STICHTING

MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49

AMSTERDAM

AFDELIIVG ZUIVERE WISKUNDE

ZW 1952-016

On certain representations of positive integers.

H.J.A. Duparc and W. Peremans

On certain representations of positive integers

by
H.J.A. Duparc and W. Peremans.

In this paper we investigate some properties of positive integers n, which are representable in the form $n=u x+v y$, where u and v are two positive and relatively prime integers, and x and y are non-negative integers; these integers are called representable or representable by u and v.

Without loss of generality we may suppose $u<v$.
The following properties are well known. (Confer the appendix.)
All integers $\geqq(u-1)(v-1)$ are representable by u and v. The integer $N=u v-u-v$ cannot be represented by u and v. If an integer n with $0 \leqq n \leqq N$ is representable, then $N-n$ is not, and conversely. Hence there are $\frac{1}{2}(u-1)(v-1)$ non-negative integers which cannot be represented by u and v.

In what follows P denotes the set of integers which are representable by u and v and which are $\leqq N$; Q denotes the set of non-negative integers which are not representable by u and v. Then $P \vee Q$ is the set $0,1, \ldots, N$. Further U denotes the set $1, \ldots, u-1$ and V denotes the set $1, \ldots, v-1$.

In order to deduce properties of the elements of P and Q we define for any c and any set \mathbb{M} the set $\mathbb{M}+c$ as the set of all elements $m+c$ where $m \in \mathbb{M}$; further we define the set $c \mathbb{M}$ as the set of all elements cm where $m \in \mathbb{M}$. Finally we shall denote the sum of the k th powers of the elements of a set M by M^{k}.

We now prove two lemma's.
Lemma 1. If $q \in Q$ and $q \notin Q+u$, we have $q \in U$, and conversely. Proof. Since $q \notin Q+u$, either $q-u$ is representable or $q-u<0$. If $q-u$ is representable, so is q, which contradicts $q \in Q$. Hence $q<u$. From $q \in Q$ follows $q>0$, so $0<q<u$ i.e. $q \in U$.

Conversely if $q \in U$, the positive integer q is not representable so $q \in Q$. Further $q-u<0$, so $q-u \notin Q$, hence $q \notin Q+u$. Lemma 2. If $q \in Q+u$ and $q \notin Q$, we have $q \in v U$, and conversely. Proof. Since $q \in Q+u$ we have $q>0$ and since $q \notin Q$ two non-negative integers x and y exist with $q=u x+v y$. Further from $q \in Q+u$ follows $q-u \in Q$: so $q-u=u(x-1)+v y$ is not representable. Now $y \geqq 0$, so $x-1<0$, hence $x=0$ and $q=v y$. Finally from $q \in Q+u$ follows $0<q-u \leqq u v-u-v$, so $u<v y(u-1) v$. Thus $0<y \leqq u-1$ and $q \in v U$.

Conversely since $q \in v U$ obviously $q \notin Q$ and further $q=$ vy with $0<y \leqq u-1$. The positive integer $q-u$ is not representable for otherwise non-negative integers x^{\prime} and y^{\prime} would exist with $q-u=v y-u=u x^{\prime}+v y^{\prime}$, hence $v\left(y-y^{\prime}\right)=u\left(x^{\prime}+1\right)$. Herefrom follows $u \mid y-y^{\prime}$ which is impossible since $0<y-y^{\prime} \leqq y \leqq u-1$. Hence $q \in Q+u$.

From lemma 1 and 2 follows the relation

$$
\begin{equation*}
Q \cup(v U)=(Q+u) \cup U . \tag{1}
\end{equation*}
$$

We now rrove also the relation

$$
\begin{equation*}
Q \vee(u V)=(Q+v) \smile V . \tag{2}
\end{equation*}
$$

We therefore deduce two more lemma's.
Lemma 3. If $q \in Q$ and $q \notin Q+v$, we have $q \in V$ and $u \nmid q$, and conversely. Proof. Since $q \notin Q+v$, either $q-v$ is representable or $q-v<0$. If $q-v$ is representable, so is q, which contradicts $q \in Q$. Hence $q<v$. From $q \in Q$ follows $q>0$, so $0<q<v i . e . q \in V$. Further since $q \in Q$ we have $u \notin q$.

