STICHTING
 MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49
AMSTERDAM

ZW 1962-016

On the inversion of a theorem of E. Noether
W. Kuyk
sic

1962

The Mathomatical Centre at Amsterdam, founded the 11 th of February 1946, is a non-profit institution aiming at the promotion of pure mathematics and its applications, and is sponsored by the Netherlands Government through the Netherlands Organization for Pure Research (Z.W.O.) and the Central National Council for Applied Scientific Research in the Netherlands (T.N.O.), by the Municipality of Amsterdam and by several industries.

STICHTING
 MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49
AMSTERDAM

AFDELING ZUIVERE WISKUNDE

On the inversion of a theorem of E.Noether

by

W. Kuyk

1. Introduction.

Let $k\left(X_{1}, \ldots, X_{n}\right)$ be a purely transcendental field extension of a field k, and G_{n} an arbitrary transitive permutation group operating on the X_{1}, \ldots, X_{n}. Let $k\left(G_{n}\right)$ denote the field of all invariants under G in $k\left(X_{1}, \ldots, X_{n}\right)$.
If $k\left(G_{n}\right)$ is also purely transcendental over k, i.e. if there exist elements U_{1}, \ldots, U_{n} in $k\left(X_{1}, \ldots, X_{n}\right)$,

$$
\begin{equation*}
U_{\nu}=\frac{p_{\nu}\left[x_{1}, \ldots, x_{n}\right]}{p_{0}\left[x_{1}, \ldots, x_{n}\right]} \quad(\nu=1, \ldots, n) \tag{1}
\end{equation*}
$$

with $p_{\nu}\left[X_{1}, \ldots, x_{n}\right] \in k\left[x_{1}, \ldots, x_{n}\right] \cap k\left(G_{n}\right) \quad(\nu=0,1, \ldots, n)$
such that $k\left(G_{n}\right)=k\left(U_{1}, \ldots, U_{n}\right)$, then the polynomial

$$
\left(x-x_{1}\right) \ldots\left(x-x_{n}\right)=x^{n}-s_{1} x^{n-1}+\ldots+(-1)^{n} s_{n}
$$

can be written in the form

$$
\begin{equation*}
x^{n}+a_{1}\left(u_{1}, \ldots, U_{n}\right) x^{n-1}+\ldots+a_{n}\left(u_{1}, \ldots, U_{n}\right) \tag{2}
\end{equation*}
$$

with $a_{\nu}\left(U_{1}, \ldots, U_{n}\right) \in k\left(U_{1}, \ldots, U_{n}\right) \quad(\nu=1, \ldots, n)$, since the elementary symmetric functions s_{1}, \ldots, s_{n} of X_{1}, \ldots, X_{n} certainly belong to $k\left(G_{n}\right)$.

In 1916 E. Noether showed that the polynomial (2) can be
regarded as a parametric representation of all polynomials $f[X] \in k[X]$ of degree n with Galois group (considered as a permutation group of the suitably arranged zeros of $f[X]$) a subgroup of $G_{n}[1]$. In fact, if $f[x]$ is any such polynomial with zeros $\alpha_{1}, \ldots, \alpha_{n}$, say, then substitution of X_{1}, \ldots, x_{n} by $\alpha_{1}, \ldots, \alpha_{n}$ in (1) transforms U_{1}, \ldots, U_{n} into elements k_{1}, \ldots, k_{n} in k, provided that $p_{0}\left[\alpha_{1}, \ldots, \alpha_{n}\right] \neq 0$; and substitution of X_{1}, \ldots, U_{n} by k_{1}, \ldots, k_{n} in (2) transforms (2) into $f[X]^{1)}$. The condition $p_{0}\left[\alpha_{1}, \ldots, \alpha_{n}\right] \neq 0$ however, seems to be a rather heavy restriction of the generality of the theorem, for it might be possible that in (2) so many polynomials with Galois group G_{n} over k are missing that some field K / k with Galois group $G \cong G_{n}$ might have none generating polynomial that is contained in the parametric representation (2). This is however not true, as is shown in theorem 2 of this report, in the case that k is infinite. This infiniteness condition for k is not an essential restriction, as finite extensions of finite fields have cyclic Galois group, the generating polynomials being easily constructed by means of well known arguments.

On the other hand, if an arbitrary substitution of U_{1} by elements of k, transforms (2) into a separable polynomial $f[X] \epsilon k[X]$, then the Galois group H_{n} of $f[X]$ is (as a permutation group of the suitably arranged roots of $f[X]$) a subgroup of G_{n}. This is a consequence of theorem 2 .

