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Asymptotic expansims connected with truncated series

of exponentlal and Bessel type.

1. Introduction.

A conjecture of Ramanujan (1) was the starting-polnt of some

papers: Watson(e) and Szegb(E) treated the function y(n), defined

by
n 2 . n-1 n
e _ n n n i n-
"2"" = 1 +-1—!-+§—T s +T_—)—_l'l—1 1 +-§¢ (n) nl 3y (1.1)

and they found the asymptotic expansion for y (n):

y(n)f\)%'{'v‘-%—h—‘l' PN . (1’2)

A similar result, connegcted with e’n, was discovered by Aitken
and proved by Copson, that, connected with cos n and sin n 1s given
also,

7) and

Theorems of the same kind are given by Furch(6), Mirakyan(
Liouville(8
The intention of this report 1s: To give in the first place an

expansion for the function qD(n,w) defined by

2 -
S € ) . o0 o 0 on,m),

(1.3)

where w is a complex number. From this expansion, all results,
mentioned above, can be derived.

To give in the second place, an expansion forqjk(n,x) defined
by co n

h 7 h n
Z X Z x x
hoo DI(b¥Kk) B hoo Bl (hHk) T ATnTx) ! P (n,x), (1.4)

where k> O and x is a negative number. One may be acquainted with
the fact, that the functions in the left-hand side of (1.4) are
closely connected with Bessel-functlons., Finally an application of
this last expansion 1is gilven.

2. An integral representation.

/The first object is to find an integral representation for(b(n,w)
defined by:

T LA i%ﬂl~ R L?g;?;l - i§¥li O (n,w)= ™ (2.1)




It is easlly seen that jﬂﬁ (nw)k _ (o0)? e™ (1+ =) au
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Suppose w real: °
co -nw o
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je (1 + 55) du = f e T (1+ &) du + fe (1+57) du=
o o -nw
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nw
= - nw v{‘enwu (1 - w)™ au + £ né
2 (nw)
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n k n+1
S gnvz R gnwgl 4( eI ()P gy
o L
©
n-1 k n
Vi (nw)™ . (ow) O (n,w)= ™
5 k! n! !
t
dj(n,w)= 1+ nw . J e™™ (1 - w)® qu. (2.2)
{

Q
This integral representation holds by means of analytic continua-

tion for all complex w.

3. Transformation of u.

Next the complex variable
t = -wu - 1In (1-u) (3.1)

is substituted in (2.2), yielding:

-nt du
¢)(n,w)= 1 + nw J.e It dt. (3.2)
C
where C denotes an integration path in the 1 -plane given by (3.1)
when u varies from O to 1 along the real axis.
To get an asymptotic expansion for ﬁ)(n,w) one has to expand

the integral I = J e'ut %% dt . (3.3)

¢
This can be done by replacing C by the real positive axis and by
using a lemma of Watson(9 : Let F(t) be analytic when lt] L a+&,
a>0,8> 0 save for a branch-point at the origin and let

- m/r'1
F(t)= Z%} ay b when |t|<a, r>0;

also let IF(t)]<:Kebr, K, b positive numbers independent of t when
t positive and t>a.
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Then the asymptotic expansion

oo

J eVt F(t)dtmi& 2. M (%)\7 -m/x

o

is valid in the sense of Poiraare when |N| 1is sufficiently large and
larg V< /2 -4,  arbitrary > 0.
But to replace C by the positive real axis one has to 1nvestigate

the singularities of %—% Writing w = r'eiq) , one has:

at _ _y + 1 (3.4)

The critical points are u = 1 and ug =1 - —J-q- , resp. t =00 and

tS =1 -w + 1ln w,where log w be defined real for poesitive w; by
cutting the w-plane along the negative axis, so that -1 {arg wgw,
log w 1is made single valued.

