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1. This second note gives an elementary exposition of the compo-
sition of binary quadratic forms. It is shown that the classical theory (*)
carries over to the case that the coefficients are taken from a (com-
mutative) Euclidean ring (2).

Firstly, following Dirichlet and Dedekind, the forms to be compounded
will be replaced by suitable equivalent ones, and it will be proved that
this leads to a unique composition of the corresponding (proper) equi-
valence classes. In doing this, the use of quadratic congruences and,
of course, of irrational numbers will be avoided. Next, a theorem on the
decomposition of a given class will be deduced, and a characterization
of ambiguous classes will be given. The connection in the classical case
with ideal theory shall not be discussed (3).

Helpful advices were given by Dr. C. G. Lekkerkerker who also
simplified the proof of theorem 5.

2. Let I be a FEuclidean ring with characteristic # 2. Then in I
factorization in prime elements is possible and unique, in the usual sense.
The one-element will be written 1. We consider quadratic forms

f(w,y)=am2+bmy—{—cy2 (ayb,ow'”:yeI)?

(*) For the history of the subject the reader is referred to L. E. Dickson, History
of the theory of mumbers, Vol. I1I, New York 1934, ch. III, p. 60-79.

(?) Actually, the considerations of this note apply more generally to all principal
ideal rings with characteristic 7 2, which moreover are integral domains and in which
the factorization property holds.

(®) It may be recalled that in that case there is a one-to-one correspondence
between classes of forms and classes of ideals. See e.g. E. Landau, Vorlesungen iiber
Zahlentheorie, Bd. 111, Leipzig 1927, p. 187-196; B. W. Jones, The arithmetic theory
of quadratic forms, Carus Math. Monographs, No 10 (1950), p. 153-168. See also S. Lu-
belski, Uber Klassenzahlrelationen quadratischer Formen in quadratischen Korpern,
Journal reine ang. Math. 174 (1936), p. 160-184.
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shortly denoted by f=[a, b, c]. Such a form is called primitive if the
coefficients a, b, ¢ ave relatively prime. Further, »*—4ac is called the
diseriminant of the form. In the following we always suppose, without
saying it explicitly, that our forms are primdtive forms whose discriminant
has a fived value D.

We say that m e I is represented properly by a form f if there arve
®,% ¢ with

m=f(z,y), (2,y)=1.
Two forms [, g arve called properly or improperly equivalent if f is trans-
formed into ¢ by @ linear transformation (;) = cg) (;) whose deter-
minant ed— Py is 1 or a unit & % 1 respectively. A form f is called am-
biguous if it is improperly equivalent to itself; then, necessarily, & = —1.
Below we shall consider classes of properly equivalent forms, and denote
them by C, O, C,, ete.

It is well known that equivalent forms represent the same elements
and that, if m is represented properly by f, there is a form ¢ in the same
class, which hag first coefficient m (4).

8. We first prove the following

Leyma 1. If m s 0 is arbitrary, then any form f = {a, b, ¢] represents
properly @ value n % 0, such that (m,n) == 1.

Proof. Clearly, a,¢,a-+b-+¢ are represented properly by f. If m

is & unit, then one of these elements may be taken as n. So we may suppose
that m is not & unit. ’

Let p,, ..., p, be the different prime factors of m. Each p; is not
a divisor of one at least of @, ¢, a + b+ ¢, as these elements are relatively
prime. So, for each p;, there exist w;, y; ¢ I, such that

f (@i, ¥:) 5% 0(mod py) .

Now, since the Euclidean algorithm holds in I, the Chinese remainder
theorem is valid in I. Then we can find «,y such that

mwm;(modp‘), Y=y (mOdpi) (Sm 1:21---77') .

Let 6 be a g.c.d. of #,y. Then 2" = 2/d, y" = y/d are relatively prime.
Further f(x, y) =& 0 (mod p;), hence

flo,y) 550 (modpy) (i=1,2,..,7).
Thus » = f(2’, y') fulfills the requirements.

wl

{(*) Cf. lemma 1 in the first note on p. 218 (Acta Arith. 6 (1961), pp. 217-224).
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We now deduce

THEOREM 1. For each pair of classes C,, C, (not necessarily different)
there are forms f;e C; (¢ = 1,2) of the following type
(1) fi=1[a1,b,ax], fo=1[as,b,ac], (ay,0.)=1.