2. Theorem 1.

Let K / k be our arbitrary field extension of k with Galois group $G \cong G_{n}$, let k be infinite. Let, in the notation of the introduction, $k\left(G_{n}\right)$ be purely transcendental over k; let (2) be a parametric representation in the sense of E. Noether etc.,

1) An exposition of E. Noether's theorem and a modified proof are given in [2].
entirely like in the introduction. Then there exist infinitely many substitutions $U_{i} \rightarrow k_{i}\left(k_{i} \in k\right)$ that carry (2) into an element $f[X] \epsilon k[X]$ with splitting field K.

Proof: We construct a generating set $\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ of K / k, with the properties: $1 \beta_{1}, \ldots, \beta_{n}$ are the roots of an irreducible polynomial in $k[X]$, while the Galois group of K / k permutes $\beta_{1}, \ldots, \beta_{n}$ in just the same way as G_{n} permuted $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ 。

$$
\underline{2} p_{0}\left[\beta_{1}, \ldots, \beta_{n}\right] \neq 0
$$

Let $A:\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ be a normal basis of K / k and let G_{n} be the regular permutation group on A representing the Galois group of K / k. Let t_{1}, \ldots, t_{m} be m algebraically independent variables that are adjoined to k; denote $k\left(t_{1}, \ldots, t_{m}\right)$ by $k(t)$ an $K\left(t_{1}, \ldots, t_{m}\right)$ by $K(t)$. The Galois group of $K(t) \mid k(t)$ remains G_{m}. From the expressions $\bar{\alpha}_{1}=t_{1} \alpha_{1}+\ldots+t_{m} \alpha_{m}, \bar{\alpha}_{1}=\sigma_{i}\left(\alpha_{1}\right)$ $\left(\sigma_{i} \in G_{m} ; i=1, \ldots, m\right)$.
Then it is readily seen that the set $A:\left\{\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{m}\right\}$ forms a normal basis of $K(t) \mid k(t)$. For the determinant $D=g\left[t_{1}, \ldots, t_{m}\right]$ $\boldsymbol{\epsilon} k[t]$ in the t_{i} of the transformation $\bar{\alpha}_{i}=\sigma_{i}\left(\bar{\alpha}_{1}\right)$ does not vanish, so that $\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{m}$ are linearly independent and conjugated over $k(t)$.
The elements $t_{1}, \ldots, t_{\mathrm{n}}$ can on the other hand be rationally expressed in $\bar{\alpha}_{1}, \ldots, \overline{\bar{\alpha}}_{m}$ over K, because of the fact that the determinant $\left|\sigma_{i} \sigma_{j}(\alpha)\right|$ does not vanish. Passing from A to $\frac{J}{A}$ we obtain an isomorphic representation \bar{G}_{m} of G_{m}, as a permutation group of \bar{A}. Let $m=n$. 1 . As G can also be represented as a transitive permutation group of n elements (viz. X_{1}, \ldots, X_{n}), we can divide \bar{A} into n subsets each of I elements: $A=\bar{A}_{1} \cup \ldots \cup \bar{A}_{n}$, such that the permutations in \bar{G}_{m} permute $\bar{A}_{1}, \ldots, \bar{A}_{n}$ in just the same way as G_{n} permutes X_{1}, \ldots, X_{m} (see M.Hall [3], p.57). Define $Z_{i}=s\left(\bar{A}_{i}\right)(i=1, \ldots, n)$, where $s\left(M_{1}\right)$ denotes the sum of the 1 elements in $M_{i}, Z_{1}, \ldots, Z_{n}$ are as sums of the elements of disjoint subsets of an algebraically
irreducible set over k, certainly algebraically independent over k. This means $p_{0}\left[z_{1}, \ldots, z_{n}\right] \neq 0$ and moreover $p_{0}\left[z_{1}, \ldots, z_{n}\right]=f\left[t_{1}, \ldots, t_{m}\right] \in k[t]$.
