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COMMmATIVE POLYNOMIAL SEMIGROUPS (!,I A SEGMENT 

P.C. BAA.YD and Z'. HEDRL:fN' Amsterdam,Praha 

1. Introduction 

A commutative semigroup of mappings of a set X is a 

f'amily of mappings X~ X which is a commutative semigroup 

under composition of functions. A commutative polynomial semi

group o1' mappings o1' a subset X 01' the real line R (short

ly: an X-cps) is a commutative semigroup o1' mappings X• X, 

all elements of which are restrictions to X o1' Creal) poly

nomials on R • Such a semigroup S is called maximal 11' e

very continuous map g : X-"1- X which commutes \'ti. th all f £ S 

itself belongs to S , and entire if it contains (restrictions 

to X o:1') po13Ilomial.s of every non-negative degree. 

If s1 is a semigroup of continuous mapa Xi~ Xi (i = 
= l,?), and if' '1:' is a homeomorphism of :x:1 onto ~ such 

that s2 = { "t' o 1' o -i:--11 f' e: s1} , then s1 and 52 are call

e(l equivalent (by mems of ~ ) • In that ease the tra:isformation 

f • -r e f o 't' -l is an isomorphism o1' the abstract semigroup 

s1 onto the abstract semigroup s2 • 

In this note we determine, up to equiv'a;l.ence, all entire 

I-cps, where I is the closed unit segment [ o, l] • Moreover, 

we establish which of these I-cps -are maximal and which not. 

We denote by J the segment [ -1, 1 J • 
2. Commutative pol:ynomial semigroupe of mappings R~ R 

,!!tg_J.....,,J. 

It follGWl!I from results of J.F. Ritt. [7, SJ and of H.D. 
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Block and H.P. Thielman [5 J that evecy entire R-cps is equi

valent by means of a linear transformation to one of the fol

lowing three semigroups of polynomials: 

(i) the semigroup P , consisting of the maps 

P0 , Pi, P2 , with 

P (x) "'xn n 
(ii) the semigroup P* , consisting of all Pn, n iP' l 

,t< 
~ d the map PO such that 

P0 (x) = 0 for ell x; 

(iii) the semigroup T of all Chebyshe~ polynomials 

T0 , T1 , T2, ••• 1 where 

2 Tn (x) "' cos (n. arc cos x) • 

The first two semigroups are not maximal; e.g. consider ;!. 
Lemma l. There exists a unique maximal commutative semigroup 

P (P"') of continuous maps J~J containing PIJ (~IJ, res

pectively). The semigroup P (?) consists of the following 

maps: all maps x • lx IE, e> O a real number; all maps x.-;>fxlE • 

• sign x ,€::,, 0 a real number; and all maps in P (in P *, res

pectively). 

~. It is immediately verified that P and P,tc. are commu

tative semigroups. In ord~r to she,;,, their maximality, and the 

fact that they are the only maximal semigroups containing P 
or P*, we proceed as follows. 

Let f be any continuous map R • R commuting with al.l. 

maps in P or in P :I' , Talce ar-3 a with O < a < l and 1et 

f(a) = °" • As at.. "' P2f'( Ya), «-- ;;.. O if a:.,= O , it follows that 

f(a1') = c,;,r = O for all rational r , because f o Pn = Pn o f 

for aJ. l natural n • Hence f(x) = O f'or x ~ O ; :1..f x 6 O , 

P2f(x) = f(x2 } = O implies again f(x) = O. Thus f is iden

ticall:v zero. 
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Assume oe > O 111d let e ,; R with a~ ,. oc • Then 

as f and P11, c01111111te, f(ar) • arf. far all rational r ; hen

ce :f(x) = x• for x ,ill O • rt z < 0 , then P2:f(x) • :fP2(x)= 

• cx2>' , hence :f(x) • t1xl'. Aa :r is continuous, the J.em-

ma followa. 

!rhe situation is ditterent for the semigroup T : this semi

group is maxl.mal. In order to show this, we consider the :1."oliow

~ mappinge of the unit interval I into iteel:l." 1 first intro

duced in. [2]: 

t 0 (:x} = 0 for all x 

!llld, if n ~ 1 : 

{ 
t (--5.L) a 0 

:a n 

tn I [ ~ , ~l J 1s linear 

(k • 0,1,2, ••• ,[fJ> 

(k • 0 11,2, •••• n-1). 

These so-called mul.tihsts are easily seen to constitute a commu

tative semi.group lll ; in :f'ect, tn o ta• tn+Jll • In [2] P.Co 

Baayen, 'I. ICuyk 111.t" M.A. Mairice proved much more: the send.group 

t1f a_l.l tn , n • 0 11,2, ... , is a mpjmal COllllmt~ive semi

group or continuous •pe, I • I • 

Lemma g. The sem1group 11.. is equivalent to the semigroup r' 
or al. l Chebyshev polynomials Tn, i-eatdcted to the segment .:r, · 
by means or the homeQlllorphism "t" : • [ o,1J • [-1, J.l euch that. 

1:"X = COS ,rx • 

Pro01": imme4iate. 

Bence we have aho-,n: 

Lemma J• The. J-cpa T is l!lmimal. 

Thitf atrengthena considerably a result of o. Baxter and J.T. 

Joichi [ J] , . Who showed that T cannot be embedded in a l-para

meter semigroup or collllllUtin& :functions. 

- 175 -



we conclude this section with a triviality. 