Proof. Take any form f, ={[ay,b;,¢;]eC; with a, % 0. Then, by
lemma 1, any form f, = [a,, b,, ¢;] € U, represents properly a value n %= 0
with (a,,n) =1. We may suppose that f, e C;, has already been chosen
in such a way that a, = n.

We now observe that

b —4dae, = by—4a,6, = D,
S0 that
(2) (by+ be) (by—by) = bi— b3 = 0 (mod 4) .

Further, b, + b, = b, — b, (mod 2).
Now take any prime factor p of 2, and let ps be the highest power
of it, which divides 2. Then we must have

by— by = 0 (mod p*) .

For, if b,—b, =% 0 (modps), we should also have b;+b, =£0 (modps),
hence b;— b3 5~ 0 (modp®), in contradiction with (2). Since this is true
for each prime factor of 2, it follows that

(3) by—b, = 0 (mod2) .
By (8), since (a,, a,) = 1, there are &, & such that

by— b,

0,8 — Ay, = — )

Transforming f; by ((1) E;) and f, by (3 513) we get two forms
[y, by y,] and [ay, b, 7],
where b’ = 2a,£ + b, = 2a,5, +b, and y,, y, satisfy
b?—4dayy, = b2—4day, = D,
80 that a,y; = a,y,. Since (a,, a;) = 1, y, and y, have the form
ye= ¢,  ys= a0 .

Hence the transformed forms are of the required type.

The two forms f; in (1) are closely related to the form

(4) f=[aa,,b,c].
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This is shown by the follow{ng identity of Lagrange
(5) (@ @+ bry + a,ey?) (ax? + bax'y’ + a,cy’?) = a,a,X2+bXY +c¥Y?,
where
(6) X =ar'—cyy', Y =awy +ax'y+byy .
It is clear that f is again a primitive form with discriminant D. We agree
to call f the compound of f, and f,, and write

[ay, by asc]-[aq, b, arc] = [aa,, b, ¢] .

Clearly, if m,, m, are values of f,, f, respectively, then m,m, is a value of f.

LemmA 2. If (my,m,) =1 and m,, my, are represented properly by
f1s fo respectively, then mym, is represented properly by f.

Proof. Let the proper representations of m,, m, be given by

a@? + by + axcy® = my,  aw?+ba'y’ + a0y’ = m, .
Eliminating z', y" from (6) we get

(a2 + by + axey?) ' = (ax+by) X +cyY ,
(a2 + by + ascy?®)y’ = —a,yX +2Y .
So a common factor of X, ¥ would be contained in m,, because (', y') = 1.
Similarly, such a factor would be contained in m,. Hence X, Y are
relatively prime, whereas f(X, Y) = mm,.
The compound is only defined for forms of the special type (1). But

the main objective of composition theory is to compose classes, not forms.
We now proceed to prove

THEOREM 2. Let C,, C, be given classes of forms. Then for each pair
of forms fie C; (i =1,2) of the type (1) their compound f belongs to one
fized class C.

We call C the compound of C, and O, and write C = C,0,.
Proof of theorem 2. We consider any two pairs of forms

fi=1[61,h,94], fo=1[92h,q4d],

F, =[ay, b,a,x], F,=[ayb,ac],
such that

fisFi€Cy; o, Fae Cyy (g1, 92) = (a1, @) = 1.

We shall prove that then [g¢,¢,, b, d] and [a,a,, b, ¢] belong to the same
class.

Let
hz, y) = Fy(a@+ by, no+06y) ,  fol®@,y) = Folas + Boy , 2% + 6:9)
80 that a;6;— f1y; = a0,— sy, = 1. A simple calculation gives
hay = 238, + bay +2a5cyy,  hyy = 2616, — 2,0, — by, .
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From h?— 4¢,9,d = b>—4a,a,c = D it follows as in the proof of theorem 1
that
h—b=h+b=0(mod2).

