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On a formula of Van der Pol and a problem concerning the ordinates of the 

non-trivial zeros of Riemann's zeta function 

by 

J. van de Lune 

ABSTRACT 

This report mainly deals with Van der Pol's identity 

00 

I ---= ---log a' 2n n=-oo 
a +I 

(a> I) 

and some of its generalizations. One of the proofs of the above identity 

leads quite naturally to the question whether the set of non-trivial zeros 
00 

of Riemann's zeta function contains any arithmetical sequence {cr + nH}n=l, 

where cr and A are fixed positive numbers. Some evidence will be given that 

such a sequence does not exist. 





INTRODUCTION. In 1950, VAN DER POL [9] stated 

co 

I n 
n=-co a2 +1 

1 =---log a' (a > 1) • 

In this report two proofs will be given, one of which leads quite natural

ly to the question whether the set of non-trivial zeros of s(s) contains 

any arithmetical sequence {cr + nAi}:=l' where cr and A are fixed positive 

numbers. Some evidence will be given that such a sequence does not exist. 

1. VAN DER POL I s IDENTITY 

Because of the identity 

X 

(1 - e 

we have for x > 0 

n 

-- n 
n 

k=l 

X 

X 

- 2k 
(1 + e ) = 1 

-x 
- e 

(1. 1) I 
- 2k 

log (1 + e ) = -x log (1 - e ) - log (1 - e 
k=l 

Differentiating both sides of (1. 1) we obtain 

-k -k n -x2 -x 2-n 
I -2 e e e = -k -x k=l 1 + e -x2 - e 1 - e 

or 

1 = - • 
-n x2 

X 

Taking limits (n + 00 ) we find 

-n 
ex2 - 1 

-x2 -n 

-x2 -n 

X --
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(X) 

( 1.2) 
-k 

2 1 -~---=-----X 
(x > 0). 

In a simular manner one obtains 

(X) 2n 
(1.3) L = 

2nx X 
n=0 e - 1 e + 1 

(x > O), 

from the identity 

n-1 2k _2nx 
(1 - e-x) TT (1 + e- x) = l - e 

k=0 

Combining (1.2) and (1.3) we obtain 

(1.4) 

+ex, 2n 
I = -

2nx X 11=-cx, 
e + 

(x > O), 

which is equivalent to (*), Replacing x, in (1.4), by 2t one finds 

( 1 • 5) 
+ex, 2n+t 
L ---- = 1, for all real t, 

n=-cx, 2n+t 
e + 

which is alsci equivalent to (-A-). 

Remark. Formula (1.2), which may serve to make the well known formula 

[ 8, p. 23] 

(1. 6) f ( S ) l; ( S ) = f cx, ( X } 

0 e -

1 s-1 
- -)x ds 

X ' 
(0 <Res< 1), 

almost trivial, may also be proved as follows. From 

(1. 7) I { z z cot z = 2 cot 2 - tan 2} 



one obtains 

00 

cot z = - l -1- tan...!..+ l, 
n=l 2n 2n z 

and from this, using Euler's formulas for sin z and cos z, it is easily 

seen that (1.2) holds. 

It is well known that (1.6) may be used to prove the functional 

equation for s(s), by observing that the function 

f(x) = ---- - -
ex v'21r - 1 x/T-rr' 

is self-reciprocal for sine transforms, i.e. 

f(t) =~ J00 

f(x)sin tx dx. 
7T 0 

This well known result, often proved by means of complex integration 

methods, may be proved in an elementary way as follows: 

(1.8) 

The relation 

1 ) • d - ~ S l. n t X X = 
l xv i:7T 

-b J: sin tx dx + 1: sin tx dx = xlt# = 
X 

- 1 e 

1 I: itx -itx 00 

e -kxl27r') dx 7T e - e 
< I = -m -+ = 2 2i k=l 

m 00 

l27r 
00 

I t I 
2,rt 

= - -- + = - 4 4 2 t2 4k21r2 + (tili) 2 k=l k •2,r + k=l 

=-12;+12-;'{ 1 1} fir 
4 2 tl2ir' -tm+z =v2f<t>. 

e - 1 

00 

2u I --1-
k=t 4k2·/ + u2 

= 

3 
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which is crucial in (1.8) may be obtained directly from (1.7) as is shown 

by SCHROTER [3, p. 204]. Putting things together we get, following 

TITCHMARSH [8, p. 23], that the functional equation for ~(s) may be based 

almost entirely upon (1.7). 

