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1, This second note gives an elementary exposition of the compo­
sition of binary quadratic forms. It js shown that the classical theory (1 ) 

carries over to the case that the coefficients are taken from a (com­
mutative) Euclidean ring (2). 

Firstly, following Dirichlet and Dedekind, the forms to be compounded 
will be replaced by suitable equivalent ones, and it will be proved that 
this leads to a unique composition of the corresponding (proper) equi­
valence classes. In doing this, the use of quadratic congruences and, 
of course, of irrational numbers will be avoided. Next, a theorem on the 
decomposition of a given class will be deduced, and a characterization 
of ambiguous classes will be given. The connection in the classical case 
with ideal theory shall not be discussed (3). 

Helpful advices were given by Dr. 0. G. Lekkerkerker who also 
simplified the proof of theorem 5. 

2. Let I be a Euclidean ring with characteristic =fa 2. Then in I 
factorization in prime elements is possible and unique, in the usual sense. 
The one-element will be written 1. We consider quadratic forms 

f(x, y) = ax2 +bxy+cy2 (a,b,o,x,yEl), 

( 1 ) For the history of the subject the reader is referred to L. E. Dickson, History 
of the theory of numbers, Vol. III, New York 1934, ch. III, p. 60-79. 

( 2 ) Actually, the considerations of this note apply more generally to all principal 
ideal rings with characteristic c;1= 2, which moreover are integral domains and in which 
the factorization property holds. 

( 3 ) It may be recalled that in that case there is a one-to-one correspondence 
between classes of forms and classes of ideals. See e.g. E. Landau, Vorlesungen iiber 
Zahlentheorie, Bd. III, Leipzig 1927, p. 187-196; B. W. Jones, The arithmetic theory 
of quadratic forms, Carns Math. Monographs, No 10 (1950), p. 153-168. See also S. Lu­
belski, Ober Klassenzahlrelationen quadratischer Formen in quadratisohen Kiirpern, 
Journal reine ang. Math. 174 (1936), p. 160-184. 
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ahortly denoted by f - [•, 6, o). Such a form is called primitive if the 
ooetticlenta •, b, c are relatively prune. Further, b8-4ac is called the 
di&oriminant of th• form. In the following we always sup1>0se, without 
saying it explicitly, that our forms are prim.ti~ f<Yf"'mlJ 1chost discriminant 
kt a /tMd NZ.u D. 

We •Y that m, I is repru~ properly by a. form f if there are 
s, y, I with 

m = f (:», y), (ai, y) = l . 

Two forms /, f are called prop«-lt or tMpropM"ly 8(]Wtvalent if f is trans­

formed into g by a linear tranafo:rmation (;) == {;!') (;,) whose deter­

mmant o/,-/Jy is 1 or a unit • -:;,.1 Ntpeetively. A form/ is called am­
....., If it is improperly equivalent to itself; then, nooeasarily, , == -1. 
Below we shall consider """"" of ~•, eptNUm f~, and denote 
them by O, Cu C1 , tte. 

It is well known that ~uivalent forms :repreaent the same elements 
and that, if• is :repreeented properly by/, there is a form gin the same 
clau, which baa tint coefficient • ('). 

L We first prove the following 
T,mcv4 1. II•-:;,. O '8 .,...,,..,,, an ••Y f<>Nli j = [a, b, o] r,prufflU 

FOJ>«'IY • ool.u " -:;,. o, '"°* tA.d (n, tl) - 1. 
Proof. a.r1y, a,c,o+b+o are repreaented pro~rly by f. If m 

is a unit, then one of these elements may be taken u n. So we may suppost 
that • is not a unit. 

Let Pu ... , p, be the different prime factors of m. Eaoh ff fl 
a divisor of one at le:Mt of•, c, a+t+o, aa these elements are relatively 
prime. So, for each ,., there em 11-, ,, c I, such that 

Now, since the Euclidean algorithm holds in I, the Chinese remainder 
theorem iB valid in I. Then. we can find a,,, such that 

• • :i:,(modp,), y • r, (modp,) (i-1, 2, ... , r). 

Let a be a g.c.d. of :&, y. Then •' - :&/~, y' = y/f> are relatively prime. 
hrther f (re, y) Jljl,. 0 (modp,), hence 

J(a1',f');i'O(modp,) (i=l,2, ... ,r). 