Conversely if $q \in V$ and $u \nmid q$ the integer q is not representable so $q \in Q$. Further $q-v<0$, so $q-v \notin Q$, hence $q \notin Q+v$.
Lemma 4. If $q \in Q+v$ and $q \notin Q$, we have $q \in u W$, where W denotes the set $\left[\frac{v}{u}\right]+1, \ldots, v-1$, and conversely.
Proof. Since $q \in Q+v_{\text {with }}$ whe have $q>0$ and since $q \notin Q$, two non-negative integers x and y exist $\stackrel{\text { with }}{q}=u x+v y$. Further from $q \in Q+v$ follows $q-v \in Q$ so $q-v=u x+y(y-1)$ is not representable. Now $x \geqq 0$, so $y-1<0$, hence $y=0$ and $q=u x$. Finally from $q \in Q+v$ follows $0<q-v \leqq u v-u-v$, so $v<u x \leqq(v-1) u$. Thus $\left[\frac{v}{u}\right]+1 \leqq x \leqq v-1$ and $q \in u W$.

Conversely since $q \in u W$ obviously $q \notin Q$ and further $q=u x$ with $\left[\frac{v}{u}\right]+1 \leqq x \leqq v-1$. The positive integer $q-v$ is not representable for otherwise non-negative integers x^{\prime} and y^{\prime} would exist with $q-v=u x-v=u x^{\prime}+v y^{\prime}$, hence $u\left(x-x^{\prime}\right)=v\left(y^{\prime}+1\right)$. Herefrom follows $v \mid x-x^{\prime}$ which is impossible since $0<x-x^{\prime} \leqq x \leqq v-1$. Hence $q \notin Q+v$.

From lemma 3 and 4 follows

$$
\begin{equation*}
Q \cup(u W)=(Q+v) \cup z, \tag{3}
\end{equation*}
$$

where Z denotes the set of all elements of V which are not divisible by u. If in (3) we add on both sides the set with elements $u, 2 u, \ldots,\left[\frac{v}{u}\right] u$, we obtain the relation (2).

We now deduce a formula for Q^{k} for non-negative integers k. First we mention a few properties of the polynomials $B_{h}(x)$ of Bernoulli which enable us to calculate the U^{k}.

From

$$
u^{k}+U^{k}=(U+1)^{k}+1=\sum_{h=0}^{k}\left(\begin{array}{l}
k \\
h
\end{array} U^{h}+1\right.
$$

follows

$$
\begin{equation*}
\sum_{h=0}^{k-1}\left(\frac{k}{h}\right) U^{h}=u^{k}-1 \tag{4}
\end{equation*}
$$

On the other hand we have

$$
B_{k+1}(x)-B_{k+1}(x-1)=(k+1)(x-1)^{k}
$$

so

$$
U^{k}=\frac{1}{k+1}\left(B_{k+1}(u)-B_{k+1}(1)\right)
$$

hence, using the formula

$$
\begin{equation*}
B_{k+1}(x)=\sum_{h=0}^{k+1}\binom{k+1}{h} x^{h} B_{k+1-h} \tag{5}
\end{equation*}
$$

we get

$$
\begin{equation*}
U^{k}=\frac{1}{k+1} \sum_{h=1}^{k+1}\binom{k+1}{h}\left(u^{h}-1\right) B_{k+1-h}=\frac{1}{k+1} \sum_{t=0}^{k}\binom{k+1}{t+1}\left(u^{t+1}-1\right) B_{k-t} \tag{6}
\end{equation*}
$$

We can interpret our result as follows. From the equation (4) taken for $k=1, \ldots, K$, which equation is linear in the unknowns U^{0}, \ldots, U^{K-1} these unknowns can be found and obviously are a linear compositum of the right hand members $u-1, u^{2}-1, \ldots, u^{K}-1$ of the equations (4). These values of the unknowns are given by (6)。

These results are used now to determine Q_{k}. Taking the sum of the $k^{\text {th }}$ powers of all elements in both sides of the formula (1) we get, since $Q \cap(u V)=(Q+u) \cap U$ is empty, the relation

$$
Q^{k}+v^{k_{U} U^{k}}=(Q+u)^{k}+U^{k}
$$

hence

$$
\begin{aligned}
& \sum_{h=0}^{k-1}\binom{k}{h} u^{k-h} Q^{h}=\left(v^{k}-1\right) U^{k} \\
& \sum_{h=0}^{k-1}\binom{k}{h} \frac{Q^{h}}{u^{h}}=\frac{v^{k}-1}{u^{k}} U^{k}
\end{aligned}
$$

Now if in the equations (4) we replace the unknowns U^{h} by $\frac{Q^{h}}{u^{h}}$ and the right hand sides $u^{k}-1$ by $\frac{v^{k}-1}{u^{K}} U^{k}$, we obtain the equations (7). Hence by the above remark the values of $\frac{Q^{h}}{u^{h}}$ must be found from (6) by the same substitution i.e.

