STICHTING
 MATHEMATISCH CENTRUM
 2e BOERHAAVESTRAAT 49
 AMSTERDAM

ZW 1963-015

ANDERSON R D

The three conjugates theorem.

The Three Conjugates Theorem

by R.D. Anderson

1. Introduction. In this paper we prove that for certain metric spaces (e.g. spheres) and naturally defined sets of homeomorphisms of such spaces onto themselves, each (non-identity) element of the set is the product of three conjugates of any other (non-identity) element of the set (2). In fact, in Section 6 a slightly stronger version of such a proposition is proved. The arguments are elementary. In Section 8, it is proved that for many of the spaces and sets of homeomorphisms considered "three" is the best possible number, i.e. there exist homeomorphisms f and g such that f is not the product of two conjugates of g.

In Section 2, properties of spaces and sets of homeomorphisms sufficient for the Three Conjugates Theorem to be true are listed. The spaces concerned all have a form of "invertibility", i.e. for some set of neighborhoods forming a basis (with respect to a subset), the closure of each neighborhood is homeomorphic to the closure of its complement under a space homeonorphism. Thus the proposition in its form in this paper is not applicable to closed manifolds other than spheres (or cells) nor is it applicable to Euclidean spaces as such.

Examples of spaces and sets of homeomorphisms for which the "Three Conjugates Theorem" is true are
(a) The Cantor Set C and the set of all homeomorphisms of C onto itself. (4)
(1) Alfred P. Sloan Research Fellow.
(2) A conjugate of h is a homeomorphism of the form $\psi^{-1} h \psi$ where ψ is a homeomorphism. In this paper all the conjugating homeomorphisms (like ψ) will be of a particular simple type.
(3) In Section 7, a more detailed discussion of the examples is given.
(4) We could also cite the universal curve M and the set of all homeomorphisms of M onto itself. But this example requires a somewhat more detailed structure than that given in Section 2.
(b) the n-sphere, $S^{n}, n \geq 1$ and the set of all those homeomorphisms of S^{n} onto itself having the cell homeomorphism extension property (5), CHEP. For $n=1,2,3$, all orientation-preserving homeomorphisms of S^{n} have the CHEP. For $n>3$, it is not known whether such is the case, the CHEP for all orientation-preserving homeomorphisms being equivalent to the affirmative annulus problem for spheres [3] and [y]. The conditions of section 2 are only applicable for $n>1$ but the broad outlines of the argument given are valid for $n=1$.
(c) $\mathrm{S}^{\mathrm{n}}, \mathrm{n} \geq 1$, and the set of all those orientation-reversing homeomorphisms which are subject to a condition like the CHEP.
(d) I^{n} (the closed n-cell), $n>1$, and the set of all those orientation-preserving homeomorphisms which are not the identity on the boundary of I^{n} and satisfy a version of the CHEP. As in the case for S^{1}, the specific conditions of Section (2) are not applicable to I^{2} but the general argument is vaiid.
(e) $I^{n}, n>1$, and the set of all those orientation-reversing homeomorphisms which are subject to a condition like the CHEP.
(f) the space of all rationals (or irrationals) on the line and the set of all homeomorphisms of such space.
(g) the spaces of (a) - (f) above and sets of homeomorphisms with the added restriction that all homeomorphisms carry an appropriate dense subset onto itself。
(5) A homeomorphism h of S^{n} onto itself has the CHEP provided $h=\alpha \beta$ where α and β are homeomorphisms of S^{n} onto itself and each of α and β is the identity on some open set. The name of this property comes from the alternative formulation that on any open cell D on which β is the identity, α restricted to D is h restricted to D and thus α extends h restricted to D to a homeomorphism supported on a cell. In [3], Brown and Gluck study "stable" homeomorphisms of S^{n} and give several important properties of the set of stable homeomorphisms including the fact that such set is the set of homeomorphisms with the CHEP. Earlier in [4], Gordon Fisher studied such homeomorphisms in a slightly different context.

In 1947, Ulam and von Neumann asserted [5] that for the sphere, S^{2}, there is an $N>0$ such that any orientation-preserving homeomorphism is the product of not more than \mathbb{N} conjugates of any other (not the identity). In a letter, Ulam stated that N could be taken as 23. As far as the author knows, the proof of their proposition has not been published. In [1], it was shown by methods considerably different from those of this paper, that, for instance, every orientation-preserving homeomorphism of S^{2} or S^{3} is the product of six conjugates of an arbitrary (non-identity) homeomorphism and its inverse. In [4] the methods of [1] were extended to S^{n} for the group of all homeomorphisms isotopic to the identity (equivalent to the group of all homeomorphisms with the CHEP).

In these earlier papers, algebraic methods employing commutators were strongly used. This resulted in conjugates of the inverse as well as of the original homeomorphism being necessary in the arguments given.

2, Description of General Structures

It will be understood throughout that all homeomorphisms are of the space under consideration onto itself. Fir any space X , e denotes the identity homeomorphism. For any homeomorphism f of X and any $Z \subset X, f \mid Z$ denotes the homeomorphism f restricted to (the domain) Z. For $Y \subset X, Y^{\sim}$ denotes the complement of Y and Int Y denotes the interior of Y in X. If X is a space and $Y \subset C$, a homeomorphism f of X is said to be supported on Y provided $f\left|Y^{\sim}=e\right| Y^{\sim}$.

In the definition below and in the remainder of this paper the following notation is adopted:
(a) X is a metric space and X^{\prime} a subset of X containing no isolated points (of X^{\prime}),
(b) K is the set of closures of some open basis of X^{\prime} in X (with each element of the open basis containing a point of X^{\prime}),
(c) $G\left(X, X^{\prime}\right)$ is a non-null set of homeomorphisms of X onto itself, each carrying X^{\prime} onto X^{\prime},
(d) G_{K} is the set of all homeomorphisms supported on elements of K and carrying X^{\prime} onto X^{\prime}, and
(e) G_{K}^{*} is the set (and thus the group) of all finite products of elements of G_{K}.

The set ($X, X^{\prime}, K, G\left(X, X^{\prime}\right)$) is called an A-quadruple provided
(1) for any $k \in K, C l\left(k^{\sim}\right) \& K$,
(2) for any ordered sextuple ($\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}, \mathrm{k}_{4}, \mathrm{k}_{5}, \mathrm{k}_{6}$) of disjoint elements of K, there exists $k=K$ such that $\left(k_{1} \cup k_{2} \cup k_{3}\right) c$ Int k and $k n\left(k_{4} \cup k_{5} \cup k_{6}\right)=\varnothing$,
(3) for any $k \in K$ and $g \in G\left(X, X^{\prime}\right), g(k) \in K$,
(4) for any $g_{1}, g_{2} G\left(X, X^{\prime}\right)$ and $g z G_{K}, g g_{1}, g_{1} g \in G\left(X, X^{\prime}\right)$ and $g_{1} g_{2}, g_{2} g_{1} \in G_{K}^{*}$,
(5) for any $k_{1}, k_{2}, k \in K$ with ($\left.k_{1} \cup k_{2}\right) \subset$ Int k and $k \neq k_{1}, k_{2}$, there exists $g \varepsilon G_{K}$ with support on k such that $g\left(k_{1}\right)=k_{2}$, and
(6) for any $k \in K$, open set $U \supset k$ and $g \in G_{K}^{*}$ with $g(k)=k$, there exists $h \in G_{K}$ with support on U such that $h|k=g| k$.