Lemma 4. Let Q1 , '¾ be polynomials commuting on some non-de

generate segment. Then Q1 and .'¾. comniute everywhere on R. 
J. Commutative polynomial semigroups of mappinp;s I • I 

It follows from the results 0£ section 2 that every entire 

I-cps is equivalent by means of ll linear transformation to a 

semigroup SIA , mere S is one 0£ the R-cps T, P, P* 

and A is a closed segment [ a, b J ,, a < b , that is invari

ant under S • 

The only non-degenerate segment mapped into itself by f 

is [ -1, +l) • The only non-trivial segments mapped into thelll

selves by P are the segments [ -a, l] , with O~a ~ l ; 

we write P(a) for the [ -a, l] -cps of all Pn I (-a, l] , 

n: 011,2, •••• The only non-t%iv1al segments invariant under 

p>I' are the segments [ -a, b] , with O ~ a "l , a2 -.: b "1, 

b=p, 0; vie write P* (a, 'b) for the [ -a, b]-cps of all 

Pn I (-a, b] , n ~ l together with Pi I (-a, b]. 

Lemma 5. Each of the semigroups P(a), 0 ~ a llt l , is not ma

ximal, and is contained 1n a unique maximal [ -a, l] -semigroup 

P(a} • Similarly each P)lr. (a, b) is contained in a unique max

imal [ -a, b] -semigroup P* (a, b) • 

~- In the same way as in the proof of Lemma l one shows 

that PCa1 = P ii [ -a, ll is the unique maximal com.mutative se

migroup of continuous maps [ -a, l] • [_-a, l] containing 

P(a) • Similarly p;if. (a,. b) = P-. 11(-a, b] • 

Remark: If S is a semigroup of mappings of a set X into it

self, and if A c: X , then S II A denotes the semigroups of map

pings of A into itself, consisting of all mappings f'IA such 

that f e S and f(A}c;A (cf,[6]). 
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Theorem l. There are two maximal entire I-cps; they are both 

equivalent to T~ (or to M ). 

Proof. Every maximal entire I-cps must be equivalent by mean~ 

of a linear map. to T'= TI (-1, •lJ. There exist two linear 

maps of ( -1, +l] onto I= [o, 1] • 

Lellllll8 6. If O < a, b <l, then P(a) and P(b} are equiva

lent by means of the homeomorphism '1:', 

1:' (x)::r. signx. /x 1£ , 
where £=log b • 

log a 

Lemma 7, Let o-. ai ~ l, 

The semigroups p,t< (a1 , b1 } 

af 4' bi ~ l , bi :p O ( i = 1,2 ) • 

and P""'(¾, t>z) are equivalent 

if and only if 
£ 

there exists a real number ~ -+- 0 such that 

a2 "" al , ~ 
£ 

= bl • 

Proof. Suppose P* (al' b1 ) and P*(a2 , b2) are equivalent 

by means of 1:" • Then we have, for arbitrary x e: [ -a1 , b1 J 

ad for arbitrary integers n ;;,. l I that Pn(x) = (1:-10 Pn oz-) 

(x) ; i,e, ( 't' o Pn) (x) = (Pn o 1:'}(x) • It fol.lows (cf. le111ma 

l ) that either -r is of the form: '?' (x) =/xlE., 'for all 

x ~ ( -a1 , b1 l , where £ is some real number - as 't'" is a 

homeomorphism thie is only possible if a1 = 0 - or "t" is of 
£ 

the form: 't' (x) =/xi • sign x. As clearly we must have: 

't' (8:1.) • a2 , 't' (b1 ) = °2 , the assertion follows. 

The next lemma is e as il.y pro ve<I: 

Lemma a. No semigrollp P(a) is equivalent to a semigroup 

P* (b, c) • 

Consequently we have: 

Theorem 2, There are infinitely many non-equivasnt non-maximal 

entire I-cps, Each of them is equival.ent to one of the follow

ing semigroups, which are all mutually inequivabnt: P(O) , 
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p(~), P(l); p#(a, l), 0• a '1r l; 

Theorem 3. Every entire I-cps is contained in a unique maxi.

mal commutative semigroup of continuous maps I • I • Two en

tire I-cps are equivalent if and only if the maximal coll!lllllta

tive semigroups in which they are contained are equivalent. 

4. Remark on mappings commuting w1 th Tn .21:... Pn, n ~ 2 • 

It was shown by P.c. Baayen and w. K:uyk 1mi flJ that every 

open map of I :Lnto itself that commutes :'4th t 2 is itself a 

multihat tn • From this it :f!ollows almost at once that every 

continuous map commuting w1 th tz 18 either a tn or is e,.. 

very-where oscillating (nowhere monotone}. 

This result has been improved very much by G. Baxter 811d 

J.T. Joichi (4], who showed the following theonm 

If a continuous map f : I • I commutes with some multi

hat tn , n ~ 2 , it is itself either a hat-function or a con

stant map. 

Now we saw in section 2 that the semigroup ll of all hat& tn 

is equivalent to the semigroup T' of all Chebyshev polynomials 

on [ -l, +-1] • 

Hence we conclude: 

Theorem 4. Every non-constant contin:ious map of ( .:..1, +.-lJ in

to itself that commutes v.d. th a Chebyshev polynomial Tn With 

n •. 2 , is itself a Chebyshev polynomial. 

For the maps l'n, n > 2 , the situation is completely 

different. Consider e.g. continuous mape c0t' [ o, l] into it

self which commte with P2 on that interval. 

There exist .w1.titudea of such f'unctiona. For let O < a < 1, 

itnd let f 0 be .f!lllY continuous tunction of (a2 • al into 

(o, l) .such that [t'o (a)l2 -. t"o ca2> • :tt we define: 
-n 2n n+l "n 

:t'(o) =t O , f(l). ""1 , :f'(x) ~ (f0 (:,;:2 )] if x t:[8 2 ,a2] 
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(n integer), i' will be a continuous map I • I commuting 

with P2 o 
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