$$
\frac{Q^{k}}{u^{k}}=\frac{1}{k+1} \sum_{t=0}^{k}\binom{k+1}{t+1} \frac{v^{t+1}-1}{u^{t+1}} U^{t+1} B_{k-t}
$$

and substituting in this last result for U^{t+1} its value given by (6) we get

$$
\begin{equation*}
Q^{k}=\frac{1}{k+1} \sum_{t=0}^{k}\binom{k+1}{t+1}\left(v^{t+1}-1\right) u^{k-t-1} B_{k-t} \frac{1}{t+2} \sum_{s=0}^{t+1}\binom{t+2}{s+1}\left(u^{s+1}-1\right) B_{t+1-s} . \tag{8}
\end{equation*}
$$

To reduce the last member of (8) we first calculate the expression

$$
\begin{equation*}
\frac{1}{k+1} \sum_{t=0}^{k}\binom{k+1}{t+1}\left(v^{t+1}-1\right) u^{k-t-1} B_{k-t} \frac{1}{t+2} \sum_{s=0}^{t+1}\binom{t+2}{s+1} B_{t+1-s} \tag{9}
\end{equation*}
$$

Now we have from (5) with $\mathrm{x}=1$
so $\quad \sum_{h=0}^{t+2}\binom{t+2}{h} B_{t+2-h}=B_{t+2}(1)$,

$$
\sum_{h=1}^{t+2}\binom{t+2}{h} B_{t+2-h}=B_{t+2}(1)-B_{t+2}(0)=(t+2) B_{t+1}^{(0)}(0)=0
$$

since $t+1 \geqq 1$. Thus the expression $\sum_{s=0}^{t+1}\binom{t+2}{s+1} B_{t+1-s}$ vanishes and so does (9). Hence (8) reduces to

$$
\begin{aligned}
& Q^{k}=\frac{1}{k+1} \sum_{t=0}^{k}\binom{k+1}{t+1}\left(v^{t+1}-1\right) u^{k-t-1} B_{k-t} \frac{1}{t+2} \sum_{s=0}^{t+1}\binom{t+2}{s+1} u^{s+1} B_{t+1-s}= \\
& =\frac{1}{k+t} \sum_{t=-1}^{k} \sum_{s=0}^{t+1}\binom{k+1}{t+1}\binom{t+2}{s+1} \frac{1}{t+2}\left(v^{t+1}-1\right) u^{k+s-t} B_{k-t} B_{t+1-s},
\end{aligned}
$$

where in the first sum the term with $t=-1$ which vanishes, has been added. Putting $k-t=i, t+1-s=j$ we get

$$
\begin{equation*}
Q^{k}=\frac{1}{k+1} \sum_{i=0}^{k+1} \sum_{j=0}^{k+1-i}\binom{k+1}{i}\binom{k-i+2}{j} \frac{B_{i} B_{j}}{k-i+2}\left(v^{k-i+1}-1\right) u^{k-j+1}= \tag{10}
\end{equation*}
$$

$$
\sum_{\substack{i, j \geqq 0 \\ i+j \leqq k+1}} \frac{k!B_{i} B_{j}}{i!j!(k+2-i-j)!} v^{k-i+1} u^{k-j+1}-c
$$

where

$$
\begin{aligned}
& C=\sum_{\substack{i, j \geqslant 0 \\
i+j \leqq}} \frac{k!B_{i} B_{j}}{i!j!(k+2-i-j)!} u^{k-j+1}= \\
& =k!\sum_{\substack{k=0}}^{k+1} \frac{B_{j} u^{k-j+1}}{j!} \sum_{i=0}^{k+1-j} \frac{B_{i}}{i!(k+2-i-j)!}= \\
& =k!\sum_{j=0}^{k+1} \frac{B_{j} u^{k-j+1}}{j!} \frac{B_{k+2-j}(1)-B_{k+2-j}}{(k+2-j)!} .
\end{aligned}
$$

Here we used (5) with $x=1$ and $k+2-j$ instead of $k+1$.
Now for $k+2-j>1$ we have $B_{k+2-j}(1)=B_{k+2-j}$ and for $k+2-j=1$ we have $B_{k+2-j}(1)=B_{k+2-j}+1$. So we find

$$
c=k!\frac{B_{k+1}}{(k+1)!}=\frac{B_{k+1}}{k+1}
$$

and then from (10)

$$
Q^{k}=\sum_{\substack{i, j \geqq 0 \\ i+j \leqq k+1}} \frac{k!B_{i} B_{j}}{i!j!(k+2-i-j)!} v^{k-i+1} u^{k-j+1}-\frac{B_{k+1}}{k+1}
$$

This result may symbolically be written in the form

$$
Q^{k}=\frac{u^{k+1} v^{k+1}}{(k+1)(k+2)}\left\{\left(1+\frac{B}{u}+\frac{B}{v}\right)^{k+2}-\left(\frac{B}{u}+\frac{B}{v}\right)^{k+2}\right\}-\frac{B_{k+1}}{k+1}
$$

where in the ordinary expansion of the $(k+2)^{\text {th }}$ powers instead of B^{h} has to be taken B_{h}.