We henceforth assume the existence of an A-quadruple and shall refer to Conditions(1) - (6) above.

Remark. The set X ' may be thought of as the boundary of X if X is an n-cell. In the examples (a), (b), (c), and (f) cited in the introduction $\mathrm{X}^{\prime}=\mathrm{X}$. With this understanding it is possible to see that, except for S^{1} and I^{2}, the A-quadruple can be interpreted in terms of these examples. A fuller discussion is given in Section 7. In general, the structure and the theorems are not true for diffeomorphisms or piecewise-linear homeomorphisms of S^{n} (with all homeomorphisms concerned so restricted). The difficulty is that G_{K} is the set of all homeomorphisms of a certain type and the convergence criterion of Section (3) yields homeomorphisms not necessarily differentiable or piecewise-linear.

In fact, the Milnor example of non differentiably-related diffeomorphisms of S^{7} shows that the result cannot be true for diffeomorphisms in S^{7} even though orientation-preserving diffeomorphisms of s^{7} are known to have the CHEP.

Remark: From condition (3) it follows that every conjugate of an element of $G\left(X, X^{\prime}\right)$ by an element of G_{K}^{*} is an element of $G\left(X, X^{\prime}\right)$ 。

Remark: From conditions (3) and (4) it follows that for $k a k$ and $g \geq G_{K}^{*}, g(k) \in K$ and from condition (4) that any product of an element of $G\left(X, X^{\prime}\right)$ and an element of G_{K}^{*} is an element of $G\left(X, X^{\prime}\right)$ 。

Remark: Condition (1) in the presence of Conditions (2) and (5) and the fact that K is the set of closures of an open basis of X^{\prime} in X is a condition for invertibility of the space X. We could use a somewhat weaker form of (1) asserting that $C l\left(k^{\sim}\right)$ is non-null and a subset of some element of K. For convenience we use condition (1) as written. We note that manifolds other than spheres (or cells) do not, in general, satisfy the condition of invertibility.

Remark: It follows, from the definitions and conventions, that all homeomorphisms under consideration must be of X onto X and must carry X^{\prime} onto X^{\prime}. Any homeomorphism of X onto X constructed by a convergence process must be checked for this second condition.

Remark: Condition (2) in light of the other conditions cannot be achieved for $X=S^{1}=X^{\prime}$ or $X=I^{2}$ and $X^{\prime}=S^{1}$. Alternative conditions are possible to give in such cases and the theorems are true as stated. Condition (2) is intended primarily for use in Section 5 and for proving Lemma 32. In both instances the results are easily seen true for $X=S^{1}$ or $X=I^{2}$. We stated the conditions for an A-quadruple in as simple and intuitive a way as we could so that it would be easy to verify that the conditions are achieved in the higher-dimensional cases.

3. Convergence of a sequence of homeomorphisms

In Lemma 3.2 and in Section 6, sequences of homeomorphisms will be set up with the intention that such sequences converge to homeomorphisms. The nature of the constructions require only a rather weak convergence lemma. We state it and regard the proof as obvious.

Lemma 3.1: Let X and Y be spaces. Let $\left\{A_{i}\right\}$ and $\left\{B_{i}\right\}$ be nested sequences of closed sets in X and Y respectively such that dia $A_{i} \rightarrow 0$, dia $B_{i} \rightarrow 0$, and $\cap A_{i} \neq \varnothing \neq \cap B_{i} 。$ Let $\left\{h_{i}\right\}$ be a sequence of homeomorphisms of X onto Y such that $h_{i+1}^{-1} h_{i}$ and $h_{i+1} h_{i}^{-1}$ are supported on subsets of A_{i} and B_{i} respectively. Then $\left\{h_{i}\right\}$ converges to a homeomorphism h of X onto Y with $h\left(\cap A_{i}\right)=n B_{i}$ and for each $x \varepsilon X$ with $x \neq M A_{i}, h(x)=h_{i}(x)$ for all sufficiently large i.

In the applications of this lemma, X and Y will be the same space X and $\cap A_{i}$ and $\cap B_{i}$ will be points of $X '$.

Suppose g and ψ are homeomorphisms of X onto X. Suppose for some set $W, \psi g(W) \subset W$. Then if dia $(\psi g)^{i}(W) \rightarrow 0$ and $i>0(\psi g)^{i}(W)$ is a point we say that g telescopes W with respect to ψ.

Lemma 3.2: Let $\psi \& G_{K}$ be such that for some $A_{0}, W_{0}, Z_{0} \in K$ with $A_{0} \cap W_{0}=\varnothing$, and $\cdot Z_{0} \subset W_{\theta}, \psi\left(A_{0}\right) \in \operatorname{Int} W_{0} \backslash Z_{0} \cdot$ Let $k, k_{0} \varepsilon K$ be such that $k \supset k_{o}$ and $A \cup W_{0} \subset$ Int $k \backslash k_{0}$. Let g_{o} be any homeomorphism with support on k and with $g_{0}\left(W_{0}\right)=A_{0}$. Then there exists an element $g \in G_{K}^{*}$ with g supported on $k, g\left(W_{0}\right)=A_{0}$ and $g\left|W_{0}^{\sim}=g_{j}\right| W_{0}^{\sim}$ such that g telescopes W_{0} with respect to ψ and $n(\psi g)^{i}\left(W_{0}\right)$ and $n(g \psi)^{i}\left(A_{0}\right)$ are elements of X^{\prime} 。

Proof. By hypothesis, $g\left(W_{0}\right)=A_{0}$. We introduce notation as follows:

$$
\begin{aligned}
\psi\left(A_{0}\right) & =W_{1} \\
g_{0}\left(W_{1}\right) & =A_{1} \\
\psi\left(A_{1}\right) & =W_{2} \\
g_{0}\left(W_{2}\right) & =A_{2}^{\prime}
\end{aligned}
$$

Int W_{0} properly contains W_{1} and Int A_{0} properly contains A_{1} 。 The analogous statements for i and $i+1$ will be assumed in what follows.
Let $p \in X^{\prime} \cap \operatorname{Int} A_{1}$ 。 Let $A_{2} \in K$ such that $p \in \operatorname{Int} A_{2}$, A_{2} is properly contained in Int A_{1}, dia $A_{2}<\frac{1}{2}$ and dia $\psi\left(A_{2}\right)<\frac{1}{2}$. Condition (5) implies the existence of $g_{1} G_{K}$ with support on A_{1} such that $g_{1}\left(A_{2}^{\prime}\right)=A_{2}$. Hence for $g_{1}^{*}=g_{1} g_{0}, g_{1}^{*}\left(W_{2}\right)=A_{2}$. We note that since g_{1} is supported on A_{1}, then g_{1}^{*} may differ from g_{0} only in range A_{1} and domain W_{1}. Thus $g_{1}^{*}-1 \circ g_{0}$ and $g_{1} g_{0}^{-1}$ are supported on W_{1} and A_{1} respectively.