Now, let $t_{1} \rightarrow \bar{k}_{1} \quad\left(i=1, \ldots, m ; \bar{k}_{1} \epsilon k\right)$ be a substitution such that $f\left[\bar{k}_{1}, \ldots, \overline{\mathrm{k}}_{\mathrm{m}}\right] \mathrm{g}\left[\overline{\mathrm{k}}_{1}, \ldots, \overline{\mathrm{k}}_{\mathrm{m}}\right] \neq 0$. There exist infinitely many substitution of this kind, as k is infinite. $t_{i} \longrightarrow \bar{k}_{1}$ transforms the set \bar{A} into the set \bar{A} : $\left\{\overline{\bar{\alpha}}_{1}=\bar{k}_{1} \alpha_{1}+\ldots+\bar{k}_{m} \alpha_{m} ; \overline{\bar{\alpha}}_{1}=\sigma_{1}\left(\bar{\alpha}_{1}\right)\right\}$ and $\overline{\bar{A}}$ forms clearly a normal basis of K / k, as the determinant $g\left(k_{1}, \ldots, k_{n}\right) \neq 0$. Now our proof is complete if we show that the Galois group \bar{G}_{m} of K / k as a permutation group of \bar{A} is just the same group as the permutation group \bar{G}_{m} of \bar{A}. For, in that case the substitution $t_{i} \rightarrow \bar{k}_{i}$ carries z_{i} into elements β_{i} with the property that $K=k\left(\beta_{1}, \ldots, \beta_{n}\right)$, the Galois group of K / k permuting $\beta_{1}, \ldots, \beta_{n}$ in just the same way as G_{n} permutes X_{1}, \ldots, X_{n}, while moreover $p_{0}\left[\beta_{1}, \ldots, \beta_{n}\right] \neq 0$.
We prove therefore that an automorphism of K / k determines the same permutation of $\overline{\bar{\alpha}}_{1}, \ldots, \overline{\bar{\alpha}}_{m}$ as of $\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{m}$. In fact, let π be an automorphism of k / k carrying α_{1} into α_{k} and $\bar{\alpha}_{1}$ into $\bar{\alpha}_{1}$; let further $\bar{\alpha}_{1}=f\left(t_{1}, \ldots, t_{m}, \alpha_{1}\right) \in k\left(\alpha_{1}\right)[t]$, then $\bar{\alpha}_{1}=f\left(\bar{k}_{1}, \ldots, \bar{k}_{m}, \alpha_{1}\right)$. Applying π to $\bar{\alpha}_{1}$ and $\overline{\bar{\alpha}}_{1}$ we find $\pi \bar{\alpha}_{1}=\bar{\alpha}_{1}=f\left(t_{1}, \ldots, t_{m}, \alpha_{k}\right)$ and $\pi \bar{\alpha}_{1}=f\left(\bar{k}_{1}, \ldots, \bar{k}_{m}, \alpha_{k}\right)$, the latter element being clearly equal to $\overline{\bar{\alpha}}_{i}$.
3. Before proving theorem 2 we slightly generalize the notion of Galois group of a polynomial. Let $f[X]$ be a separable polynomial in $k[X]$. Let k_{f} be the splitting field of $f[X]$. Let $g_{1}[X], \ldots, g_{k}[X]$ be the different ineducible factors in $f[X]$, so that $\mathrm{f}[\mathrm{X}]$ can be written $\mathrm{f}[\mathrm{X}]=\mathrm{g}_{1}[\mathrm{X}]^{\mathrm{m}} \uparrow \ldots \mathrm{g}_{\mathrm{k}}[\mathrm{X}]^{\mathrm{m}_{k}}$. We put $g[X]=g_{1}[X] \ldots g_{k}[X]$. Then, obviously, $k_{f}=k_{g}$. The Galois group G of $g[X]$ over k is the group of those automorphisms of $k g$ leaving k pointwise fixed. Now, since $k_{f}=k_{g}$ we define the Galois group of $f[X]$ to be the same group G. Usually G is represented as a permutation group of the different zeros of
$f[X]$. However, it is also possible to represent G without ambiguity as a permutation group of all the zeros of $f[X]$, by assigning to every irreducible factor of $f[X]$ a separate set of zeros and not admitting any permutation that carries a zero of one irreducible factor into a zero of another (necessarily identical) irreducible factor of $f[X]$.
The following theorem is similar to a theorem in van der Waerden, Moderne Algebra I, 1960 ($\$ 61$).

Theorem 2. Let $k\left(U_{1}, \ldots ., U_{m}\right)$ be a purely transcendental field extension of a field k; let $m \geqslant 1$. Let

$$
P=b_{0}\left(U_{1}, \ldots, U_{m}\right) x^{n-1}+\ldots+b_{n}\left(U_{1}, \ldots, U_{m}\right)
$$

be any separable polynomial irreducible in $k\left(U_{1}, \ldots, U_{m}\right)[X]$ with Galois group G. Let $U_{1} \rightarrow k_{i}\left(k_{1} \in k ; 1=1, \ldots, m\right)$ be a substitution carrying P into

$$
P^{*}=b_{0}^{*} x^{n}+\ldots+b_{n}^{*} \in k[x] .
$$

Let P^{*} have n separable but not necessarily different zeros $\alpha_{1}, \ldots . \alpha_{n}$. Then the Galois group of P^{*} (in the above defined sense, as a permutation group of the n suitably arranged roots $\alpha_{1}, \ldots, \alpha_{n}$) is a subgroup of G.