2. ANOTHER PROOF 

In order to prove (1.5) directly, define f : 'R + 'R by 

00 
f(t> = I 

n=-00 

t 
n + -

2 21r 

+ ..!... 2n 2 
e 7T + 

Clearly f is periodic with period 21r. It is easily seen that f is continuously 

differentiable onlR so that f may be represented (pointwise) by its Fourier 

series 

00 

f(t> = I 
n=-oo 

int a e n 

In order to find the coefficients 

J27T . 
0 

f(t)e"t 1 dt = ( 

+00 
= I 

n=-00 

= 27T • 

e 

in this expansion we compute 

vti 

( 

+00 

I 
n=-00 

t n +-
( +00 2 27T 

)dt . I = 
+ ..!... 

e 

e 

n=-00 2n 27T + 1 e 

t 2 + vti (n + -)log 27T 

e 

dt = 
t 

(n + 27T)log 2 

+ 1 

u log 2 + v(u-n)21ri 
e 
---------- du = u log 2 

ee + 1 



where 

Since 

and 

2rrv s=l+---i log 2 

+oo u log 2 + vu2rri 
= 2rr • I _e __ _,_ _ _,_ ___ du = 

u log 2 
n=-oo ee + I 

f+00 eu log 2 + vu2rri 
= 2rr • -oo e u log 2 du = 

e + I 

= 2rr fooo _w_s_-_1_ dw = 
log 2 ew + -1 

2rr 
= log 2 f(s)n(s) = 

00 

and n(s) = I 
n=l 

2rr r(s)(l-21-s)l';(s), 
log 2 

(-l)n+I 

s 
n 

I - 2l-s = 0 for s = 1 + 2rrv i 
log 2 

(± \) = 1,2,3, ... ) 

dw du f oo f oo 
0 ew + l = 1 u(u+l) = log 2, 

we find that the Fourier coefficients off are all zero except the one 

giving the constant term I. 

Since the Fourier series off represents f onJR, we obtain 

f(t) = 1, for all t E JR, 

which 1.s equivalent to (1.5). 

5 
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3. A GENERALIZATION 

In the previous section it turned out that the periodic function 

t n +-+oo 
2 27T 

f(t) = l ( t E JR) t n=-oo 2n +-27T 
1 e + 

is actually a constant. The question arises if there are any other series 

of a simila:r type with a constant stm1. 

In this section we wi 11 only consider the functions f 13 : IR + IR, a, 

defined by 

+oo 
e 

t 
a(n + 27T) 

f 13 (t) = 
a, l 

n=- 00 S(n + ..!...) 
ee 21r + 

where t E IR and a, i3 > 0. 

It is easily seen that the functions f 13 a, 

* are well defined on JR 

* are periodic with period 21r 

* may be represented on IR by their Fourier series. 

Before carrying out any Fourier analysis on the functions f 13 we will 
a, 

show directly that there are indeed some constant functions f O different 
a'µ 

from the case a= i3 = log 2. 

Proposition 3.1. If f 13 is constant then the functions ¢k 
a, ,a,(3 

JR+ IR, 

(k = 1 , 2, 3, ••• ) , such that 

+oo f:.(n + .!_) 
k 21r 

l e 
(t E IR), 

n=-oo 



where 

c = c for all m E ~, m+k m 

are also constant. 

k-1 +oo 
a t 
k(nk + r + 27T) 

Proof. I 
r=O 

I 
n=-oo 

C • nk+r 
e ----------= 
{(nk + r + 2~) 

ee + 1 

r t 
k-1 +oo a.(n + k + 21rk) 

I I e = C = r + .E. + t r=O n=-oo f3 (n 21rk) e k + e 

k-1 
= I 

r=O 

which proves the proposition. D 

Hence f O with a= f3 = log 2 (k = 1,2,3, .•• ) is constant and has a,µ k 
the value k. 

THEOREM 3. 1 • If.::.> 1 and f O is constant then a f3 - a,µ 
k E {1,2,3, ••. }. 

= f3 = log 2 for some 
k 

Proof. If f O is constant then "all" Fourier coefficients off must 
a,µ a.,S 

be zero. Consequently the integrals 

f(t)evt1.dt f 027T • 

must vanish for v E Z\{0}. Since 

vti 
e )= 

7 
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+oo 
t a(n + 21T) + vti 

= I 
n=-oo 

Jo21r _e ______ _ 
dt = 

S(n + _2t) 
ee 1T + 1 

- 2. X~ r au+ v(u-n) 21ri e 

roo 
au+ vu21ri 

21T e du = = f3u -oo e e + 1 

(~ + 21rv i) - 1 
Joo f3 f3 

= 2; Ow dw = w + 1 e 

du= 

21T 1-s ct 21TV = T r(s)(l-2 )s(s), wheres= 8 + - 8- i, 

1-s one must have (1-2 )s(s) = 0, because of the well known fact that the 

r-function has no zero's at all. 
1-z It is also well known that (1-2 )s(z) (on Re z ~ 1) is zero only 