The t-plane is divided by the positive real axls and C in two

parts. Now the condition will @
be derived that the point ty /
does not lie between C and ‘ G
positive axis, i.e. in G :

t = -wu -In(1-u) t=1-w+1ln w .

Im £=- ur singy Im £t =-r sing@+

Re t=- ur cosp -ln(1-u) Re t = 1-r cosp+lnr

If there 1s a point ts-’ inside G, 1t must ®e possible to find
such u, that Im t = Im ts, thus

u =1~ hid
r sing

Since Oug, must r>» —S'—:IS_L-’%'?P
It is thus proved that for r<%ﬁp there cannet ®e a singularity
inside G. In that case C may be replaced by the positive real axis.
If @ =1, one has Im t = 0 and Im tg =T, In that case C is real

and tS i1s a complex rolnt.

it
S
o)
A
a
A

If rZ—é-:lEm there exists u - m

Re ts—Ret=1‘--€k2——+ln P _ >0 for ~T< P T,

!
[0}
=
3
.6
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As Im t is a monotone function of u, it is proved that for

@ . : .
Ig>§ﬁ}ﬁb one singularity lies inside G.

4, Determination of the character of the singularity.

One has from (3.4)

au _ (1-u)(1-ug) 1 1
dt U-ug wz(u—us) W
Now %% has to be expanded in a power series of t—ts:
_ Y1 o _ _l-u 1-u
t-t, = w(1-u)-1 - In(1-u)w = T 1 -~ 1ln Tay

= - w(u-ug)- 1n{}—w(u—usi]=—w(u—us)+ Z%* % (w[ﬁ—uéj)k

The t-transformation has therefore a branchpeint at t =

For the convergence of (4.3) in u = 0 must Ju | |[1-ug} or

1 1

Re ug = Re(1 - )= 1 - % cos¢;<f% , which gives the condition

r2 cosy, that 1s a inner reglon of & cirele-vith radius one and

with origin in point 1.

5. Power-series expansions for g%.

First the case r<(§%%:©.

du

| . _ 1-u
One has: a—E—m .

By means of (3,1) and reversing of series one finds:

du_ 1 b, 42w 88 14Bwibw 2
I N TS E (Y L

. 1+0ow+58u ok tF ¥

(1-m)9 T (1) 1] 51

Now the case r;&E%Eﬁﬁ , <2 cosP.

1452w+ 328wt kb hwd 200" £

(5.2)



g -

In rerlacing C by the positive real axis one has to make a 1lo0p
around the branchpoint tS

(4.2):

1 _ W - i )T
T TS (t-t )72 + 3’% +6—‘-”-—\[§ (t-t4)% + T% (t-tg)+

and

A‘ .
where (t-ts)2 1s defined as - Vt-ts as leng as one does not pass
the branchpoint and as + Vt—ts as one has passed the branehpoint.

6. Asymptotic exmpansion af Cb(n,w

¢, As the epnditlpns of the Watson-lemma are satisfied, ene finds,

A

using (5.2) for the asymptetic expansien of<D (n,w):

1 W 1 {1+2w%w ! (1+8w+6w2)w 1
n,w - — + - —_— +
¢>( )n)1_w f1-wj§ T (1-w) n? (1—w)77 n’

(1+22w+58w2+2)+w3)w 1 (1+52w+328w +444w3+1/‘0w Yw —%+--—

.|_
(1-w)2 nt (1-w) 1 T n
+ o (6.1)
which holds for r<—f— , if w = r e ®, —T<p g T
sinqb 3 s NS
Now the case r;;§€§§5 ; r<{2 cose.
One then makes use of expansion (5.3):
~ %
S - 5
qb(n,w)n;1+n ;E;ck e 1Yy t-ts)'2 X gt J( Z:c (t-t ) at
° i (6.2)
S (1c3) b % r
-nt Z c k3 ) ! -n A Z _
s e 2t UHE)L | e ) e | o
k=-1 n-'2 {
s (5.3)

where ts 1 - w + 1n w.