We now set up an induction in an analogous manner. Let $\psi\left(A_{i}\right)=W_{i+1}$ and $g_{i-1}^{*}\left(W_{i+1}\right)=A_{i+1}$. Let $A_{i+1} K$ such that p Int A_{i+1}, A_{i+1} is properly contained in Int A_{i}, dia $A_{i+1}<\frac{1}{2^{i}}$ and dia $\psi\left(A_{i+1}\right)<\frac{1}{2^{i}}$. As before Condition (5) implies the existence of $g_{i}{ }^{2} G_{K}^{*}$ with support on A_{i} such that $g_{i}\left(A_{i+1}\right)=$ $=A_{i+1}$. Hence for $g_{i}^{*}=g_{i} \cdot g_{i-1}^{*}, g_{i}^{*}\left(W_{i+1}\right)=A_{i+1}$. Since g_{i} is supported on A_{i}, then g_{i}^{*} may differ from g_{i-1}^{*} only in range A_{i} and domain W_{i}. Thus $g_{i}^{*} 0 g_{i-1}^{*}$ and $g_{i_{1}}^{*} \circ g_{i-1}^{*}{ }^{*}$ are supported on W_{i} and A_{i} respectively. But dia $W_{i}<\frac{1}{2^{i}-2}$ and dia $A_{i}<\frac{1}{2^{i-1}}$ and thus except possibly for $n W_{i}$ and $n A_{i}{ }^{2-2}$ as elements of ${ }^{2}{ }^{\prime}$ the conditions of Lemma 3.1 are met. But, for each $i, p \in A_{i}$ and $p \varepsilon X^{\prime}$. Hence $\cap A_{i} \varepsilon X^{\prime}$ and $\cap A_{i}=p$. Also $\psi(p)=\cap W_{i}$ and by hypothesis ψ carries X^{\prime} onto X^{\prime}. Thus Lemma 3.1 implies Lemma 3.2.

4. The Conjugation Modification Procedure

In this section we have the following standing hypotheses. Let α, β a $G\left(X, X^{\prime}\right)$ and let k be an element of K such that (6)
(1) $[(\alpha)(\beta)](k)=k$ and
(2) $\left[(\beta)^{-1}(k) \cup(\alpha)(k)\right] \cap k=\phi$ and $\left((\beta)^{-1}(k) \cup(\alpha)(k) \cup k\right)$ is contained in some element of K.
(6) Here, as later, for $\alpha \& G\left(X, X^{\prime}\right)$, (α) denotes a conjugate of α by an element of G_{K}^{4} and $(\alpha)(\beta)$ denotes the composition homeomorphism of (β) followed by (α).

Lemma 4.1: Let ω be an element of G supported on a subset A of k. Then $\omega(\alpha) \omega^{-1}(\beta)$ is a (twofold) product of conjugates of α and β by elements of $G^{*} K$ and
(1) $\omega(\alpha) \omega^{-1}(\beta) \mid k$ is $\omega(\alpha)(\beta) \mid k$,
(2) $\omega(\alpha) \omega^{-1}(\beta) \mid k^{\alpha}$ is $(\alpha) \omega^{-1}(\beta) \mid k^{2}$
and (3) $\omega(\alpha) \omega^{-1}(\beta) \mid k^{2}$ differs from (α) (β) | k^{\sim}
only on the domain $(B)^{-1}(A)$ to the range $(\alpha)(A)$.

Proof of Lemma
We first notc that $\omega(\alpha) \omega^{-1}(\beta)=\left[\omega(\alpha) \omega^{-1}\right](\beta)$ and thus is a (twofold) product of suitable conjugates of α and β. Also, for any $x \notin(\beta)^{-1}(A),(B)(x) \neq A$ and thus as ω^{-1} is supported on $A, \omega^{-1}(\beta)(x)=(\beta)(x)$ and for any $\gamma \varepsilon G\left(X, X^{\prime}\right) \gamma \omega^{-1}(\beta)(x)=\gamma(\beta)(x)$ from which (1) follows. But (2) alsofollows since the remark above implies that $(\alpha) \omega^{-1}(\beta)$ carries k onto k and thus k onto k^{\sim} and since ω is supported on k then $\omega\left[(\alpha) \omega^{-1}(\beta)\right] \mid \mathrm{k}^{\sim}=$ $=(\alpha) \omega^{-1}(\beta) \mid k^{\sim}$. Finally the same remark implies (3) with respect to the domain $\beta^{-1}(A)$ and since $\alpha(A)$ is the image of $\beta^{-1}(A)$ under $(\alpha)(\beta)$, the lemma follows.

Lemma 4.2: Let $\omega \in G$ be supported on an open set $U \supset k$ such that $\omega(k)=E$ and $U n\left(\beta^{-T}(U) \cup \alpha(U)\right)=\phi$. Then $\omega(\alpha) \omega^{-1}(\beta)$ is a (twofold) product of conjugates of α and β by elements of G_{K}^{*} and

$$
\omega(\alpha) \omega^{-1}(\beta) \mid \mathrm{k} \text { is } \omega(\alpha)(\beta) \mid \mathrm{k}
$$

Proof: Similar to a part of the proof of Leman 4.1.

5. The Cell-Support Lemma

Lemma 5.1. Let α, β c $G\left(X, X^{\prime}\right)$ be such that $\alpha\left|X^{\prime}, \beta\right| X^{\prime} \neq e \mid X^{\prime}$ 。 Then for any $k_{0}, k_{0}^{\prime} \in K \frac{\text { with }}{4} k_{0} \cap k_{0}^{\prime}=\varnothing$ and $\left(k_{0} \omega k_{0}^{\prime}\right) \cap X^{\prime} \neq X^{\prime}$, there exist elements $f_{1}, f_{2} \approx G_{K}^{4 /} \frac{\text { such that }}{}\left(f_{1}^{-1} \alpha f_{1}\right)\left(f_{2}^{-1} \beta f_{2}\right)$ is supported on k_{0}^{\prime} and $\left(f_{1}^{-1} \alpha f_{1}\right)\left(k_{0}\right) v\left(f_{2}^{-1} B^{-1} f_{2}\right)\left(k_{0}\right)=k_{0}^{\prime}$.

Proof: Let $p, q \in X^{\prime}$ be such that $p, q \beta(p)$ and $\alpha(q)$ are all distinct. By considering small enough neirhborhoods of these points, it follows that there exist disjoint elements k_{1}, k_{2}, $k_{3}, k_{4}, k_{5}, k_{6}$ of K with $\alpha(q)=k_{2}, \alpha^{-1}\left(k_{2}\right)=k_{4}, p \in k$, and $\beta\left(k_{1}\right)=k_{3}$. By Condition 2 of Section 2, there exists an element $Z_{0} \& K$ with Int $Z_{0} \supset k_{1} \cup k_{2} \cup k_{5}$ and with Z_{0} not intersecting $k_{3} \cup k_{4} \cup k_{6}$. But as k_{6} contains three disjoint elements k_{7}, k_{8} and k_{9} of K , then Condition 2 implies the existence of an element $Z_{o}^{\prime} \in K$ with Int $Z_{0}^{\prime} \Rightarrow k_{3} \cup k_{4} \cup k_{9}$ and Z_{0}^{\prime} not intersecting $Z_{0} \cup k_{7} u^{\circ}{ }_{8}$

Condition 5 asserts the existence of homeomorphisms ψ_{0} and ψ_{0}^{\prime} of G_{K} supported on Z_{O} and Z_{0}^{\prime} respectively and with $\psi_{0}\left(k_{1}\right)=k_{2}$ and $\psi_{0}^{\prime}\left(k_{3}\right)=k_{4}$. Then if $\psi=\psi_{1} \psi_{2}, \psi$ is an element of G_{K} (it is supported on $C I\left(k_{7}^{\tilde{\prime}}\right)$) and $\psi\left(k_{1}\right)=k_{2}$, $\psi\left(k_{3}\right)=k_{4}$. But $\psi^{-1} \alpha \psi \beta=\left(\psi^{-1} \alpha \psi\right) \beta$ carries k_{1} onto itself and is a product of a conjugate of β by one of α (in that order of action on X).

