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Commentétionea Mathematicee Universitatis Carolinae
4, 4 (1963)

COMMUTATIVE POLYNOMIAL SEMIGROUFS ON X SEGMENT

- P.C. BAAYEW and Z. HEDRLIN, Amsterdam,Prsha

1. Introduction

A commitative semigroup of mappings of a set X 1is a
family of mappings X ~—> X which is a commutative semigroup
under composition of functions. A commtative polynomial ‘semi-
group of mappings of & subset X of the real line R (short=-
ly: an X-cps) 1s a commtative semigroup of mappings X—X,
all elements of which are restrictions to X of (real) poly=-
nomials on R . Such a semigroup S is éalled maximal if e- '
very continuous map g : X—>X which commites with all fe S
itself belongs to S , and entire if it contains (restrictions
to X of) polynomials of every non-negative degree.

If S; 1s & semigroup of continuous 'mapa Xy —> Xy (i=
= 1,2), and if T 1is a homeomorphism of X, onto X, such
that S, = {7v of orlifre S;} 4 then s; and §, are call-
ed equivelent (by mems of = ). In that case the trensformation
fa>ro0for 1 isan isomorphism of the abstract semigroup
Sq onto the abstract semigroup Sz o

In this note we determine, up to equiv‘aience, all entire
I-cps, where I is the closed unit segment [0, 1] . Moreover,
we establish which of these I-cps -are maximal and which not,
We denote by & the segment [ -1, 1] .

2. Commutative polynomisl semigroups of meppings R—>R

@md J—J .
It follows from results of J.F, Ritt [7, 8] and of H.D.
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Block and H.P. Thielman [5] that every entire R-cps is equi-
valent by means of a linear transformation to one of the fol-
lowing three semigroups of polynomials:
(i) the semigroup P , consisting of the maps
Pgs Pys Py -0 With
Pn(x) = x% ;
(i1) the semigroup P¥* , consisting of 211 P;, n >1
and the map P:‘ such that
Po(x) =0 for all x ;
(iii) the semigroup T of ell Chebyshev polynomials
To’ Tl’ ’.['2, ess 3 Where

T,(x) = cos (n. arc cos x) . >

The first two semigroups are not maximal; e.g. consider x3.
Lemma 1. There exists a unique maximal commutative semigroup

P (P¥) of continuous maps J—>J containing PIJ (P¥/J , res—
pectively). The semigroup P (P™) consists of the following
maps: all maps x—>lx ls, € > ) ® real number; all maps x—>lx|£-
. sign x ,e> 0 & real number; and all maps in P (in P *, res-
pectively).

Proaf. It is immeﬁiately verified that P and P¥* are comm-

tative semigroups. In ord-r to show their meximality, and the
fact that they are the only meximal semigroups containing P

or P¥, we proceed as follows.

Let £ ©bve any continuous map R >R commuting with all
maps in P or in P¥* | Take ary a with O< a <1 and let
f(a) = & , As & = P,f(Va), « > 0if &£ =0, it follows that
£(e") =« = 0 for all rationsl r , because £ o P,=P,o0f
for all nstural n . Hence f(x) =0 for x 20 ; if x <0 ,

P,£(x) = £(x*) = 0 implies agein £(x) =0 . Thus f is iden-
tically zero.
- 174 -



Assume ot > 0 end let € € R with aé = o . Then
as £ and P, commte, f(a*) = a™€ for all rational r ; hen-
ce £(x) =x%f for x20.If x<O0, then Pyf(x) = £P,(x)=
= ()% , hence £(x) = 2xI€ . as £ is continuous, the lem—
ma follows. ’ ‘ o

The situation is different for the semigroup T : this semi-
group is meximal. In order to show this, we consider the follow-
ing mappings of the unit interval I into itself, first intro-
duced :I.ni[Z]: ‘

‘ to(x) =0 for all x ;
md, if n>1 : '

£ gk y=o0, tn(zn_kﬂ)_) =1 (x= 0,1,2,..'.,[§J) ;

t, | [£, 8] s lineer (x=0,1,2, ..., -1) .
These so-called multihats are essily seen to constitute a commu-
tative semigroup M ; in fect, t, oty =t . . In [2] P.Co
Baayen, W. Kuyk snd M.A. Mauarice proved much more: the semigroup
of al11 t, , n=0,1,2, ..., is & meximal commutative semi-
group of continuocus méps I—>1 . ) _
Lemma 2. The semigroup M is equivalent to the semigroup T’ )
of &l Chebyshev polynomials T,, restricted to the segment J,
by means of the homeomorphism <t : [0,1] —» [=1, 1] such that

‘ TX =¢08 JIX .
Proof: immediate.

N M
Hence we have shown:

Lemms 3. The J-cps T is maximal.

This strengthens considerably e result of G. Baxter and J.T.
Joichi [3], Who showed that T cannot be embedded in & l-para-
~ meter semigroup of commuting functions.
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We conclude this section with a triviality.
Lemma 4. Let Q, Q be polynomials commuting on some non-de-
generate segment. Then Ql and Qz ~commute everywhere on R ,
3. Commutative polynomisl semigroups of mappin I—>I
It follows from the results of section 2 that every entire

I-cps is equivalent by mesns of ® linear transformation to a

semigrou;p SIA , vhere S is one of the R-cps T, P, P*
and A is a closed segment [a, b], & < Db, that is invari-
ant under S .