1l
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As the expansion (6.1) becomes bad when w is nearly equal 1, one
can Wetter use (5.3). One then has

1 o P . »
! E’ . -n
C? (rl,W)(\YT + n %1°/~A/k e (t—ts) 2 dt =

—hts

o )
&0
+ e—nts Z:x \k/2)1 e ntS 25; °k e~V V&de (6.4)
-1 n -1 n'A . ]
(e]

For w = 1 -~ %H an expansien of this kind was ortained by Furch (6).

7. Some speclal cases.

Teking w = -1 in (6.1) one has:

Blatiod s sy - Lo L M o
' 2780 " 5502 0 1280 512nt 204800 (

which corresponds with Copsonts result (4), except fer the coeffi-
cient of n~4 glven there as - gé%

n-1 k 2k n 2n \
One has: cos nw = %; (-) éﬁf) + (—)Qé?w) ReQD(En,iw)
n-1 k 2k+1 n 2n+1 |
and  sin nw = 2%' )(éﬁzg)l + (~%2é2?%! Re%)(2n,iw)
and for Re(?(Qn,iw) one finds:
| 2 2
rRe D (2n,1w) e 1+ ¥ (5-w=) 1. (7 BOW L ) 1o+
! ) 1 4we 2(1+w2)3 n (1+w2)5 n
+ w2{15—245w2+511w4~183w6+6w8) a4
8(1+w) 'l n’
6 8 sy 1€
(31 1420y> +8634w 12216w +430Uw" 274w ") ;% o (7.2)

o]

16 (1+w=)2

Taking w = 1 one has:

Re ¢>(2n,i)«>% e A3 22 L. (7.3)

%2n®  128a°  512n

which corresponds with the result given in (5) except that the
coefficient of n"LlL given there 1is - é%% .
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Finally the case w = 1; one has ts = 0.

Using (6.2) one has, after inserting the coefficients Cx according
to (5-3):

1 Y, T Y
C%)(nﬂ)m\[g n2+%—+-112—\/ TQE n 2+T-3—5n1+§188\/1§n 5.

(7.4)
Watson (2) and Szego () gave an expansion for y defined by
n-1 k n
n n n
te = )X gy +VaET
0
. . n 251 K ? n”
Comparing this with e =2§3 T +—§)(n,1). T one has
' nle 0
vy =0(n,1)- =
? ’ ont
Stirling!s expansion gives:
n
nte Tn fﬁ 1 1 —I
o 1 -+
onl 2 L_ Ten 288n2 B
Thus:
TR
yA’(\*)%+:l_3_5.n1 c e e (7‘5)
and these are the first two terms Watson gave.
8. The approximation connected with J, (x).
As in the preceding sections one can try to glve an analogue
expansion for Jk(x) and Ik(x)a It aprears, however, that it 1is
easler to treat the function
A
X
X = . 8.1
hokl®) = L wTTRTRY (8.1)
It 1is shown already in (10) that
Pl = ‘\
Ioo,k(-x)_ Jk(2 V;)/(\/X)k, (8.2)
and
Ioo’k(x) = Ik(g\[;)/(\[—}?)k’ (8.2)
where x> 0.
Putting again
' n Xh
k(= 2 wemT (8.3)

oy
1t
O
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one defines @, (n,-x) by the equation

n
n-+1 X
]c:;o,k<-x)— Ink<—X)= ("1) (Pk(n:"x) nTik+n )1 (8'4)
and one can derive the following representation(m>
VX
21"
k+n t -k-n
@ (n,-x)= 2" (k+n) | .J'dt,Jk+n+.1(t)o[1— ﬁ] t . (8.5)
o

Substituting now into (5) the well-known integral-repreéentation

for the Besselfunction of the first kind (11)
!
2—k—ntk+n+1

2\ kn+s
Tyeinaq (B)= dy. (1-y°)*™72 cos t y, (8.6)