in the points z = 1 ± 1!;k2 i, where k = 1,2,3, •••• Thus, s = 1 + 2;v i 

must (for v = 1,2,3, ••• ) be equal to one of these zero's. From this it 

easily follows that a= f3 = 10f 2 for some positive integer k, which proves 

the theorem. D 

4. THE CASE O < % < 

Let us consider the case O < a d~f ~ < 1, a fixed. Define 
f3 

+oo 
4>(t) == I 

n=-oo 

a(n+t) 
e 

f3 (n+t) 
ee + 1 

, (te:IR). 



The average value of¢ is 

I J·1 +00 ea(n+t) 
IO ¢(t)dt = 0 (nf-oo _e_S.....,(-n+-t-e-)--)dt = 

e + 1 

+oo 
= I 

n=-oo 
--s:_a_u __ du= J:: --:-:-u __ du= 

ee + 1 ee + 1 

where A1 = r(cr)n(cr). Hence, if¢ 1s constant, as a function oft, then 

Al 
¢(t) = - for all t E JR. s 

Let us first consider the simpler case 

1/J(t) = 1/J Q(t) = a,µ 

+oo 

I 
a(n+t) -eS(n+t) 

e e 
n=-oo 

The average value of 1/J is 

A2 
S , where A2 = r(cr). 

9 

We will show by means of a complex function argument that 1/J is not constant 

for any choice of cr between O and 1. 

Suppose 1/J is a constant. Then we must have 

+oo 

I a(n+t) 
e • 

n=-oo 
e 

S(n+t) -e A2 
= - for all t E JR. s 
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Replacing est by x (> O) we get 

or 

Taking 

or 

+oo 

L 
n==-co 

+co 
I' 
l 

n==-oo 

cm 0 
e X 

an 
e 

Laplace transforms 

I:: 
+co 

-sx I e ( 
n=-co 

+co an 
I e 

Sn n=-oo s + e 

we arrive at 

Sn an e-e x)dx e = 

A 2 0-l 
= 6 s re 1-0), 

(x > O), 

(x > O). 

A2 f"" -sx -0 e x dx 
s 0 

(s > 0). 

Since O < 0 < 1 the analytic continuation of the right-hand side yields a 

multi-valued analytic function whereas the left-hand side is a single va-
Sn lued analytic function with simple poles ins= -e , (n E ~) and a non-

isolated singularity ins= O. From this we conclude that the left- and the 

right-hand side cannot be identical on s > O, showing that 1/J (t) is not 
a,S 

constant. 

Remark. Actually all Fourier coefficients of 1/J 0 (t) are different from a,µ 
zero. 

We now return to the function¢ and suppose that¢ is constant 

+oo 

¢Ct)= I 
n=-co 

a(n+t) 
e 
S(n+t) 

ee + 1 

Al 
= 6 , for all t E JR. 



· 1 . St b b . Again, rep acing e y x, we o tain 

+oo 

I 
n=-oo 

an o A 1 e X 
----- = 

esnx T ' 
e + 1 

(x > O) 

or 

I 
n=-oo 

ean Al -cr 
----- = -x 

esnx s 
e + 1 

(x > O). 

Taking Laplace transforms, we arrive at 

Al 1 
scr- r(J-cr) = s 

+oo 

I 
n=-oo 

+oo 
= I 

n=-oo 

+oo 
= I 

n=-oo 

Jooo -s an e • e -----dx = 
esnx 

e + 1 

an 
e 

an 
e 

Jooo -sx 
e 

11 

) ' (s > 0). 

The analytic continuation of the left-hand side is again a multi-valued 

analytic function with only one singularity ins= O. The right-hand side 

seems to have no analytic continuation at all across the negative real 

axis. However, we are not able to prove this. We therefore state 

CONJECTURE 1. The set of non-trivial zeros of r;(s) does not contain a 

sequence of the form {cr + n\i}:=l' (cr > O, \ > O). 

This conjecture is the first step in the direction of 

CONJECTURE 2. The ordinates of the non-trivial zeros of r;(s), lying in 
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the upper halfplane, are linearly independent over Q. 