Thua n - J(:i:', y') fulfills the requirements . 
., 

(4 ) Cf. lemma l in the tint uote on p. 218 (.Acta Arith. 6 (1961), pp. 217-224). 
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We now deduce 
THEOREM 1. F'or each pair of classes 01 , 0 2 ( not necessarily different) 

there are forms f, e 0, (i = 1, 2) of the following type 

(1) /1 = [a1, b, a2c], !2 = [a2, b, a1c], (a1, aJ = 1. 

Proof. Take any for:m f1 = [a1 , b1 , e1] e 01 with a1 =I= 0. Then, by 
le:m.ma 1, any for:m / 2 = [a2 , b2 , c2] e 0 2 represents properly a value n =I= 0 
with (a1 ,n)=1. We :may suppose that f 2 e02 has already been chosen 
in such a way that a2 = n. 

We now observe that 

so that 
(2) 

Further, b1 + b2 = b1 -b2 (mod2). 
Now take any prime factor p of 2, and let p8 be the highest power 

of it, which divides 2. Then we must have 

b1 - b2 = O (modp8 } • 

For, if b1 -b2 =I= 0 (modp8), we should also have b1 + b2 =I= 0 (modp8), 

hence b~-b~ =f= 0 (modp28), in contradiction with (2). Since this is true 
for each prime factor of 2, it follows that 

(3) 

By (3), since (ai, a2} = 1, there are ~u ~2 such t.hat 

b1 -b2 
a1~1 - a2~2 = - - 2- • 

Transfor:m.ing /1 by (~ ; 1) and /2 by (~ ;1) we get two forms 

[a1, b', Y1] and [a2, b', Y2J, 

where b' = 2a1~1 + b1 = 2a2~2 + b2 and Y1, Y2 satisfy 

b'2 - 4a1y1 = b'2 - 4a2r2 = D , 

so that a1y1 = a2y2 • Since (au a2) = 1, y1 and y2 have the form 

Hence the transformed forms are of the required type. 

The two forms f, in (1) are closely related to the form 

(4) 
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This is shown by the following identity of Lagrange 

(5) (tii,x2 + bxy + a 2cy2)(a:im'2 + bx'y' + a1cy'2) = a1a 2x2+ bXY +cY2 , 

where 
(6) X = xx'-cyy', 

It is clear that f is again a primitive form with discriminant D. We agree 
to call f the compound of f1 and f 2 , and write 

[ai, b, a2c]-[a2 , b, a1c] = [a1a2 , b, c]. 

Clearly, if m1 , m2 are values of f17 f2 respectively, then mim2 is a value off. 
LEMMA 2. If (mi, m2) = 1 and m11 m2 are represented properly by 

f1 , f2 respectively, then m1m2 is represented properly by f. 

Proof. Let the proper representations of mi, m2 be given by 

a1x2 + bxy + a2cy2 = m,1 , a:im'2 + bm'y' + a1cy'2 = m2 . 

Eliminating m', y' from ( 6) we get 

(a1m2+bmy+a2cy2)x' = (a1x+by)X+cyY, 

(a1x2 + bmy + a2cy2 )y' = - a2 yX + x Y • 

So a common factor of X, Y would be contained in mi, because (x', y') = 1. 
Similarly, such a factor would be contained in m2 • Hence X, Y are 
relatively prime, whereas f(X, Y) = mxm2 • 

The compound is only defined for forms of the special type (1). But 
the main objective of composition theory is to compose classes, not forms. 
We now proceed to prove 

THEOREM 2. Let 01 , 02 be given classes of forms. Then for each pair 
of forms f, E Oi (i = 1, 2) of the type (1) their compound f belongs to one 
fixed class 0. 

We call O the compound of 01 and 0 2 and write C = 01C2 • 

Proof of theorem 2. We consider any two pairs of forms 

f1 = [g1, h, U2d], f2 = [U2, h, U1d], 
F\ = [a1, b, a2c], F 2 = [a2, b, a1c], 

such that 
f1, F1 E 01; f2, F2 E 02, (U1, U2) = (a1, a2) = 1. 

We shall prove that then [g1g2 , h, d] and [a1a2 , b, c] belong to the same 
class. 