Proof. Let X_{1}, \ldots, X_{n} be the zeros of P. By means of the indeterminates t_{1}, \ldots, t_{n} form the expressions $Z_{1}=t_{1} X_{1}+\ldots+t_{n} X_{n}$ and $\zeta_{1}=t_{1} \alpha_{1}+\ldots+t_{n} \alpha_{n}$. If π_{t} denotes a permutation of the set $T:\left\{t_{1}, \ldots, t_{n}\right\}$ then π_{x} and π_{α} shall denote the same permutations of $X:\left\{X_{1}, \ldots, X_{n}\right\}$ and $A:\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$, respectively. Obviously, we have for any π_{t}

$$
\pi_{x} \pi_{t} Z_{1}=Z_{1} \quad \text { and } \quad \pi_{\infty} \pi_{t} \varphi_{1}=\zeta_{1} .
$$

Hence,

$$
\begin{equation*}
\pi_{t} Z_{1}=\pi_{x}^{-1} Z_{1} \text { and } \pi_{t} \varphi_{1}=\pi_{\alpha}^{-1} \varphi_{1} . \tag{3}
\end{equation*}
$$

Therefore, $1 f$ a certain set of elements $\pi_{t} Z_{1}$ or $\pi_{t} \zeta_{1}$ is formed by letting π_{t} run through a group G_{t} of permutations of T, then the same set $1 s$ formed by the elements $\pi_{x} Z_{1}$ and $\pi_{\alpha} \xi_{1}$, respectively, if π_{x} and π_{α} run through the groups a_{x} and G_{α} of the same permutations of X and A respectively.
Now let S_{t} denote the symmetric permutation group of T and let S_{x} and S_{α} denote the corresponding groups of the x_{i} and the α_{1}. Then, clearly,

$$
F=\pi_{\pi_{t} \in S_{t}}\left(z-\pi_{t} z_{1}\right)=\prod_{\pi_{x} \in s_{x}}\left(z-\pi_{x} z_{1}\right)
$$

and

$$
F^{*}=\pi_{\pi_{t} \in S_{t}}\left(z-\pi_{t} \zeta_{1}\right)=\pi_{\pi_{\alpha} \in S_{\alpha}}\left(z-\pi_{\alpha} \zeta_{1}\right) .
$$

The coefficients of F are symmetric in X_{1}, \ldots, X_{n} and, therefore, can be expressed in t_{1}, \ldots, t_{n} and the coefficients $b_{o}, b_{1}, \ldots . b_{n}$ of P. They are, in fact, polynomials in t_{i} and $b_{1} / b_{0}, \ldots, b_{n} / b_{0}$. It is clear that the coefficients of F^{*} can in exactly the same way be expressed in t_{i} and $b_{1}^{*} / b_{o}^{*}, \ldots, b_{n}^{*} / b_{o}^{*}$, since P^{*} has n zeros, and thus $b_{o}^{*} \neq 0$.
Multiplying F by a suitably chosen power of b_{o}, we obtain a polynomial in $t_{i}, b_{o}, \ldots, b_{n}$ and $Z, 1 . e . a$ polynomial in $t_{1}, \ldots, t_{n}, U_{1}, \ldots, U_{m}$ and Z with coefficients in k :

$$
F=b_{0}^{t} \cdot F \in k\left[t_{1}, \ldots, t_{n}, U_{1}, \ldots, U_{m}\right][z]
$$

The substitution $U_{i} \rightarrow k_{i} \quad(i=1, \ldots, m)$ carries every b_{j} into $b_{j}^{*}(j=0,1, \ldots, m)$ and hence F into

$$
\bar{F}^{*}(Z)=b_{0}^{*} t \cdot F^{*}(Z) \in k\left[t_{1}, \ldots, t_{n}\right][z] .
$$