The only non-degenerate segment mapped into itself by T
is [~1, +1] . The only non-trivial segments mapped into them-
selves by P are the segments [ -a, 1] , with O€a €1 ;
we write P(a) for the [=-a, 1] -cps of all P |[-a, 1],
n =0,1,2, ... « The only non-trivial segments invariant under
P* are the segments [ -a, bl , with 0€a €1 , 2 b €1,
b# 0 ; we write P* (a, D) for the [ -a, b]=cps of all
P, l(-a, b]J, =n 21 together with PJ I[=-a, bl.

Lemma 5. Each of the semigroups P(a), O € a&€ 1 , is not mae-
ximal, and is contained in a unique maximal [-a, 1] -semigroup
P(a) . Similarly each P*(a, b) is contained in a unique mex-
imal [ -a, b] ~semigroup P¥(a, b) .

Proof. In the seme way as in the proof of Lemma 1 one shows

that P(a) =Pl [-a, 1] is the unique maximal commutative se-
migroup of continuous maps [ -a, 1] —» [ -a, 1] containing
P(a) . Similarly P* (a, b) = P*([-a, b] .

Remark: If S is a semigroup of mappings of a set X 1nto‘ it-
self, and if A c X , then SIA denotes the semigroups of map=-
pings of A into itself, consisting of all mappings flA such
that fe S and f(A)cA (cf£.[6]).
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Theorem l. There are two maximal entire I-cps; they are both
equivalent to T° (or to M ).

Proof. Every maximal entire I-cps must be equivalent by means
of a linear map to T'= T |[-1, #+1] . There exist two linpear
maps of [ -1, +1] onto I = [0, 1].

Lemma 6, If O< @, b<1l, then P(a) and P(b) are equiva=
lent by means of the homeomorphism =~ ,

T (x)= signx. Ix 1 .

where e = A‘QB—E
log &

Lemma 7. Let O<a, <1, afgb, €1, bj+0 (1=1,2).
The semigroups P* (al, bl) and P*(az, bé) ere equivalent
if and only if there exists a resl number € # 0 such that
a, = a]E_ y b = bf .
Proof. Suppose P¥ (89, b)) eand P*(ay, b,) ere equivalent
by means of ‘T . Then we have, for arbitrary x €[ -8y, le
md for arbitrary integers n > 1, that P (x) = (T™lo B o0z)
(x) ; i.e. (T 0o PBy) (x) = (P, 0oT)(x) . It follows (cf. lemma
1) that either ¥ is of the form: = (x) =|xI%, for all
x €[ -a, le , Where £ 1is some real number - as 7~ is a
homeomorphism 'thia is only possible if a; =0 - or 7 is of
the form: 7 (x) =‘lxl£ . sign x . As clearly we must have:
'r:(al) =a, , ’t'(bl) = b, , the assertion follows.

The next lemma is easily pro ved:
Lemma 8. No semigroup P(a) is equivalent to & semigroup
P¥ (b, ¢) .
Consequently we have:
Theorem 2. There are infinitely many non-equiveknt non-maximal
entire I.cps. Fach of them is equivalent to one of the follow-

ing semigroups, which are all mutually inequivaknt: P(0) .
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P@) , P(1) ; P¥(a, 1), 0€a€l; P¥(a, %) , ocagl .
Theorem 3. Every entire I-cps is contained in s pnique maxi=-
mal commutetive semigroup of continuous meps I—>I . Two en=
tire I-cps are equivalent if snd only if th; maximal commuta~
tive semigroups in which they are contained are equivalent.

4. Remark on mappings commiting with T, or Py, n 32 .

It was shown by P.C. Baayen and W. Kuyk im [1] that every
open map of I dinto itself that commutes _with t, is itself a
multihat tn » From this it follows slmost at once that every
continuous mep commuting with ts is either a t, or is e~
verywhere oscillating (nowhere monotone).

This result has been improved very much by G. Baxter amd
J.T. Joichi [4], who showed the following theorem '

If & continuous mep £ : I—>I commtes with some multi~
hat t, , n 22, it is itself either a hat-function or a con-
stant map.

Now we sew in section 2 that the semigroup M of all hats tn
is equivalent to the semigroup T’ of all Chebyshev polynomials
on [=-1, +1].

Hence we conclude:

Theorem 4. Every non-constant céntingous mep of [ -1, 1] in-
to itself that commutes with & Chebyshev polynomial Tn with
n > 2 , is itself a Chebyshev polynomial.

For the maps ‘Pnb, n > 2 , the situation is completely
different. Consider e.g. continuous maps of [0, 1] into it~
self which commute with P, on that interval.

There exist multitudes of such functions. For let O<a <1,
and let £, be any continuous function of (s2, a] into
(0, 1) such that [£, (a)]% = £, (s?) . I we define:

£(o) =0, £(1) =1, f£(x) = [rocxz-n)J 2" 4 & e[azml,aenl
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(n integer), f will be a continuous mep I->I commuting
with P2 °

(1]

(2]

(3]

[4]

(5]

(el

(7]

(8]
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