(k+n+%)1VE?

o
1t results after application of the transformation

u=2\/; )

that
? o] ks
P (n,-x)= (kn) ¢ it.t. cos( tu ) [j- } [- 3]
2 (k+n+5)1 Vﬂ
° (8.7)
In order to derive the desired asymptotic formulae one has t»
expand first
' t2 n - 2
(1 - ) = exp[:n log(1 - 1) | =
= exp(- n 2{; )=
h=1 .X
= exp t n} [: _ tun _ tén + t8n2 - t8n o (8.8)
30x° 192x3 2048x " 1024}(4

The expansion for the logarithme converges uniformly in the region
lt] <2Vx, so the expansion mentioned in the last member of (8.8)
will converge uniformly in the same set.

By introducing

V=k +n + 3,

one sees easil%

R e [y T
Tx T 30%° 192x3 2048x T 102k4x "

(8.9,
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che serles in “he right-hand side converges again in a region
\iu' <2\/v

For couveniance let be Lntroauced now
L2‘ln a
f(t,u)= 1 - WJ L’I - ‘4}7 . (8.10}

0Of course flt,u) is also dependent of n,Q’ and x. It is shown
already that £(t,u) can be expandﬂd in a series

5
f(t.,u)= exp { t° n+a Qﬁl l f1n £l ub (8.11)

7y . being sultable coefficients and the series converges in a
- —
neighbouricod lul<2Vx, |t < 2Vx.

Trom thic 1t can be proved that

NEA Y
P n.-x)= (o) (du dt.t.cos(-2L). £(t,u)=
2V rrx (k+n+s) ! ) 2Vx

\'H-].:\J\ Q 2\[)2O 2\1;(’

= _ik+9)3 25 f1n du dat. gt uhcos(jai).
o\ e (kan 2 ) | he0 ’ 2Vx

(@] O

2 2
.exp{ E_%iE_i} + Ry, K (-x,M) (8.12)

rerc R, (-x,M) r*ands for
N, Ie [ -
éé?v PSS
2 2
(len) 4 / 1+1 h tu £Sn+u
= L\ T du | at.t .c08 (=) .exp{ -
Nk (kindd): o LB Nz
1>0 ' 8
B M © ° (8.13)
et be put the following condition
1w Eopso, (8.14)

It may be possible that this condition is not necessary, but it
i3 a sufficient condition. One can put now the upper limits of the
“ouble Integral equal to infinity. The error, made by doing so, is
asymptotically of such an order, that it can be neglected. For

co )
4 2.2
] u [@H:A:Pr1 LS Sy ex p{ l-g‘i—}

os (
4rTn
Qo 2rn oo
141 h £ £24u°
+ Ct. [ du.t™ utcos (mpg) . expi- —— = Ofe

(@]

4rn



So one has finally

h+1=M e £
k+n) ! 1+1 . h tu
(n,-x)= ( £ du [ dt.t” " .u .cos(—=)-
P 2Vt x (k+n+2) 1  h=0 1,h 2Vx
1=0 o o
2 2
.exp{ t nu Q}-+ Ry, (=%, M)
(8.15)
9. Some calculations.
Now one needs the following integrals:
o 2
2a tu u
Gop= | du.u™".cos(==).exp (- 75%), : (9.1)
2\Vx
and o o
2
_ -pt 2a+ _ (Dh 1
Hoppq= j(dt.e .t , where p = (Ei + EV)‘ (9.2)

)
These 1integrals may be calculated from the expressions found in
(12).