Remark. In [J, pp. 18-25] BOAS and POLLARD discuss functions ~(t) for which 

(#) 

Defining 

we have 

(t E IR, X > O), 

Joo __ 2_t __ d t = 

-co 2tx 
e + I 

= _x_l_o_g_2 fcoo _u_d_u_l = X 
e + 

Hence, because of (1.4), we obtain 

ex, 

I 
Il==-oo 

~ (n) 
X 

~ (t)dt, for all x > 0. 
X 

In case the function¢ 6(t) is constant, we have 
0:' 

Since 

= r(cr)n(cr) 
B 

d I _w __ dw = r(cr)n(cr) Joo eo:(u+t) fco a-1 
------ u = s O w 

-oo e e B ( u+t) + 1 e + 1 B 



we would have another example of(#), namely 

a(n+t) Joo a(u+t) 

n~-oo -e-:-(-n_+_t_) __ = -oo ---e-S~(u_+_t~)-- du. 

00 

e + 1 e + 1 

Also compare [5]. 

5. In section 4 we proved by a complex function argument that if 
a 

a,S > 0 and O < S < 1, then 

00 

I 
n=-oo 

a(n+t) 
e 

is not a constant function oft. 

e 
S(n+t) -e 

13 

It seems to be worth the effort to prove this fact in as many differ

ent ways as possible in order to discover a method to prove conjecture 1. 

Therefore, in this section we will prove once more that~ a is not 
a,'"' 

constant (for all a, S > O). 

Let a,S and o be positive constants and assume that 

00 

I 
a(n+x) -oeS(n+x) 

e e = C 
n=-oo 

for all x ElR, where C is a positive constant. Replace eSx by t (>O) in 

order to obtain 

00 

I 
n=-oo 

an 
e 

Sn -oe t 
e = Ct 

a - -

Differentiating both sides k times we get 

00 

I 
n=-oo 

a+(k-l)S 
s 

- ~ -k 
t s 
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Hence, only considering the term corresponding ton= 0, we see that 

(a= f) 
k -6t -cr-k 6 e < Ca(l+cr)(2+cr) .•. (k-l+cr)t 

or 

k+a 
Now let t = -8 . Then we obtain 

] 1 
0(1+2+ .•. + k-l) - alog k 

< Cak0 e 

Now observe that 

n! 'l> 
n -n 

n e h1rn, [7, p. 200 J, 

and 

1 1 
+ - + - + 

2 3 

It follows that 

1 
+ - - log n :s; I. 

n 

However, it is easily seen that the last inequality is false if k is 

large enough. 

The above method of repeated differentiation, applied to the function 

~a,S (see p.8), did not yet lead to any proof of conjecture l. However, 



trying to do so we obtained some results which are interesting in them

selves. They will be described in the next section. 

6. SOME REMARKS ON THE FUNCTION - 1-
ex + l 

Let f(x) 1 = -- • Then we have 
ex+l 

Proposition 6.1. f(k)(x) 
k+l ck r 

= l ' , where the coefficients 
r=l (ex+l)r 

ck (k = 0,1,2, ..• ; I~ r ~ k+l) are integers satisfying ,r 

( 6. I) 

and 

k 
ck, 1 = (-I) ' = k! 

(6.2) C k+l ,r = (r-l)ck _1 - rck • ,r ,r 

Proof. Mathematical induction. D 

k+l 
Definition. Pk(z) = l ck zr. 

r=l ,r 

Proposition 6.2. Pk+l(z) = z(z-l)Pk:<_z), (k = 0,1,2, ••• ). 

Proof. This follows easily from (6.2). D 

k+l 
Proposition 6. 3. l ck = 0, (k = 1 , 2 , 3 , ••• ) • 

r=l ,r 

Proof. Mathematical induction, using (6.2). D 

k+l 
Proposition 6.4. l rck = 1, (k = 0,1,2, •.• ). 

r=l ,r 

Proof. Since Pk+l(z) = z(z-l)Pk(z), (k ~ 0) we have 

15 
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Hence 

pk+l(z) pk+l(l) 
pk ( z) = ___ z ___ l,,____ • 

z 

and it follows that (z + 1),Pk(l) = Pk+l(l) or Pk(l) = 1. Hence 

k+1 
I 

r=l 
re = 1, k,r (k ~ O). • 

PPoposition 6.5. Pk(z) = (-l)k+lPk(l-z), (k = 1,2,3, ••• ). 

PPoof. The proposition is true fork= 1 because P1(z) = z(z-1) and 

P1(t-z) = (1-z)(-z) = z(z-1). Now suppose that the proposition is true 

for k ~ m. Then we have 

pm+l (z) = z(z-l)P'(z) = z(z~l)(-l)m+lP'(l-z) • (-1) = 
m m 

= z(z-1)(-l)m+2P'(l-z) = (-l)m+2P (1-z) 
m m+l 

and the proposition follows by induction. D 

'PPoposition 6.6. P2k<½) = O, (k = 1,2,3, ••• ). 

