such restricted homeo

morphisms also not the product of two involutions. 

--------------~-
( 7) x ,Y are distal 1:1-nder 8.. provided that for some E > 0 and each i, 

-en < i < 00 , d ( 13 1 ( X ) , 81 ~ y) ) > ! • 
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To get a homeomorphism of Sn which is not a product of 

two involutions, we may use the homeomorphisms 8j on copies of 
~ . n . . 1 S 1 ( . ) . Sn . ~2 in S. Suppose Sj acts on a geometric circ e J in • 

Then S. can be extended to any small neighborhood U. of s1(j) 
. J ~.ch__noint of Brdry U · is. fixed and, _ J 
in such a waytnat.~Point 'of v. is either !ixed or moves 

- J 
under the extension toward a point near or on the boundary of 

U .• Under the inverse of the extension such points move toward 
J 

(a subset of) s1(j). Thus the orbits on s1(j) are distinctive. 

Further for j 1 # j 2 , no involution can carry s1(j1, to s1(j 2 ) 

since 13. and 8 . are essentially different homeomorphisms. 
. J1 J2 1 ,, 

Consider a countable null-collection {S (j)} of disjoint 

isolated circles the closure of whose union contains two 
( ) n-1 n-1 . . . · D f. n-1 -spheres s1 and s2 disJoint from the circles. e ine 

8 .• on S 1 ( j) and extend as above to a small neighborhood of 

S"I(.) · · · n-1 n- 1 11 'hb h d J disJoint from s1 ,s2 and the other sma ne1g or• oo s. 

Then the composite of these extended homeomorphisms (extehded 

itself by the identity elsewhere) is a homeomorphism h of Sn 

which as we shall verify is not the product of two involutions. 

First if h = >. ,>- 2 is such product then each of'>.. 1 and A 2 must 

carry each s1(j) onto itself and must therefore be the identity 

on each s1(j) and thus be the identity on S~-1 and S~-1• But 

then as the fixed point set contains two (n-1)-spheres each of 

the involutions must be the identity on Sn, a contradiction. 

From such an hon the (n-1)-sphere regarded as the boundary 

of In there may be constructed (by inward projection of h toward 

the center of In) an h on I 0 which is not the product of two 

involutions. 

Thus in the cases of the examples, the number "three" of 

the Three Conjugates Theorems is the lowest possible number. 
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9. Questions and Comments 

Does there exist an:? (nice) space admitting many hon.eo

mornhisms such that for any a,Bhavin~ the CHEF, a,B ~ e, a 

is the product of two conjugates of n S? For C or S and a 

havin~ the CHEP, is e the product of three conjur,ates of a? 

(It is not difficult to find some B such that e is the pro

duct of 3 conjugates of 13). In research now continuing, 

Ellard ~Tun,...ally has sho1m by methods orir:inally su~p:ested 

by those of this paper but without usinf"' homeomorphisms which 

are the identity in :;tpen set, that a dilation is •,he pro

duct of conju~ates of two arbitrary (non-identity) "stable" 

homeomorphisms of Sn (or C), and hence that every "stable" 

homeomorphism of Sn ( or C) is the product of two conjugates 

of a dilation. What homeomorphisms have one or both of these 

properties of dilations? 

While the apparatus of this naper is set up in terms of 

metric spaces, which include the more interesting ex8lllples, 

we really only need to assume that our space X is first

countable Hausdorff. The additional restrictions imnosed by 

the conditions of the A-quadruple, of course, limit the type 

of space very substantially. The theorems are true for certain 

non-metric zero-dimensional spaces. 
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