We note that $B\left(k_{1}\right)$ and k_{1} are disjoint and hence k_{1} and $\beta^{-1}\left(k_{1}\right)$ must be disjoint as they are the images of disjoint sets under β^{-1}. Also

$$
\psi\left(k_{1}\right)=k_{2}, \quad \alpha^{-1}\left(k_{2}\right)=k_{4} \text { and } \psi^{-1}\left(k_{4}\right)=k_{3} .
$$

Also $\left(\psi^{-1} \alpha^{-1} \psi\right)\left(k_{1}\right)\left[=k_{3}\right]$ and k_{1} were chosen as disjoint which implies, as above, that $\left(\psi^{-1} \alpha \psi\right)\left(\mathrm{k}_{1}\right)$ and k_{1} are also disjoint.

How we shall use the modification procedure of Lemma $\$$.2 of Section 4 for some sufficiently small neighborhood U of k_{1}. We note that $\left(\psi^{-1}{ }_{\alpha \psi}\right)_{\beta}$ is the product of two elements of $G\left(X, X^{\prime}\right)$ and thus by Condition (4) is an element of $G_{K^{\prime}}^{*}$. Also it carries k_{1} onto k_{1} and thus condition (6) of the definition of A-quadruple applies. Let μ be an element of G_{K} such that μ is supported on U and $\mu\left|k_{1}=\left(\psi^{-1} \alpha \psi\right) B\right| k_{1}$. Then by Lemma $\$.2$ $\left[\mu^{-1}\left(\psi^{-1} \alpha \psi\right) \mu\right] \beta$ is a homeomorphism which (obviously) is the product of a conjugate of β by one of α (conjugations being by elements of $\left(\mathrm{K}_{\mathrm{K}}^{*}\right)$ with $\left(\mu^{-1} \psi^{-1} \alpha \psi \mu\right)_{B}$ beins the identity on k_{1} and with $\left[\beta^{-1}\left(k_{1}\right) U\left(\mu^{-1} \psi^{-1} \alpha \psi \mu\right)\left(k_{1}\right)\right] n k_{1}=\varnothing$. Let k_{1}^{*} be an element of K with $k_{1}^{*} \subset$ Int k_{1} and $k_{1}^{*} \neq k_{1}$ 。

To establish the lemma it suffices to exhibit an element $\lambda \varepsilon G_{K}$ such that λ carries k_{0} onto k_{1}^{*} and k_{0}^{\prime} onto $\mathrm{Cl}\left(\mathrm{k}_{1}\right)$. Then
$\lambda^{-1}\left[\left(\mu^{-1} \psi^{-1} \alpha \psi \mu\right) \beta\right] \lambda=\left(\lambda^{-1} \mu^{-1} \psi^{-1} \alpha \psi \mu \lambda\right)\left(\lambda^{-1} \beta \lambda\right)$
is, on the left side of the equation, the homeomorphism de.ired and is, on the right, expressed as a product of a conjugate of β by one of α. Since K is a basis for X^{\prime} and X' has no isolated points, there exist four sufficiently small elements of $K\left(\tilde{k}_{0}, \tilde{k}_{0}^{\prime}, \hat{k}, \hat{k}^{\prime}\right)$ such that the sets ($\left.\mathrm{k}_{\mathrm{o}}, \mathrm{K}_{0}^{\prime}, \tilde{\mathrm{k}}_{0}, \tilde{\mathrm{~K}}_{0}^{\prime}\right),\left(\tilde{\mathrm{k}}_{0}, \tilde{\mathrm{~K}}_{0}^{\prime}, \hat{\mathrm{K}}, \hat{\mathrm{k}}^{\prime}\right)$ and ($\hat{\mathrm{k}}, \hat{\mathrm{k}}^{\prime}, \mathrm{K}_{1}^{*}, \mathrm{Cl}\left(\mathrm{k}_{1}\right)$ are quadruples of elements of K with all elements of each quadruple disjoint from each other and in some element of K . Thus for each quadruple there exist two more disjoint elements of K also disjoint from the elements of the quadruple. Now the hypotheses for Condition 2 are set up and we may by the use of Condition 2 and then Condition 5 as above assert the existence of $\lambda_{1}, \lambda_{2}, \lambda_{3} \in G_{K}$ such that $\lambda_{1}\left(k_{0}\right)=\tilde{k}_{0}$, $\lambda_{1}\left(k_{o}^{\prime}\right)=\tilde{k}_{0}^{\prime}, \lambda_{2}\left(\tilde{k}_{0}\right)=\hat{k}, 冫_{2}\left(\tilde{k}_{0}^{\prime}\right)=\hat{k}^{\prime}, \lambda_{3}(\hat{k})=k_{1}^{*}$, and $\lambda_{3}\left(\hat{k}^{\prime}\right)=\operatorname{Cl}\left(k_{1}\right)$. Then $\lambda=\lambda_{3} \cdot \lambda_{2} \cdot \lambda_{1}$ carries k_{0} onto k_{1}^{*} and $\mathrm{k}_{\mathrm{O}}^{\prime}$ onto $\mathrm{Cl}\left(\mathrm{k}_{1}\right)$ and is an element of $\mathrm{G}_{\mathrm{K}}^{*}$ as was to be shown.

6. The Main Theorems and Their Corollaries

Theorem I:
Let $\alpha_{o, \beta}, \gamma_{0, \delta} \delta_{0} \in\left(X, X^{\prime}\right)$ with each different from e on X^{\prime}. Then there exist $\lambda, \rho, \sigma, \tau \in G_{K}^{*}$ such that $\left(\lambda^{-1} \alpha_{0}{ }^{\lambda}\right)\left(\rho^{-1} \beta_{0} \rho\right)=$ $=\left(\sigma^{-1} \gamma_{0} \sigma\right)\left(\tau^{-1} \delta_{0} \tau\right)$.

Proof: By Lem:a 5.1 and the properties of K, there exist $\alpha, \beta, \gamma, \delta \leqq G\left(X, X^{\prime}\right)$ and $A, B, V, W, Z_{1}, Z_{2}=K$ such that
(1) α, β, γ, and δ are conjugates of $\alpha_{0, \beta}, \gamma_{0, \gamma} \gamma_{0}$ respectively by elements of $G_{K}{ }^{*}$,
(2) A, B, V, V, Z_{1} and Z_{2} are disjoint,
(3) $\eta_{o}=\alpha \beta$ and $\mu_{\rho}=\gamma \delta$ are supported on V and W respectively
and (4) $\left(\alpha(A) \cup \beta^{-1}(A)\right) \subset \operatorname{Int} V$ and $\left(\gamma(B) \cup \delta^{-1}(B)\right) \subset$ Int W.
Either for $\epsilon:$ ory $A_{0}^{\prime} \subset$ Int A with $A_{0}^{\prime} \in K, \alpha\left(A_{0}^{\prime}\right)=\beta^{-1}\left(A_{0}^{\prime}\right)$ or for some $A_{0} \& K$ with $A_{0} \subset$ Int $A, \alpha\left(A_{0}\right) \cap B^{-1}\left(A_{0}\right)=\varnothing$. We may make a similar remark about $B_{0}, \gamma\left(B_{0}\right)$ and $\delta^{-1}\left(B_{0}\right)$.