Then hgb are elements of I, and we can write

h—b h-+b
9161 = b} 0= Yy s G101 = 5 N + ay0, -

Let &, 7n be the values of the expressions (6), where for z,y,a’,y" we
substitute a;, 1, as, 5. Then we have

h—b h—b
5 E—cn = 5 (aqas— €y ys) — €(@100Ys + Ax05; + byy V)

h—b h+b
= ( 5 A a20yl) a2—( 5 N + al‘h)‘})’z
= g1(Praz—¢dyys) -
For reasons of symmetry we also have

h—b
5 E—cn = gulafy— cyr0s) -

Theﬁ, gince (g, ¢.) =1,

—b
h—z—E——cn = 0 (mod ¢,9,) -

Similarly, one proves that

h+b
" ayaf = 0 (mod gyga)

So in I there are elements

=(h—b)£—2017 v___(h—l—b)n—l—ZalazE
2019, ’ 2419, )

Now (f) ": ) is a transformation with determinant 1 which transforms

{@a5, b, c] into [9,9,, b, d]. This is easily verified if only one observes
that, by (5),

@082+ bén + e = g1fs -
The theorem is now proved.

4. We discuss some properties of the composition of classes. First
we prove

THEOREM 3. The classes form a commutative growp, with the com-
position as group operation.
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Proof. It follows immediately from the definition that the compo-
sition of classes is commutative.

We now prove the associativity. Let C,, C,, C3 be three classes.
By theorem 1 and lemma 1 we can choose forms f;e C; (¢ =1,2,3) of
the following type

fr = [aq, b, axc], fo=l[as,b,0a,¢], f3=1[as,bs, 6],

where a,, a,, a; are all = 0 and any two of them are relatively prime.
Further b—b; is divisible by 2. Then there exist &, n ¢ I such that

_.ba
5 -

b
W8 — agn = —

1 af

Transforming f, by (0 1

\), f. by ((1) af), fs by ((1) ’17) we get three forms of

the following type:
(7) [a, by 011,  [ag, 0,035, [a, ', 5]

Since a,c; = a,c; = age; and any two of the a; are relatively prime, we
can write

01 = W3¢’ ,  Cy = A€, €3 = A& .
It is then clear that composing the three forms (7) we get the law
(0102)03 = 01(0203) .

Next, we note that the forms representing 1 constitute a single class E.

For [1,b,¢] is transformed into [1,b’,¢’] by the transformation (é f)

with £ = —(b—1")/2. If C is an arbitrary class, then in E, C we can choose
forms f,, f, of the type f, = [1, b, ac], f, = [a, b, ¢] (note that in theorem 1
we may require that a, is any element # 0 represented properly by f;).
Their compound is f,. Hence,

CE =C.

Finally, two forms [a, b, ¢] and [¢, b, a] have the compound [ac, b, 1].
Hence each class € has an inverse (-1
Another theorem on composition is given by

THEOREM 4. Let m % 0 be represented properly by some form f, such

that m and D are relatively prime. Let m = pi* ... p;" be a canonical decom-
position of m. Then there are forms vrepresenting properly any p;
(¢=1,2,..,7). Further, if Oy, ..., C. are the corresponding classes, then
each form representing m properly belongs to a class of the type

C = OF™... 0¥ .
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Proof. The first assertion follows from the observation that if
[mymy, b, ] is a primitive form with diseriminant D, then so is [my, b, m,c].
In order to prove the second assertion we distinguish first some special
cases.

Case I. m is a prime element p. Let us consider two forms with
first coefficient p, say

(pyq,71, [p,qH7].
Since both forms have discriminant D, we have

(g+4')(g—¢') = 0 (mod 4p) .
Hence

¢g+¢q =0(mod2p) or ¢g—¢ =0 (mod2p).

In the second case [p, q,r] is properly equivalent to [p,q’, '], in the
first case to [p, —¢’,7’] and so to [, ¢’, p]. We thus find that [p, q’, 7]
belongs to the same class as [p, ¢, r] or to its inverse.

Case II. m ts a power of a prime element, say m = p°. Then p does
not divide D. Let C, be a class containing some form [p, ¢, r]. We have
¢®*= D (modp), hence ¢ =0 (modp).

