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1. Introduction.

Let k(Xq,...,Xn) be a purely transcendental field extension of
a field k, and Gn an arbitrary transitive permutation group
operating on the Xg50005X . Let k(Gn) dencte the field of all
invariants under G in k(Xq,...,Xn).

If k(Gn) is also purely transcendental over k, i.e, 1f there
exist elements U,,...,U, in k(Xq,...,Xn),

(1) U, = By Xy - 0% ] ®=1,...,n)

y
po[xq,...,xn]

with oy, [X,,..,X Je k[X . ,X 1nk(G) (¥=0,1,...,n)

such that k(Gn)=k(Uq,. .,Un), then the polynomial

n n--1 n
(X=X, ). (X=X )=X "8 X0 et (=)0 8

can be written in the form

U)X e (U

,‘,-u. n ’U)

n
(2) X' +a,(U STRTPLN

1

with ay(Uq,...,

elementary symmetric functions BaseeesBy of Xq,...,X
belong tolk(Gﬁ)fﬁ,

Un)eLdLLV...,Un) (v=1,...,n), since the

n certainly

In 1916 E. Noether showed that the polynocmial (2) can be
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regarded as a parametric representation of all polynomials
fLXJek [X] of degree n with Galols group (considered as a
permutation group of the suitably arranged zeros of f[ X])a
subgroup of G_ [1]. In fact, if f[X] 18 any such polynomial
with zeros Xqseeey &, 82y, then substitutlon of xq,...,x
by os..., %y 1In (1) transforms UjppeeesUy, into elements
kys....ky In k, provided that p [&,,..., x ]#0; and
substitution of XpseeesU by kypoonsk in (2) transforms (2)
into f [)(]j>. The condition 1 [u&,..., an]ﬁo however, seems
to be a rather heavy restriction of the generality of the
theorem, for 1t might be possible that in (2) so many
polynomials with Galoils group Gn over k are missing that some
field X/k with Galois group G 2 G, might have none generating
polynomial that 1s contained in the parametric representation

n

(2). This 1s however not true, as is shown in theorem 2 of
this report, in the case that k i1s infinite, This infiniteness
condition for k 1s not an essentlal restrictlion, as finite
extensions of finlte fields have cyclic Galols group, the
generating polynomials belng easily constructed by means of
well known arguments.

On the other hand, if an arbltrary substitution of Ui by
elements of k, transforms (2) into a separable polynomial
f [XJek [X], then the Galois group H of f[XJ1is (as a
permutation group of the suiltably arranged roots of £LX]) a
subgroup of Gn. This 1s a consequence of theorem 2.

2. Theorem 1.

Let K/k be our arbitrary field extenslon of k with Galols group
G e G, let k be infinite. Let, in the notation of the
introduction, k(Gn) be purely transcendental over k; let (2)

be a parametric representation 1in the sense of E. Noether etc.,

- — - -

are given in [2].
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entirely like in the introduction. Then there exist infinitely
many substitutions U, N (kie k) that carry (2) into an

element £ [X]€k [ X] with splitting field K.

...._.)k

Proof: We construct a generating set §@1,..., pn} of K/k,
with the properties: 1 fqs--05 By are the roots of an
irreducible polynomial in k[ XJ, while the Galols group of K/k
permuteés Pq""’ Cn in just the same way as Gn permuted

X’I’...’Xn‘

2 p,Le4---5 0] #0.
Let A: {“1""’“rn} be a normal basis of K/k and let G be the
regular permutation group on A representing the Galolis group
of K/k. Let tq""’tm be m algebraically independent variables
that are adjoined to k; denote k(tq,...,tm) by k(t) an
K(tq,...,tm) by K(t). The Galois group of K(t)|k(t) remains G,
From the expressions ;;1=t1 R Ui(“q)
(oié G, i=1,...,m).
Then it is readily seen that the set A: {Eq,...,&"m} forms a
normal basis of K(t)Jk(t). For the determinant D=g [t,,...,t ]
€ k[ t]in the t, of the transformation &'i=0_?L (E,])does not
vanlish, so that Xyseees ok BrE linearly independent and
conjugated over k(t).
The elements tq,...,tﬁ can on the other hand be rationally
expressed in '&ﬁ,...,ﬁfm over K, because of the fact that the
determinant ]a& Ui(d)l does not vanish. |
Passing from A to A we obtaln an isomorphic representation Gm
of Gm, as a permutation group of A. Let m=n.l. As G can also
be represented as a transitive permutation group of n elements
(viz. X ,...,X ), we can divide A into n subsets each of 1

n
elements: Aﬁiqu ... UA_, such that the permutatiorsin G
permute Kq,...,ﬂh in just the same way as G, permutes X,,...,X
(see M.Hall [3], p.57). Define Zi=s(Ki).(i=1,...,n), where s(Mi)
denotes the sum of the 1 elements in Mi' Z,],...,Zn are as sums

of the elements of disjoint subsets of an algebraically
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irreducible set over k, certainly algebraically independent
over k. Thils means po[:zﬁ,...,zn] #0 and moreover
polZpe.s2 ] =tlt,,. ...t Jex[t].