We let $A_{0}, B_{0} E K$ with $A_{0} C$ Int A and $B_{0} C$ Int B and suppose, without loss of generality, that either Case I: $\gamma\left(B_{0}\right) \cap \delta^{-1}\left(B_{0}\right)=\varnothing$ or Case II: for all $A_{0}^{\prime}, B_{0}^{\prime} \varepsilon K, A_{0}^{\prime} \subset \operatorname{Int} A_{0}$ and $B_{0}^{\prime} \subset \operatorname{Int} B_{0}, \alpha\left(A_{0}^{\prime}\right)=\beta^{-1}\left(A_{0}^{\prime}\right)$ and $\gamma\left(B_{0}^{\prime}\right)=\delta^{-1}\left(B_{0}^{\prime}\right)$. Case II would occur if α, β, γ and δ were all involutions.

Let, by Condition $2, \mathrm{k}_{1}, \mathrm{k}_{2} \in \mathrm{~K}$ such that $\left(\mathrm{V} \cup B \cup Z_{1}\right) c$ Int k_{1} and $\left(A \cup W U Z_{2}\right) \cap k_{1}=\varnothing$ and also $\left(A \cup W \cup Z_{3}\right) C$ Int k_{2} and $\left(k_{1} \cup Z_{4} \cup Z_{5}\right) \cap k_{2}=\varnothing$ where $Z_{3}, Z_{4}, z_{5} \subset Z_{2}$ are disjoint elements of K. Let, by Condition (5), π_{1} be an element of G_{K} supported on k_{1} with $\pi_{1}\left(B_{0}\right)=V$. Also let g_{0} be an element of G_{K} supported on k_{2} with $g_{0}(W)=A_{0}$. Consider $\gamma^{\pi}{ }_{1}^{-1} \beta^{-1}$ as ψ of Lemma 3.2 and consider $\psi g_{0}(W)$ as W_{0} of that Lemma. Let g be the telescoping homeomorphism promised by Lemma 3.2. Then $\mathrm{ol} \mathrm{W}_{0}^{-}=\varepsilon_{0} \mid W_{0}^{2}$. For Case II we consider $g=g^{\prime}$ and omit the next step. For Case I, we consider, using primed notation for that of Lemma 3.2, g as a new g_{0}^{\prime} and $\delta^{-1} \pi_{1}^{-1} \alpha$ as a new ψ^{\prime}. Consider $\psi^{\prime} g_{0}^{\prime}(W)$ as W_{0}^{\prime} for the application of Lemma 3.2. We note that $W^{\prime} \cap W_{0}=\varnothing$. Let g^{\prime} be the telescoping homeomorphism promised by the Lemma. Then we let $\pi=\pi_{1} g^{\prime}=r^{\prime} \pi_{1}$ and note that π is an element of G_{K} as π_{1} and g^{\prime} are elements of G_{K} supported on k_{1} and k_{2} respectively and are both the identity on Z_{4}.

We now consider the final step of the construction. Let $\omega_{0}=\pi \mu_{0} \pi^{-1}$. Clearly ω_{0} is supported on A_{0}. Then $\alpha \omega_{0}^{-1} \beta$ is supported on V and $\alpha \omega_{0}^{0}{ }^{-1} \beta\left|V=\omega_{0} \alpha \omega_{0}^{-1} \beta\right| \stackrel{V}{V}$. Let $\alpha \omega_{0}^{0}{ }^{-1} \beta=n_{1}$ and let $\phi_{0}=\pi^{-1} n_{1} \pi$. Then ϕ_{0} is supported on B_{0} and $\gamma \phi_{0}^{-1} \delta=\mu_{1}$ is supported on W. Also $\gamma \phi_{0}^{-1} \delta \mid W$ is $\phi_{0} \gamma \phi_{0}^{-1} \delta \mid W$ and may differ from μ_{0} only on domain $\delta^{-1}\left(B_{0}\right)$ to range $\gamma\left(B_{0}\right)$.

Let $\omega_{1}=\pi \mu_{1} \pi^{-1}$ and ω_{1} is supported on A_{0} and may differ from ω_{0} only on domain $\pi \delta^{-1}\left(B_{0}\right)$ to range $\pi \gamma\left(B_{0}\right)$. Thus $\omega_{1}{ }^{-1}$ may differ from ω_{0}^{-1} only on domain $\pi \gamma\left(B_{0}\right)$ to range $\pi \delta^{-1}\left(B_{0}\right)$. Then $\alpha \omega_{1}{ }^{-1}{ }_{\beta}^{\circ}=n_{2}$ is supported on V and may differ from η_{1} only on domain $\beta^{-1}{ }_{\pi}^{2} \gamma\left(B_{0}\right)$ to rance $\alpha \pi \delta^{-1}\left(B_{0}\right)$. Continuine we let $\phi_{1}=\pi^{-1} n_{2} \pi$ and ϕ_{1} may differ from ϕ_{0} only on domain $\pi^{-1} \beta^{-1} \pi \gamma\left(B_{0}\right)$ to range $\pi^{-1} \alpha \pi s^{-1}\left(B_{O}\right)$. Thus ϕ_{1}^{-1} may differ from ϕ_{o}^{-1} only on domain $\pi^{-1} \alpha \pi \delta^{-1}\left(B_{o}\right)$ to range $\pi^{-1} B^{-1} \pi \gamma\left(B_{0}\right)$ and $\mu_{2}=\gamma \phi_{1}^{-1} \delta$ may differ from μ_{1} only on domain $\delta^{-1} \pi^{-1} \alpha \pi \delta^{-1}\left(B_{0}\right)$ to range $\gamma \pi^{-1} \beta^{-1} \pi \gamma\left(B_{0}\right)$.

It is clear that the orocedure can be iterated, μ_{i} producing ω_{i} producing n_{i+1} producing ϕ_{i} producing μ_{i+1}.