Let
(4)

$$
\bar{F}(Z)=F_{1}(Z) \ldots F_{r}(Z)
$$

be a factorization of \bar{F} into factors that are irreducible in $k\left(t_{1}, \ldots, t_{n}, U_{1}, \ldots, U_{m}\right)[Z]$. By a well known theorem, we may assume F_{1} to be polynomials in $k\left[U_{1}, \ldots, U_{m}\right]\left[t_{1}, \ldots, t_{n}\right][Z]$ as the Unique Factorization Theorem holds in $k\left[U_{1}, \ldots, U_{m}\right]\left[t_{1}, \ldots, t_{n}\right]$. These polynomials are all different ${ }^{1}$ and they have each the Galois group $G_{x} \not G$ with respect to $k\left(t_{1}, \ldots, t_{n}, U_{1}, \ldots, U_{m}\right)$ since the conjugates relative to $k\left(t_{1}, \ldots, t_{n}, U_{1}, \ldots, U_{m}\right)$ of any zero $x_{t}^{\prime} Z_{1}$ of F can be obtained by performing all the permutations π_{x} that belong to G_{x} on $\pi_{t}^{\prime} Z_{1}, 1 . e .$, in virtue of (3), by performing all the permutations π_{t} that belong to G_{t} on $\pi_{t}^{\prime} Z_{p}$, from which it follows that all the elements obtained in this way are different. Without loss of generality we may suppose Z_{1} to be a zero of F_{1}. The substitution $U_{1} \rightarrow k_{i}$ carries each polynomial F_{i} $(1=1, \ldots, r)$ into a polynomial F_{i}^{*} in $k\left[t_{1}, \ldots, t_{n}\right][z]$, and clearly,

$$
\begin{equation*}
\bar{F}^{*}=F_{1}^{*} \ldots F_{r}^{*} \tag{5}
\end{equation*}
$$

By reordening the indices of $\alpha_{1}, \ldots, \alpha_{n}$ we can ensure that ζ_{1} is a zero of F_{1}^{*}. Now, let H be the Galois group of $k(A)$ with respect to k. Then, if $\alpha_{1}, \ldots, \alpha_{n}$ are all different, each element of H corresponds to one and only one permutation of $\alpha_{1}, \ldots, \alpha_{n}$. However, the same is true, if there are equal zeros among $\alpha_{1, \ldots, \alpha_{n}}$ (i.e. in virtue of the separability of P^{*}, if P^{*} has some identical ${ }^{2)}$ irreducible factors), provided that we do not admit permutations that carry a zero of one irreducible factor into a zero of another (necessarily identical) irreducible factor.

1) Because of the fact that t, are algebraically independent over $k(X)$ and X, \ldots, X_{n} are all different, the polynomial P being irreducible and separable.
2) Identical meaning here: with the same or proportional coefficients.

Since t_{i} are algebraically independent with respect to $k(A)$, the Galois group H is also the Galois group of $k(T, A)$ over $k(T)$. Now, the conjugates of φ_{1} with respect to $k(T)$ can be obtained by performing all the permutations π_{α} that belong to H 黑 H (with the above mentioned restriction) on ξ_{1}, and all the elements obtained in this way are different. For, if $\pi_{\alpha}^{\prime} \zeta_{1}=t_{1} \alpha_{\mu_{1}}+\ldots+t_{n} \alpha_{\mu_{n}}=\pi_{\alpha}^{\prime \prime} \zeta_{1}=t_{1} \alpha_{v_{1}}+\ldots+t_{n} \alpha_{v_{n}}$, then $\alpha_{\mu_{1}}=\alpha_{v_{1}}, \ldots, \alpha_{\mu_{n}}=\alpha_{v_{n}}$, and this can only be true for two permutations x_{α}^{\prime} and $x_{\alpha}^{\prime \prime}$ belonging to H_{α}, if $\pi_{\alpha}^{\prime}=x_{\alpha}^{\prime \prime}$, on account of the given restriction as to the permutations belonging to H_{α}. Hence the conjugates of ζ_{1} are obtained by performing all the π_{α} that belong to H_{α} on ζ_{1}.

Now, since the zeros of F_{1} all have the form $\pi_{t} Z_{1}\left(\pi_{t} \in G_{t}\right)$ and since F_{1}^{*} is derived from F_{1} by the substitution $U_{i} \rightarrow k_{i}$, the zeros of F_{1}^{*} all have the form $x_{t} \zeta_{1}$ with $\pi_{t} \in G_{t}$. As all the conjugates of ξ_{1} occur among these zeros of F_{1}^{*}, it follows that H_{t} is a subgroup of G_{t}, i.e. H is isomorphic to a subgroup of G, q.e.d.
[1] E. Noether: Gleichungen mit vorgeschriebener Gruppe, Math.Ann. Bd. 78 .
[2] W. Kuyk: Over het omkeerprobleem van de Galoistheorie, 1960, Amsterdam.
[3] M. Hall: The theory of groups, Macmillan, 1959.