We first show that then the congruence

(8) pit+ gt +r = 0 (mod p*)
has a solution ¢ for all positive integers k.
For k¥ =1 the congruence reduces to gt++ = 0 (modp) and so is

solvable because of ¢ == 0 (modp). Suppose now that for some k there
is a solution f,. Taking ¢ = t,+ p*y we have

ptt+gt+r = pto+ gty -+ + p gy (mod p**) .

Clearly, we can choose ¥ so that the expression on the right is = 0 (mod p*+?).
Hence (8) is solvable for all %.

Now take a solution ¢ of (8), with k¥ = s— 1. The transformation ((1) lt)
transforms the-form [p, ¢, 7] into the form

p(@+ty)?2+q(z+ty)y +ry? = pa®+ (2pt + @) 2y + (pt+qt + 7)Y .

It follows that C, contains a form of the type [p, @, p>~1R]. Then the
class O§ contains the form

(9) [»,Q, ps—lR]s = [,ps’ @, R},
as follows from the formula
[p7 Qy ps—lR].[pi, Q, ps—-iR] = [pi+17 Q: psﬂi_lR] ('5 = 1’ 2’ LX) 3_1) .

Conversely, let us consider an arbitrary form [p*, Q', R']. According
to (9) it can be obtained from the form [p, @', ps~'R’']; by what we have
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proved above, this last form belongs to €, or C;'. It follows that any
form [p°, Q", R'] belongs to one of the classes C;°.

General case. m arbitrary. Let m = pi*... p,” and let f; e C; be
a form representing p; (¢ = 1, 2, ..., r). Then, by case II, there are forms
F; ¢ C7 representing properly p§ (¢ =1,2,...,7). Then it follows from
lemma 2 that there is a form in Cf ... C7 representing m properly. The
same is true, of course, for each other class of the type CE®™ ... CE™.

Conversely, consider any form [m,Q, R]. We have

[m,Q, R] = [pl,Q,—ll Hsl,@,pl ]

= ]"] [m ,Q,—R] ]J [pi,Q,;%R]s‘.

i=1
It follows that [m, Q, R] belongs to one of the classes CE®™ ... CE*. This
completes the proof of the theorem.

5. Finally, we deal with ambiguous classes. A clagss C is called
ambiguous, if it contains an ambiguous form. Then each form in C 18
ambiguous. Further, if f = [a, b, ¢] is a form in C, then also each form
which is improperly equivalent to f,e.g. the form [¢, b, a]. It follows that
the ambiguous classes C are characterized by the relation

C=C1.

Another characterization is given by

THEOREM 5. Suppose that D # 0. Then the ambiguous classes are

those containing a form of the type [a, ap, c]. Here o -can be taken in a given
residue system mod 2.

Proof. Let C be an ambiguous class. Let f = [a, b, ¢] be any form
in C and let 4 denote the matrix (Zab 2’;), so that det A # 0. Further,

let T be a transformation with determinant —1 leaving f invariant. Then
we have (the symbol * denoting the passage to the transposed matrix)

{10) T*AT =A, detT =—1.

We first deduce from (10) that spT = 0. In fact, if B is the adjomt
matrix of A4, then (°) (detA)-T = BAT = BT*-14, hence

det A -spT = sp(BIT*14) = sp(ABT*-') = det A -sp T**,
and so
spT = sp T*-1,

(®) We can take the inverse of T*, as detT is a unit.



Unpublished results on number theory 11 17

since det A = 0. One easily deduces from det 7' = —1, that sp T*-1 = —sp 7.
So one finds spT = 0.
Next, we prove the existence of a matrix S such that

(11) detS =1, S-lTS=((1) _f) (oel).

Qince det T = —1 and sp1 = 0, the characteristic equation of T reads
£2-1=0, and so T has two eigenvalues +1. Then there is an eigen-

vector X = (:;) with TX = X and (a, ) = 1. Further, there are elements
y,8 with ad—py = 1. Then, since detT = —1, the matrix §— (; g)
satisfies (11).

Now S transforms f into a form g which is invariant under the trans-
formation ST'S = ((1) _i’). One easily finds that then g is of the type
[a, ag, c]. Conversely, a form of this type is invariant under the trans-
formation ((1) _?). This proves the first assertion. The second assertion
now follows from the fact that two forms [a, ag, ¢], [a, ap’, ¢'] are equi-
valent if ¢ = o’ (mod2).
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