Consider the sequence $\left\{\mu_{i}\right\}$. For each $i \geq 0$, $\mu_{i+1}^{-1}{ }_{i}$ is supported on $\left(\delta^{-1} \pi^{-1} \frac{1}{\alpha \pi}\right)^{i} \delta^{-1}\left(B_{o}\right)$ and $\mu_{i+1}{ }_{i}{ }^{-1}$ is supported on $\left(\gamma \pi^{-1} \beta \pi\right)^{i} \quad \gamma\left(B_{0}\right)$. From the definition of π, $n\left(\gamma \pi^{-1} \beta^{-1} \pi\right)^{i}\left(\omega_{0}\right) \& X^{\prime}$ and $n\left(\delta^{-1} \pi^{-1} \alpha \pi\right)^{i}\left(i_{i}^{\prime}\right) \& X^{\prime}$. For $i>1$, we may write $\left(\delta^{-1} \pi^{-1} \alpha \pi\right)^{i} \delta^{-1}\left(B_{0}\right)$ as $\left(\delta^{-1} \pi^{-1} \alpha \pi\right)^{i-1}\left(\delta^{-1} \pi^{-1} \alpha \pi \delta^{-1}\right)\left(B_{o}\right) F$ Also $\delta^{-1} \pi^{-1} \alpha \pi \delta^{-1}\left(B_{0}\right) \subset W_{0}$ and $\gamma \pi^{-1} B^{-1} \pi \gamma\left(B_{0}\right) \subset W_{0}^{\prime}$. Thus the conditions of Lemma 3.1 are satisfied and $\left\{\mu_{i}\right\}$ convermes to a homeomorphism μ carrying $\cap\left(\delta^{-1} \pi^{-1} \alpha \pi\right)^{i}\left(W_{0}^{\prime}\right)$ onto $n\left(\gamma \pi^{-1} \beta^{-1} \pi\right)^{i}\left(V_{0}\right)$ and with for each other point w of W $\mu(w)=\mu_{i}{ }^{\prime} w$) for all sufficiently laree i. But ω, n and ϕ may be similarly defined.

From the (almost) pointwise agreement of ω, n, and ϕ with ω_{i}, η_{i}, and ϕ_{i} (resnectively) for sufficiently laree i it follows immediately that $\alpha \omega^{-1} \beta=\eta$ and $\gamma \phi^{-1} \delta=\mu$. Also $\omega=\pi \mu \pi^{-1}$, $\phi=\pi^{-1} n \pi$ and μ is supported on V, r_{1} is supported on V, ω is supported on A_{0} and ϕ is supported on B_{0}. Thus

$$
\begin{aligned}
& \omega \alpha \omega^{-1} B=\left\{\begin{array}{lll}
n & \text { on } & V \\
\omega & \text { on } & A_{0} \\
e & \text { otherwise }
\end{array}\right. \text { and } \\
& \phi \gamma \phi^{-1} \delta= \begin{cases}\mu & \text { on } \\
\phi & \text { on } \\
B_{0} \\
\text { e otherwise }\end{cases}
\end{aligned}
$$

$F_{\text {and }}\left(\gamma \pi^{-1} B^{-1} \pi\right)^{i}{ }_{\gamma}\left(B_{0}\right)$ as $\left(\gamma \pi^{-1} B^{-1} \pi^{i-1}\left({ }_{\gamma \pi}{ }^{-1} \beta^{-1} \pi \gamma\right)\left(B_{o}\right)\right.$.

Finaily $\pi^{-1} \omega \alpha \omega^{-1} \beta \pi=\phi \gamma \phi^{-1} \delta$ for $\pi^{-1} \omega \alpha \omega^{-1} \beta \pi=\left(\pi^{-1} \omega \pi\right)\left(\pi^{-1} \alpha \omega^{-1} \beta \pi\right)$ and

$$
\pi^{-1} \omega \pi=n=\gamma \phi^{-1} \delta \text { and } \pi^{-1} \alpha \omega^{-1} \beta \pi=\pi^{-1} \mu \pi=\phi
$$

and $n \phi=\phi \eta$ as η and ϕ are supported on disjoint sets. Also $\pi^{-1} \omega \alpha \omega^{-1} \beta \pi$ may be written as $\left(\pi^{-1} \omega \alpha \omega^{-1} \pi\right)\left(\pi^{-1} \beta \pi\right)$ and $\phi \gamma \phi^{-1} \delta$ may be written as $\left.\phi \gamma \phi{ }^{-1}\right)(\delta)$. Since $\phi, \omega, \pi \varepsilon G_{K}$; the conjupating homeomorphisms are all elements of G_{K}^{μ} and the theorem is established.

Theorem II:
Let $\alpha, \beta, \gamma, \delta \in G\left(X, X^{\prime}\right)$ with none of $\alpha, \beta, \gamma, \delta$ being the identity on X^{\prime} 'Then α is the product of a conjupate of δ by a conjugate of γ by a conjugate of β 。
Proof: Let $\beta^{-1}=\alpha_{0}, \alpha=\beta_{0}, \gamma=\gamma_{0}$ and $\delta=\delta_{0}$ of Theorem I. Then for some $\lambda, \rho, \sigma, \tau \in G_{K}^{*},\left(\gamma^{-1} \beta^{-1} \gamma\right)\left(\rho^{-1} \alpha \rho\right)=\left(\sigma^{-1} \gamma \sigma\right)\left(\tau^{-1} \delta \tau\right)$ and

$$
\alpha=\rho\left(\lambda^{-1} \beta \lambda\right) \rho^{-1} \rho\left(\sigma^{-1} \gamma \sigma\right) \rho^{-1} \rho\left(\tau^{-1} \delta \tau\right) \rho^{-1}
$$

$$
=\left(\rho \lambda^{-1} \beta \lambda \rho^{-1}\right)\left(\rho \sigma^{-1} \gamma \sigma \rho^{-1}\right)\left(\rho \tau^{-1} \delta \tau \rho^{-1}\right) \text { with }
$$

$$
\lambda \rho^{-1}, \sigma \rho^{-1}, \tau \rho^{-1} \text { and their inverses all in } G_{K}^{*} \text { since } \lambda, \sigma, \tau
$$ and ρ are.

Theorem III:
Let α_{1}, β_{1} a $\left(X, X^{\prime}\right)$ with $\alpha_{1} X^{\prime}, \beta_{1}\left|X^{\prime} \neq 0\right| X^{\prime}$. Then α_{1} is the product of three conjugates of β_{1}.

Proci: Theorem III is an immediate corollary of Theorem II letting $\beta=\gamma=\delta=\beta_{1}$ and $\alpha=\alpha_{1}$ 。

It is interesting to note that for $G\left(X, X^{\prime}\right)=G_{K}^{*}$, it is not known, either in general or in the cases of the specific examples, whether the identity e is the product of three conjugates of β.It seems possible that e is a true exception. In a slightly different situation, suggested by Theorem II, in many of the examples e is the only exception. It will be shown in Section 8 that for many of the examples, there exist
homeomorphisms h and γ such that h is not the product of two conjugates of γ. Then e is not the product of a conjugate of h^{-1} by a conjugate of γ by a conjugate of γ for if so, h would be the product of two conjugates of γ. The following corollary is already known for most of the examples mentioned [1], [2], and [4] .

Corollary I.
The group G_{K}^{*} is algebraically simpleif $X=X^{\prime}$ 。
Proof。 Let $\beta \neq e$ be an element of a normal subgroup \mathbb{N}. Then every element of G_{K}^{*} is in N for each is the product of three conjugates of β where the conjugating homeomorphisms are elements of G_{K}^{*}

The following corollary is also known $[4]$.
Corollary II.
If $X=s^{n}$, every element of $G G^{*}$ is isotopic to the identity.

We may note that the nature of the isotopy can be particularly simple. Let $h \in G_{K}^{*}$ be any homeomorphisn with a nice geometric isotopy to the identity (and there exist many such). Then an arbitrary element of $G_{K}^{\stackrel{H}{4}}$ can be isotopied back to the identity by dealing with the three conjugates of h consecutively and thus having only two levels of "singularities", namely as one goes from the coordinate system of one conjugate to the coordinate system of the next.