Let 

fi(x, y) = F1(a1x+ f31Y, rim+ b1Y), Mm, y) = Fla:im+ /JaY, Y2X + baY) , 

so that a1b1 - /31y1 = a2b2- f32y2 = 1. A simple calculation gives 

ha1 = 2g1f31 + bai + 2a2CY1 , hr1 = 2g1151 - 2fl:i a1 - by1 • 
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From h2- 4g1g2d = b2 - 4a1a2c = D it follows as in the proof of theorem 1 
that 

h-b == h+b == 0 (mod2). 

h±b Then 2 are elements of I, and we can write 

Let ~, 'Y/ be the values of the expressions (6 ), where for x, y, x', y' we 
substitute a11 Yu a2 , y2 • Then we have 

(h-b ) (h + b ) = - 2- a1-a2CY1 a2-~ Y1 +a1a1 Cy2 

= g1(f31a2- C01Y2) · 

J"or reasons of symmetry we also have 

Then, since (gi, g2 ) = 1, 

h-b 
-')- ~ - <YYJ == o (modgiU2) . .., 

Similarly, one proves that 

So in I there are elements 

Now (~ :) is a transformation with determinant 1 which transforms 

[a1a2, b, c] into [g1g2 , h, d]. This is easily verified if only one observes 
that, by (5 ), 

a1a2~ + b~TJ + CrJ2 = g1g2 • 

The theorem is now proved. 

4. We discuss some properties of the composition of classes. First 
we prove 

THEOREM 3. The classes form a commutative group, with the 6om­
position as group operation. 
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Proof. It follows i:m:mediately from the definition that the co:mpo­
sition of classes is com:mutative. 

We now prove the associativity. Let 01 , G2 , Ca be three classes. 
By theorem 1 and lemma 1 we can choose forms Ii e Ci (i = 1, 2, 3) of 
the following type 

/1 = [ai, b, a2c], !2 = [a2, b, ale], la= [aa, ba, Ca], 

where a1 , a2 , aa are all =I= 0 and any two of them are relatively prime. 
Further b - b3 is divisible by 2. Then there exist ; , 'YJ e I such that 

b- b3 
a1a2;-aa'f/ = --2-. 

Transforming /1 by (~ a{~), /2 by (~ ai~), f3 by (~ i) we get three forms of 

the following type: 

(7) [a2 , b', c~], [aa, b', c~]. 

Since a1c{ = a2cf = a3c~ and any two of the ai are relatively prime, we 
can write 

It is then clear that composing the three forms (7) we get the law 

(01G2) Oa = C1(C2Ca), 

Next, we note that the forms representing 1 constitute a single class E. 

]'or [l, b, c] is transformed into [l, b', c'] by the transformation (~ i} 
with;= -(b-b')/2. If C is,an arbitrary class, then in E, C we can choose 
forms f u /2 of the type /1 = [l, b, ac], f 2 = [a, b, c] (note that in theorem 1 
we may require that a1 is any element =I= 0 represented properly by /1). 

Their compound is / 2 • Hence, 

GE= 0. 

]'inally, two forms [a, b, c] and [c, b, a] have the compound [ac, b, 1]. 
Hence eaeh class O has an inverse 0- 1• 

Another theorem on composition is given by 
THEOREM 4. Let m =I= 0 be represented properly by some form f, such 

that 'in and D are relatively prime. Let m = pf1 ... pi' be a canonical decom­
position of m. Then there are f or,;ns representing properly any Pi 
(i = 1, 2, ... , r). Further, if Ou ... , Cr are the corresponding classes, then 
each f or-m representing m properly belongs to a class of the type 
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Proof. The first assertion follows from the observation that if 
[m1m2 , b, c] is a primitiye form with discriminant D, then so is [m1 , b, m~]. 
In order to prove the second assertion we distinguish first some special 
cases. 

Case I. m, is a prime element p. Let us consider two forms with 
first coefficient p, say 

[p,q,r], [p,q',r']. 

Since both forms have discriminant D, we have 

(q+q')(q-q') = 0 (mod4p). 
Hence 

q+q' = 0 (mod2p) or q-q' = 0 (mod2p). 

In the second case [p, q, r] is properly equivalent to [p, q', r'], in the 
first case to [p, - q', r'] and so to [r', q', p ]. We thus find that [p, q', r'] 
belongs to the same class as [p, q, r] or to its inverse. 

Case II. m is a power of a prime element, say m = p8 • Then p does 
not divide D. Let C0 be a class containing some form [p, q, r]. We have 

q2 = D (modp), hence q =f= O (modp). 