Now, let ti——*Ei (1=1,...,m; k,ek) be a substitution such
that f[fc_,%,...,fc—m] g[f(-,],...,k-m #0. There exist infinitely
many substitution of this kind, as k is Infinite.

ti“_*Ei transforms the set K into the set A:

{alnﬁ,‘ 0(1+...+'Em %3 ';i- 0‘1(7&'1)} and £ forms clearly a
normal basls of K/k, as the determinant g(kﬂ,...,kn)fO.

Now our proof 1s complete if we show that the Galols group el
of K/k as a permutation group of & is Just the same group as
the permutation group ﬁh of E.For, in that case the substitution
ti-—wk1 carries zy into elements @1 with the property that
Kmk(pq,..., pn), the Galols group of K/k permuting Bir-eesBp
in just the same way as Gn permutes Xﬁ,...,Xn, whille moreover
oL 84s--.s ¢, 0.

We prove therefore that an automorphism of K/k determines the
me In fact,

let ® be an automorphism of K/k carrying %4 into oy and

&, into ®,; let further ®, m=f(t,1,...,tm, o:,l)e k(uq) [t], then
&1=f(24,...,im,«1). Applying ® to &, and R, we find
x&'ﬁ'&'imf(tq,...,tm,uk) and xaqu('ﬁ'q,...,ﬁm, o(k), the latter
element being clearly equal to &i.

m

same permutation of 31,...,§nlas of ®ypeues

3. Before proving theorem 2 we slightly generalize the notion
of Galois group of a polynomial., Let f[ XJ] be a separable
polynomial in k[ XJ. Let ko be the splitting fileld of f [ XJ.

Let g {X],...,gk[x) be the different 1§educible factors in f[X],
so that f[X] can be written f[X]=g1[X] gk[X] k. We put

g[X] ~g1[X]...gk[X1. Then, obviously, kfukg. The Galols group

G of glX] over k is the group of those automorphisms of kg
leaving k pointwise fixed. Now, since kfmkg we define the
Galois group of f[ X1 to be the same group G. Usually G is
represented as a permutation group of the different zeros of
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fIX]. However, 1t 1s also possible to represent G without
amblgulty as a permutation group of all the zeros of f [ X1,

by assigning to every irreducible factor of f [X] a separate

set of zeros and not admitting any permutation that carries a
zero of one 1rreducible factor into a zero of another
(necessarily identical) irreducible factor of £ [ X1.

The following theorem 1s similar to a theorem in van der Waerden,
Mcderne Algebra I, 1960 (§ 61).

Theorem 2. Let k(Uﬂ,...,Um) be a purely transcendental field
extenslon of a fleld k; let m » 1, Let

P = b (U y_)x°]

42 e U +...+bn(U,‘,...,Um)

be any separable polynomial irreducible in k(Uq,...,Um) [x]
with Galols group G. Let Uy —ky (kie k; 1i=1,...,m) be a
substitution carrying P into

* * n %
P= bOX +...t bnék[X].

Let P® have n separable but not necessarily different zeros
D5 eens e Then the Galols group of p* (in the above defined
sense, as a permutation group of the n sultably arranged roots
L PPRI “11) 18 a subgroup of G.

Proof. Let xq,...,xn be the zeros of P. By means of the
indeterminates tq’-°':tn form the expressions qut1X1+..+tan
and §1=t1u1+...+tdxn. If %, denotes a permutation of the set

T: {t,,...,t,} then = and & shall denote the same
permutations of X: {Xq,...,Xn and A: {“1""’“n} , respectively.
Obviously, we have for any X,

L Z,‘ = Z,‘ and 7ca Rt'e,} = 31 .

Hence,

-1 -1
(3) K, Z,=7%, 2, and X %, =% 9§,
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Therefore, 1f a certaln set of elements x, Z1 or m, :H is

formed by letting ®_ run through a group Gt of permutations

t
of T, then the same set 1s formed by the elements nx Z1 and
xa_%%, respectively, 1if . and T, run through the groups Gx
and G, of the same permutations of X and A respectively.