7. The Cases of the Examples of Section 1

a) $X=X^{\prime}=C$, the Cantor Set. K is the set of all non-null open and closed sets whose complements are non-null. $G\left(X, X^{\prime}\right)$ is the set of all homeomorphisms of C onto itself. Since the elements of K are all open and closed and freely admit homeomorphisms onto each other, there is no difficulty in verifying that $G_{K}^{*}=G\left(X, X^{\prime}\right)$ and G_{K}^{*} is the set of all homeomorphisms with
the CHEP. Also the conditions (1) - (6) are all satisfied, e.g. (6) is immediate since $h \mid k^{\sim}$ can be taken to be $e \mid k^{N}$. The condition in (5) that $k_{1}, k_{2} \neq k$ is designed for examples of this type.
(b) Let $X=X^{\prime}=S^{n}$, the n-sphere, $n>1$. K is the set of all images of a canonical hemisphere under homeomorphisms each of which is the finite product of homeomorphisms supported on cells. G_{K} and G_{K}^{*} are thus well-defined and we let $r\left(X, X^{\prime}\right)=$ $=G_{K}^{*}$. In [3] in their study $\cdot \mathrm{F}$ stable homeomorphisms; Brown and Gluck give their Theorem 3.2 and its corollary. The theorem implies immediately that the Conditions (5) and (6) are satisfied. The Corollary implies that all elements of $G\left(X, X \quad{ }^{\prime}\right)=\{$ the set of all stable homeomorphisms $\}$ have the CHEP. Conditions 1,3 and 4 are obvious from our definition. For Condition 2 we note that as the cells k_{1}, \ldots, k_{6} are all disjoint there exist disjoint neighborhoods U_{1}, \ldots, U_{6} with $k_{i} \in U_{i}, 1 \leq i \leq 6$, such that, for each i, k_{i} can be contracted in U_{i} toward a point of k_{i}. (Note that each k_{i} is a topological hemisphere in S^{n}). Then there exists a thin tame (or flat) cell containing the contracted k_{1}, k_{2} and k_{3} and missing the contracted $k_{L_{4}}, k_{5}$ and k_{6}. Then under the anti-contractions this cell becomes the desired cell for Condition 2.
(c) Let X, X^{\prime}, K, G_{K} and G_{K}^{*} be as in (b) but let $G\left(X, X^{\prime}\right)$ be the set of all homeomorphisms which are the product of some geometric orientation-reversing involution h and an element of G_{K}^{*} * Then Condition (4) is satisfied and the other conditions follow as in example (b). If g is any orientation-reversing homeomorphism we note that $g \cdot h$ will be orientation-preserving and $g \cdot h$ either is an element of G_{K}^{*} or it is not. If so, then obviously $g \approx G\left(X, X^{\prime}\right)$ and if not then $g \not G\left(X, X^{\prime}\right)$. But the second alternative can only occur if some orientation-preserving homeomorphism does not have the CHEP (or, equivalently, if the affirmative annulus conjecture is not true). Conversely,
if some orientation-preserving homeomorphism does not have the CHEP then its product by h produces such a g.
(d) $X=I^{n}, n>2, X^{\prime}=\operatorname{Bdry} I^{n}=S^{n-1}, K$ is the set of all imapes of a canonical half-cell of I^{n} under homeomorphisms which are the finite product of homeomorphisms each of which is the identity in some neighborhood of some noint of Bdry I^{n} 。Finally, $G\left(X, X^{\prime}\right)=G_{K^{*}}^{*}$

Conditions (1), (3) and (4) are obvious from the definitions given. Condition (2) follows from an argument like that given for Condition (2) in Example (b) above. Conditions (5) and (6) follow by arguments like those leading to the Brown-Gluck Theorem for S^{n} (referred to in (b)). The arguments (not given here) are non-trivial but routine and depend on the basic structure of "stable" homeomorphisms.
(e) Let X, X^{\prime}, K, G_{K} and G_{K}^{*} be as in (d) but let $G\left(X, X^{\prime}\right)$ be the set of all homeomorphisms each of which is the product of some geometric orientation-reversing involution h and an element of $G_{K}{ }^{*}$. Further considerations are like those of example (c).
(f) Let $X=X^{\prime}$ be the space of rationals (or irrationals) on the line. Let K be the set of closed and open proper subsets of X. Then considerations like those of example (a) lead to verification of Conditions (1) to (6).
(g) Let X be a space of (a) -(f) and let X " be a countable dense subset of the original X ' such that "enough" homeomorphisms exist carrying X onto X and $X^{\prime \prime}$ onto $X "$. We are to treat $X^{\prime \prime}$ as if it were X^{\prime}. The convergence lemmas imply that the set X^{\prime} (or $\mathrm{X}^{\prime \prime}$) must be homogeneous in X . It is not difficult to verify that Conditions $1-6$ can be satisfied in such cases nor is it difficult to give some additional examples in the same spirit. We could, for instance, let $X=S^{2}$ or S^{3} and let X' be a tame (or geometric) Cantor Set C in such space, with $G\left(X, X^{\prime}\right)$ being the set of orientation-preserving homeomorphisms of X which carry X^{\prime} onto X^{\prime} 。

8. The Necessity for the Use of at Least Three Conjugates

In this section we establish that there exist homeomorphisms of C, S^{n}, I^{n}, the rationals, the irrationals, etc. which are not the product of two involutions. Thus, in general, three is the least number of conjugates of an arbitrary homeomorphism which can be used to produce another arbitrary homeomorphism.

Let Y be an abstract set (no topology) and let h be a 1-1 transformation of Y onto itself. For each $y \in Y$, the orbit $O_{h}(y)$ of y under h is the set of all images of y under e, iterates of h, or iterates of h^{-1}. If $O_{h}(y)$ is finite, then the elements of $O_{h}(y)$ are cyclically permuted by h. If $O_{h}(y)$ is infinite, then on $O_{h}(y), h$ is equivalent to a translation on the set of integers on the line.

Lemma 8.1: Suppose $h=\lambda_{1} \lambda_{2}$ with λ_{1} and λ_{2}. both involutions. Then
(1) each of λ_{1} and λ_{2} carries each orbit under h onto an orbit of the same cardinality and carries such orbit back to the original one,
(2) for any orbit $O_{h}(y), \lambda_{1}\left[O_{h}(y)\right]=\lambda_{2}\left[O_{h}(y)\right]$, and
(3) each of λ_{1} and λ_{2} reverses the order of orbits under h and
(4) if either carries an orbit onto itself then one of λ_{1} and λ_{2} has a fixed point on that orbit.
Sketch of Proof: Let $y_{0} \in Y$ and let y_{i} denote $h^{i}\left(y_{0}\right)$.
Suppose $\lambda_{2}\left(y_{0}\right)=z_{0}$ 。 Let z_{i} denote $h^{2}\left(z_{0}\right)$. Since $\lambda_{2}\left(y_{0}\right)=z_{0}$, then $\lambda_{1}\left(z_{0}\right)=y_{1}$ for $\lambda_{1} \lambda_{2}=h$. Since λ_{2} is an involution, $\lambda_{2}\left(z_{0}\right)=y_{0}$ and then $\lambda_{1}\left(y_{0}\right)=z_{1}$ also. But also since $\lambda_{1}\left(z_{1}\right)=y_{0}$, then $\lambda_{2}\left(y_{-1}\right)=z_{1}$, and since $\lambda_{1}\left(y_{1}\right)=z_{0}$ then $\lambda_{2}\left(z_{-1}\right)=y_{1}$. Also since $\lambda_{2}\left(z_{1}\right)=y_{-1}$ then $\lambda_{1}\left(y_{-1}\right)=z_{2}$ etc. The above pattern is valid even if $z_{0} \approx O_{h}\left(y_{0}\right)$. The Lemma follows directly from these considerations.