If we take $k=0$ we find the above formula $Q^{0}=\frac{1}{2}(u-1)(v-1)$ for the number of elements of Q.

Appendix.
Above we used some results of which easily a proof is given by the following considerations.

Let as before u and v denote two integers >1 with $(u, v)=1$. Let $\binom{n}{u, v}$ denote the number of different ways in which the integer n can be written in the form $n=u x+$ vy with non-negative integers x and y. Then obviously

$$
\frac{1}{\left(1-z^{u}\right)\left(1-z^{v}\right)}=\sum_{n=0}^{\infty}\binom{n}{n, v} z^{n}
$$

Since $(u, v)=1$ the expression

$$
\frac{\left(1-z^{u v}\right)(1-z)}{\left(1-z^{u}\right)\left(1-z^{v}\right)}
$$

is a polynomial in z of degree $N+1$ where $N=u v-u-v$. Hence we have

$$
\begin{aligned}
& \frac{\left(1-z^{u v}\right)(1-z)}{\left(1-z^{u}\right)\left(1-z^{v}\right)}=\sum_{n=0}^{N+1}\binom{n}{u, v} z^{n}-\sum_{n=0}^{N}\left(\begin{array}{c}
n, v
\end{array}\right) z^{n+1}= \\
& =(1-z) \sum_{n=0}^{N}\left(\begin{array}{c}
n, v
\end{array}\right) z^{n}+\binom{N+1}{u, v} z^{N+1}
\end{aligned}
$$

Obviously the coefficient of z^{N+1} is the expansion is equal to 1 , so

$$
\begin{equation*}
\frac{1-z^{u v}}{\left(1-z^{u}\right)\left(1-z^{v}\right)}=\sum_{n=0}^{N}(u, v) z^{n}+\frac{z^{N+1}}{1-z^{N}} \tag{11}
\end{equation*}
$$

Replacing z by $\frac{1}{z}$ and multiplying by z^{N} we get

$$
\begin{equation*}
\frac{z^{u v}-1}{\left(z^{u}-1\right)\left(z^{v}-1\right)}=\sum_{n=0}^{N}\binom{n}{u, v} z^{N-n}+\frac{1}{z-1}=\sum_{n=0}^{N}\binom{N-n}{u, v} z^{n}+\frac{1}{z-1} . \tag{12}
\end{equation*}
$$

Comparing (11) and (12) we get for $n=0,1, \ldots, N$

$$
\binom{n}{u, v}+\binom{N-n}{u, v}=1
$$

Since for all n we have $\binom{n}{u, v} \geqq 0$, we get for $n=0,1, \ldots, N\left(\begin{array}{l}\text { the revilt } \\ n \\ u, v\end{array}\right)=0$ or 1 , so all these integers n are either not representable or are representable in exactly one way. Further we get from (11)

$$
\sum_{n=0}^{\infty}\binom{n}{u, v} z^{n}=\frac{1}{\left(1-z^{u}\right)\left(1-z^{v}\right)}=\frac{z^{N+1}}{1-z}+\frac{z^{u v}}{\left(1-z^{u}\right)\left(1-z^{v}\right)}+\sum_{n=0}^{N}(u, v) z^{n}
$$

where for $n \geqq N+1$ the coefficient of z^{n} in the right hand side is obviously $\geqq 1$. So everey integer $n \geqq N+1$ is representable. Corollary. If in (12) we take $z=2$ we get

$$
\frac{2^{u v}-1}{\left(2^{u}-1\right)\left(2^{v}-1\right)}-1=\sum_{n=0}^{N}\binom{N-n}{u, v} 2^{n}
$$

Now the coefficient $\binom{N-n}{u, v}=1$ if $\binom{n}{u, v}=0$ i.e. if n is not representable and $\binom{N-n}{u, v}=0$ if $\binom{n}{u, v}=1$ i.e. if n is representable. If therefore the integer $\frac{2^{u v}-1}{\left(2^{u}-1\right)\left(2^{v}-1\right)}-1$ is written in binary scale the places of the zero's correspond with the non-representable integers and the place of the numbers 1 with the integers which are representable.