. Now let St denote the symmetric permutation group of T and let
Sx and qx denote the corresponding groups of the Xy and the *y .

Then, clearly,

F= N (z-%.2,)= T (z-7, 2.,)
€8S Y g es x =1
t L X X

and

= T - - - .
! mtest(z e 5 mesu SNl

The coefficlients of F are symmetric in X1’°--:Xn and,
therefore, can be expressed in tq,...,tn and the coefficients
bo’bﬂ""’bn of P. They are, 1n fact, polynomials in ti and
b,/0gs...,0 /b . It is clear that the coefficients of F* can
in exactly the same way be expressed in t, and b:/b;,...,b;/dz,
since P® has n zeros, and thus bg#O.

Multiplying F by a sultably chosen power of bo’ we obtain a
,...,bn and Z, 1.e. a polynomial in

and Z with coefficlents in k:

polynomial in t
t .5t _,U
n

i,

’ooo’U

17 1

F

i

b

O B O

.Fek[t,l,...,tn,U,],...,Um][z] .

The substitution U;—k, (1=1,...,m) carries every bJ into

b‘J* (j=0,1,...,m) and hence F into

F(z) = oX "L PY2) ek [t,,...,t102].

(4) F(zZ) = F,l(Z)...Fr(Z)
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be a factorization of F into factors that are irreducible in
k(tq,...,tn,Uq,...,Um) {21 . By a well known theorem, we may
assume F, to be polynomials in k[ U, ...,U] [t,...,t,]112]

as the Unique Factorization Theorem holds in

k[U45...,0] [tq,,..,tn] . Theze polynomials are all differenﬁv
and they have each the Galols group G, € ¢ with respect to
k(tq,...,tn,Uq,...,Um) since the conjugates relative to
k(tq,...,tn,Uq,...,Um) of any zero x% Z, of F can be obtained
by performing all the permutations L that belong to Gx on

x% 2, 1i.e., in virtue of (3), by performing all the permutations
%, that belong to G, on xé Z,, from which 1t follows that all
the elements obtalned in this way are different,

Without loss of generality we may suppose 21 to be a zero of

Fq. The substitution Ui—w--»ki carries each polynomial Fi
(1=1,...,r) into a polynomial F¥ in k [tq...nt ] (2], and

i
clearly,

(5) FY=FY ... F*

By reordening the indices of ®qseewy 4, WE CAN ensure that

%4 1s a zero of F:.

Now, let H be the Galols group of k(A) with respect to k. Then,
if KgseeesX,  BIE all different, each element of H corresponds
to one and only one permutation of P TRERFL S However, the
same 1s true, 1f there are equal zeros among Dy oo sy

(i.e. in virtue of the separability of p* S 1f P* has some
identicalg) irreducible factors), provided that we do not admit
vermutations that carry a zero of one irreduclble factor into

a zero of another (necessarlly identical) irreducible factor,

- -

1) Because of the fact that t, are algebralcally independent
over k(X) and X ar& all different, the polynomial
P being 1rreducible anﬁ geparable,

2) Identical meaning here: with the same or proportional
coefficients,
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Since ti are algebraically independent with respect to k(A),
the Galols group H is alsc the Galois group of k(T,A) over
k(T). Now, the conjugates of ¥, with respect to k(T) can be
obtained by performing all the permutations oy that belong to
H2H (with the above mentioned restriction) on §,, and all

the elements obtained in this way are different. For, 1if

! =z = " =
T ﬁ1 t1 o 1+...+tn « . Xy ﬁq t1 “v1+"'+tn uvn , then
= oo = and this ¢ only be tru or two
I ’ qu, ,g . avn, 8 can only be true for tw

permutations %, and m& velonging to H , if x = x', on account
of the glven restriction as to the permutations belonglng to
H . Hence the conjugates of :1 are obtained by performing all

o
the £ that belong to H on ¥,.

Now, since the zeros of F1 all have the form L 21 (mt613t)
and since F? 1s derived from Fﬂ by the substitution Ui 12
the zeros of F: all have the form =, %, with 7%, €G . As all
the conjugates of €1 occur among these zeros of F*, it follows
that Ht is a subgroup of Gt’ i.e. H is isomorphlc to a

—

subgroup of G, g.e.d.

(1] E. Noether: Gleichungen mit vorgeschriebener Gruppe,
Math.Ann. Bd.T78. -

[27 W. Kuyk: Over het omkeerprobleem van de Galoistheorie,
1960, Amsterdam,

[3] M. Hall: The theory of groups, Macmillan, 1959.