Remark:If Y is a metric space, then to show that there exists a homeomorphism h of Y such that h is not the product of two involutions, it suffices to exhibit an h with one or more distinctive orbits each dense in a closed set such that no involution can reverse the sense of such orbits or carry such orbits onto others.

Let α be an irrational rotation of the circle Σ_{1}. Let $O_{1}, \ldots, O_{j}, j \geq 3$ be j orbits under α-orbit proshat norvingolution of Σ_{1} carries $U O_{i}$ onto itself. Since all the orbits under α are geometric copies of each other and are rigid in both directions, any involution permutine orbits must be an isometry. Hence it is not difficult to exhibit such $0_{1}, \ldots, 0_{j}$ which are "irrationally related".

Let ψ be a map of a circle Σ_{2} onto Σ_{1} such that for each point p of $N O_{i}, \psi^{-1}(\underline{p})$ is an arc and for each other point q, $\psi^{-1}(q)$ is degenerate. Let β_{j} be a homeomorphism of Σ_{2} onto itself uniquely induced by α on Σ_{1} except on the interiors of the non-degenerate inverses under ψ. But an extension is clearly possible to such sets. A necessary and sufficient condition that two points be distal (7) under β_{j} is that the two points do not belong to the same point-inverse under ψ. But then any involution λ of Σ_{2} which carries orbits under β_{j} onto orbits under β_{j} cannot carry an orbit projecting under ψ onto $\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots$ or O_{j} onto an orbit not projecting under ψ onto O_{1}, O_{2}, \ldots or O_{j}. تience λ induces an α-orbit preserving involution of $\Sigma_{1} \backslash \cup O_{j}$ which in turn induces one on Σ_{1} contrary to the selection of $0_{1}, O_{2}, \ldots, O_{j}$. Hence β_{j} is not the product of two involutions on Σ_{2} 。

For any orbit 0^{*} under β_{j} which comes from an orbit under α other than $\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots, \mathrm{O}_{j}, \mathrm{Cl} \mathrm{O}^{*}$ is a Cantor Set C . The homeomorphism β_{j} cut down to C also admits no involutions permuting orbits for such would induce one on Σ_{2} and then on Σ_{1}. Thus we have examples of homeomorphisms on C and S^{1} which are not products of two involutions. Also the homeomorphisms on C can be cut down to non-closed subsets of C homeomorphic to the rationals or irrationals on the line with such restricted homeomorphisms also not the product of two involutions.
(7) x, y are distal under β provided that for some $\varepsilon>0$ and each i, $-\infty<i<\infty, \quad \alpha\left(\beta^{i}(x), \beta^{i}(y)\right)>\varepsilon$.

To get a homeomorphism of S^{n} which is not a product of two involutions, we may use the homeomorphisms β_{j} on copies of Σ_{2} in S^{n}. Suppose β_{j} acts on a geometric circle $S^{1}(j)$ in S^{n}. Then β_{j} can be extended to any small neighborhood U_{j} of $S^{1}(j)$
 under the extension toward a point near or on the boundary of U_{j} 。 Under the inverse of the extension such points move toward (a subset of) $S^{1}(j)$. Thus the orbits on $S^{1}(j)$ are distinctive. Further for $j_{1} \neq j_{2}$, no involution can carry $S^{1}\left(j_{1}\right)$, to $S^{1}\left(j_{2}\right)$ since $\beta_{j_{1}}$ and $\beta_{j_{2}}$ are essentially different homeomorphisms. Consider ${ }^{1}$ a countable null-collection $\left\{S^{1}(j)\right\}$ of disjoint isolated circles the closure of whose union contains two ($n-1$)-spheres S_{1}^{n-1} and S_{2}^{n-1} disjoint from the circles. Define B: on $S^{1}(j)$ and extend as above to a small neighborhood of $S^{4}(j)$ disjoint from S_{1}^{n-1}, S_{2}^{n-1} and the other small neighborhoods. Then the composite of these extended homeomorphisms (extended itself by the identity elsewhere) is a homeomorphism h of S^{n} which as we shall verify is not the product of two involutions. First if $h=\lambda_{1} \lambda_{2}$ is such product then each of λ_{1} and λ_{2} must carry each $S^{1}(j)$ onto itself and must therefore be the identity on each $S^{1}(j)$ and thus be the identity on S_{1}^{n-1} and S_{2}^{n-1}. But then as the fixed point set contains two ($n-1$)-spheres each of the involutions must be the identity on S^{n}, a contradiction.

From such an h on the ($n-1$)-sphere regarded as the boundary of I^{n} there may be constructed (by inward projection of h toward the center of I^{n}) an h on I^{n} which is not the product of two involutions.

Thus in the cases of the examples, the number "three" of the Three Conjugates Theorems is the lowest possible number.

9. Questions and Comments

Does there exist any (nice) space admitting many homeomornhisms such that for any α, β havine the CHEP, $\alpha, \beta \neq e, \alpha$ is the product of two conjugates of β ? For C or S^{n} and α having the CHEP, is e the nroduct of three conjurates of α ? (It is not difficult to find some β such that e is the product of 3 conjupates of β). In research now continuing, Ellard Nunnally has shown by methods orisinally suggested by those of this paper but without usinf homeomorphisms which are the identity in apen set, that a dilation is he product of conjufates of two arbitrary (non-identity) "stable" homeomornhisms of S^{n} (or C), and hence that every "stable" homeomorphism of s^{n} (or C) is the product of two conjugates of a dilation. What homeomorphisms have one or both of these properties of dilations?

Wile the apparatus of this naper is set up in terms of metric spaces, which include the more interesting examples, we really only need to assume that our space X is firstcountable Hausdorff. The additional restrictions imnosed by the conditions of the A-quadruple, of course, limit the type of space very substantially. The theorems are true for certain non-metric zero-dimensional spaces.

References

[1] P.D.Anderson, The Alsebraic Simplicity of Certain Groups of Homeomorphisms, Amer.Journ. Math. 80 (1958), 955 - 963.
[2] R.D. Anderson, On Homeomorphisms as Products of Conjugates of a Given Homeomornhism and its Inverse. Topology of 3-Manifolds. Proceedings of The University of Ceorsia Institute 1961, Prentice Hall 1962, np.231-234.
[3] Norton Brown and Herman Gluck, Stable Structures on Manifolds, Bulletin of ANS 69 (1963),51-58.
[4] Gordon Fisher, On the Group of all Homeomorphisms of a Manifold, Transactions Amer.Math.Soc. 97 (1960), 193-212.
[5] S.M. Ulam and J. von Neumann, On the Group of Homeomorphisms of the Surface of the Sphere (Abstract) Bull. AMS 53 (1947),p.506.

Louisiana State University, Baton Rouge
Mathematisch Centrum, Amsterdam.