So one finds:

t2
wx 0y
Gy = \/tv: © .
X2 2 29 4
G4=GO;)——4—(12\> - 12 5 4+ t7),
3
G = GO.SC—G (120V 2 - 180 29 2 4+ 20 £ - 0,
)
Gg = Go,f)ﬁg (1680\)LL - 3360 22 + 840 £R2 56 9 + t8)
5
G o= G- %(3024095- 75600 20 *425000t ) 2-2520t%9 2490t - £ 19,
and
H = al
2a+1 2pa+1
One also needs an asymptotic expression for Ezii T which may
be found in Norlund (13)
S S, 8~% (s+%)
-7 ( 2 B 2
G- ! = Z ( ) 5 ) S T 3 (Z>O)' (9-3)
z1\z oo (2F%) (2+%) .. . (z+s43)

From this one derives

2Nzt 1 ! + T (9-4)
@RI TS T ) | Tosk(aeh)?
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Combining the results mentioned in the formulae (8.8), (8.9).

(8.15), (9.1), (9.2) and (9.4) one finds after some more integrate
calculations the series:

2 2
0 (0, X)L n _ 6 VTpT-6 Yp+1
T TV T8V T 5y x30 T s U3
L1 __.n__ _20V7p’-30 Vp 410V p-1
128 V°  6uxpT 64 v Op™
. n(3)°p°-9 Y p+3) L3 n® .\ 2109 -4207p 24210 Y% p° - 42 p+3
256 x° y g2 512 % p oy 512 Y p°
(9.5)
The speclal case x = -n2 glves the theorem: The function QK’k(x)

can be written for negative x in the form

n

h
B X %
Icg,k(x)" kio BT (RTR)! | AI(aTk)! P, -n

where fk(—ng) possesses the asymptotic expansion:

2
%}k(n,—n

2)

2y 1 ko

10. The approximation connected with Ik(xl,

The way given by section 8 can also be used to obtain the inte-
sral-expression for %Dk(nj+x), x50

VX 2VX ’ 5
k+n) | tu t“\n, u k+n+s
@ (n,x)= ( —— (du dt.t.cosh(—sz)i1— ) (1= =)
/k( ) 2(k+n+s) 1 V7Tx e T Bx
QO 0
' (10.1)
But now the trouble begins, especially in the case x = n2 one has
20 in
2 (k+n) ! | tu £ n u Jend
© (n,n?)= ! dau | at.t.cosh(S).(1- L5)".0-25 )
[k 2(xn+s)1Ven Un bn
(10.2)
2 2 s
T )n u )k+n+§ by the

and one sees that replacing (1 - .z and (1 - Z_E
: n n

expansions (8.8) and (8.9) yilelds a false result. Replacing the
upper limits of the integrals by infinity is not possible.
It must be possible, however, to write

2n
n 2
= i (n+k) ! .%k‘n,n )

1

2 2
2 Emgk(n )- In,k(n )
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with oo

2
Py (n,n%)= i

~-h

The coefficients a, are functlons of k, and for k = 0 or 1 the

values of a5 are numerically found resp. - g and - 2 .

3

11. An aprlication.

The expansion (9.5) can be used to estimate the number of real
zeros of the function In)k(x)° As already mentioned in R 173, these
zeros are all negative.

It helds now for sufficiently large values of n and x

n
X

In,k ("‘X-)= %’Q,k(—x)-{— (—'] )n(pk(n,—X) m—l- »

So, if x is & zero of I ,(x), one has
n,k‘\"-

(_,' )Yl+1

Crlmo) . gy = Lokl0)= R VR VR,

or, by using only the first terms of the asymptotic representation
for Jk(EVEE) and of the exransion (€.5) one has

n-+1

X ) 1
nz(k+n)1{(k+n+%)n+x} o\rT x 2t e
Introducing a number r by x = -r nd, one gets &n a manner similar

to thatused in R 173 an expansion for r. So it appears that rrojg is

that value »f r sbnve which there are no zeros of I, k(x) possi%le.
2
To determine the number of zeros lying in th? i?terval
1

-r n2<ix<io, one canjuse Schafheitlinr's result ; the number of
zeros is equal to —E—g + 6(n).
TC e
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