PY.oaf. This follows innnediately from proposition 6.5. D 

2k 
n.,. 't' 6 7 p (1) (-l)k 2 - 1 B 
c .copOB'l, 'l,On • • 2k- l 2 = 2k k 

where Bk is the k-th Bernoulli number, defined by 

z ---= 
ez - 1 

l 2 -4 
- 2 z + Bl I! - B2 ¾"!- + ·•· ' (lzl < ~). 

PY.oaf. For x > 0 we have 



-x e -x -2x -3x 
f(x) = --- = --- = e - e + e - + ••• 

ex + I + e -x 

Hence 

and it follows that (compare [3, p. 492] and [4, p. 294]) 

2k C 2k c 

I 2k-l ,r 
------- = l 2k-1 ,r = 

r=l 2r r=l (e O + I )r 

= f(2k-I)(O) = lim f(2k-I)(x) = 
x• O 

(-1)2k-l . -x 2k-1 -2x 2k-l -3x lim {e -2 e +3 e = 
x• O 

= -n(l-2k) = 

Proposition 6,8. 

2k 
= (-l)k ~2_k_ ~ 

Bk 22k - l r=l 

2k -( I -2 ) 1;;(1 -2k) 

c· 
2k-1, r 

2r 

= 

Proof. This is a restatement of proposition 6.7. D 

(22k_l) 

- + ... } 

(-1 lBk 

2k 

17 

= 

D 

Remark. The numbers ck .may be computed very quickly by means of formula ,r 
(6.2). 
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~ 1 2 

0 1 

I -1 1 

2 I -3 

3 -1 7 

4 I -15 

5 -I 31 

Table of ck ,r 

3 4 

2 

-12 6 

50 -60 

-180 390 

5 6 

24 

-360 120 

Therefore, proposition 6.8 furnishes a direct method to compute the 

Bernoulli numbers. For example 

2 

z2-

B __ 4_ {.:..!_ + l._ + -12 + __§_} 1 
2 = 24 _ 21 22 23 24 = 30 ' 

Definition. The (Stirling) numbers bk,r (k = 1,2,3, .•. ; l:,; r:,; k), are 

defined by means of the following factorial expansion of the function xk 

(compare [6 , p. 90]) 

k 
x = bk,lx + bk, 2x(x-l) + •.. + bk,kx(x-l)(x-2) ... (x-k+I). 

This expansion is possible and is unique. 

Proposition 6.9. bk,! = bk,k = 

(k = 1,2,3, ..• ; 2:,; r:,; k) 

l and b k+ l ,r = bk I + rbk ,r- , r 



Proof. Use mathematical induction. D 

Definition. 

I 
ak,r = (r-J)! ck,r' (k = 0,1,2, ••• ; I~ r ~ k+l). 

Proposition 6.10. ak+l,r = ak 1 - rak ,r- ,r 

Proof. This follows easily from (6.2) D 

• • • ,,, = (-l )k+r+l Def~n~t~on. ~ ak • k,r ,r 

Proposition 6.11. a = a + ra . k+l,r k,r-1 k,r 

Proof. This is an immediate consequence of proposition 6.10. D 

Proposition 6.12. ak,r = bk+l,r 

Proof. This follows from the observation that 

an<l the fact that ak and bk satisfy the same recurrence relation ,r ,r 
(see propositions 6.9 and 6.11). D 

Proposition 6.13 

C k,r 
(-1l+1 

= -------r 

Proof. Mathematical induction, using proposition 6.1. D 

Proposition 6.14. (compare [ 6, p. 226]) 

19 
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b 
k,r 

P-Poof. b = a = (-l)k+r a 
k,r k-1,r k-1,r 

<-1 l+r 
= (r-1) ! ck-1 ,r 

and the proposition follows from proposition 6.13. D 

Proposition 6.15. 

k 2k 2k r 
Bk = (- I ) ---- l l 

22k-1 r=l n=l 

Proof. This is an immediate consequence of propositions 6.8 and 6.13. D 

Finally we prove 

Proposition 6.16. If pis a prime larger than 2 and if 2 ~ r ~ p-1 

then c 1 is divisible by p. p- ,r 

Proof. Since c = (-l)r-l(r-1)! b it suffices to show that pjr!b p-1,r p,r p,r 
or, using proposition 6.14, that 

Now observe that 

I (-l)n/~)cnP-n), 
n=l \ 

because of 

f c-l)n1 ~)n = o, 
n=l \ 

(r = 2,3,4, ••. ). 

Now, applying FERMAT's theorem [ 2, p.63], the proposition follows. D 
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