We first show that then the congruence 

(8) 

has a solution t for all positive integers k. 
For k = l the congruence reduces to qt+ r = 0 (mod p) and _so is 

solvable because of q =f= 0 (modp). Suppose now that for some k there 
is a solution t0 • Taking t = t0 + pky we have 

pt2 +qt+r = pt~+qt0 +r+pkqy (modpk+1). 

Clearly, we can choose y so that the expression on the right is= 0 (modpk+i). 
Hence (8) is solvable for all k. 

(1 it) Now take a solution t of (8 ), with k = s- l. The transformation 0 

transforms the-form [p, q, r] into the form 

p(x+ty)2 +q(x+ty)y+ry2 = px9+(2pt+q)xy+(pt2 +qt+r)y2 • 

It follows that C0 contains a form of the type [p, Q, ps-1 R]. Then the 
class cg contains the form 

(9) [p, Q, ps-lR]s = [p8, Q, R], 

as follows from the formula 

[p, Q, ps-lRJ, [pi, Q, ps-iR] = [pi+l, Q, ps-i-1R] (i = 1, 2, ... , s-1) . 

Conversely, let us consider an arbitrary form [p8 , Q', R']. According 
to (9) it can be obtained from the form [p, Q', p8 - 1R']; by what we have 
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proved above, this last form belongs to 00 or 001. It follows that any 
form [p8 , Q', R'] belongs to one of the classes Ct' 8 • 

General case. m arbitrary. Let m = pf1 ••• p;r and let /, e C, be 
a form representing p, ( i = 1, 2, ... , r). Then, by case II, there are forms 
Fi e C~' representing properly p~' ( i = 1, 2, ... , r). Then it follows from 
lemma 2 that there is a form in Of1 ... c;r representing m properly. The 
.same is true, of course, for each other class of the type Cr81 ... 0";8'. 

Conversely, consider any form [m, Q, R]. We have 

[m, Q, R] = [p~1
, Q, ; 1 R)·[~1 , Q, pf1R] 

= ... = tJ [p1', Q, :R] =[][Pi, Q, ~ R]8
'. 

i=l p, i=l p, 

It follows that [m, Q, R] belongs to one of the classes 0f81 ••• 0";8'. This 
-completes the proof of the theorem. 

5. Finally, we deal with ambiguous classes. A class O is called 
.ambiguous, if it contains an ambiguous form. Then each form in O is 
ambiguous. Further, if f = [a, b, c] is a form in O, then also each form 
which is improperly equivalent to /,e.g. the form [o, b, a]. It follows that 
the ambiguous classes O are characterized by the relation 

C = 0-1 • 

Another characterization is given by 
THEOREM 5. Suppose that D =t- 0. Thren the arnbiguous cUt8ses are 

those containing a form of the type [a, ae, o ]. Here e -can be taken in a given 
·residue system mod2. 

Proof. Let C be an ambiguous class. Let f = [a, b, o] be any form 

in O and let A. denote the matrix (~ 2!), so that detA. -=f:. 0. Further, 

let T be a transformation with determinant -1 leaving f invariant. Then 
we have (the symbol * denoting the passage to the transposed matrix) 

{10) T*A.T =A, detT = -1. 

We first deduce from (10) that spT = 0. In fact, if Bis the aidjoia:t; 
matrix of A, then (5) (detA.) • T =BAT= BT .. - 1A., hence 

det.A-spT = sp(BT*-1.A) = sp(.A~T*-1) = detA.-spT*-1 , 

;.and so 
spT = sp T*-1 , 

( 5) We can take the inverse of T*, as det T is a unit. 
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since detA ;;/:- 0. One easily deduces from det T = -1, that sp T*-1 = - sp T. 
So one finds sp T = O. 

Next, we prove the existence of a matrix S such that 

(11) detS = 1, s-1TS = (1 e) 0 -1 (e e I) . 

Since det T = -1 and sp T = O, the characteristic equation of T reads 
~-1 = o, and so T has two eigenvalues ±1. Then there is an eigen-

vector X = (p) with TX= X and (a, /3) = 1. Further, there are elements 

y, {J with ab - f)y = 1. Then, si,nce det T = -1, the matrix S = (p ~) 
satisfies (11). 

Now S transforms f into a form g which is invariant under the trans-

formation s-1TS = (~ _i). One easily finds that then g is of the type 

[a, ae, c]. Conversely, a form of this type is invariant under the trans­

formation (~ _i). This proves the first assertion. The second assertion 

now follows from the fact that two forms [a, ae, c], [a, ae', c'] are equi­
valent if e == e' (mod2). 
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