STICHTING

MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49
AMSTERDAM

ZW 1953-017

H.J.A. DUPARC

A short proof of a property of Ward on recurring series.

A short proof of a property of Ward on recurring series H.J.A.Duparc.
M.Ward 1) proved the following theorem.

Let u_{1}, u_{2}, \ldots be elements of a ring R satisfying a linear recurring relation of order N of which the characteristic polynomial $f(x)$ is irreducible in $R[x]$. Let further two positive integers a en b satisfy

$$
\begin{equation*}
u_{a+s b}=r(s=0,1, \ldots, N) \tag{1}
\end{equation*}
$$

where r is an element $\neq 0$ of R.
Then $f(x)$ is a cyclotomic polynomial and every solution of the difference equation, of which $f(x)$ is the characteristic polynomial, is periodic.

In the below proof, contrary to Ward's proof, no use is made of the roots of $f(x)=0$.

Introducing the operator E which transforms u_{n} into u_{n+1} ($n=1,2, \ldots$) one has

$$
f(E) u_{n}=0 \quad(n=1,2, \ldots)
$$

Let $T(F)$ denote the resultant belonging to $R[F]$ of $f(E)$ and $E^{b}-F$. Then there exist polynomials $P(E, F)$ and $Q(E, F)$ of $R[E, F]$ such that
(2) $\quad T(F)=P(E, F) f(E)+Q(E, F)\left(E^{b}-F\right)$,
where $Q(E, F)$ is of a degree $\leqslant N-1$ in E. Moreover from the Sylvester representation of $T(F)$ as a determinant one immediately finds that $T(F)$ is a monic polynomial of degree N in F.

From (2) one gets

$$
T\left(E^{b}\right)=P\left(E, E^{b}\right) f(E)
$$

hence

$$
\begin{equation*}
T\left(E^{b}\right) u_{n}=0 \tag{3}
\end{equation*}
$$

Now put

$$
v_{n}=u_{a+b n} \quad(n=0,1, \ldots) ;
$$

then, if the operator G transforms v_{n} into v_{n+1}, from $v_{n+1}=$ $=u_{a+b n+b}=E^{b} u_{a+b n}$ and from (3) one finds

$$
T(G) v_{n}=0 \quad(n=0,1, \ldots)
$$

1) M.Ward, A property of recurring series, Proc. Nat. Acad. of Sci. 19 (1933), 914-916.

Taking $n=0$ and using (1) one obtains

$$
0=T(G) V_{0}=T(1) r,
$$

hence $T(1)=0$ on account of $r \neq 0$.
Then (2) gives

$$
0=T(1)=P(E, 1) P(E)+Q(E, 1)\left(E^{b}-1\right)
$$

hence

$$
f(E) \mid Q(E, 1) \quad\left(E^{b}-1\right)
$$

Since $Q(E, 1)$ is of a degree $\leqslant N-1$ and $f(E)$ is irreducible and of degree N, one obtains $f(E) \mid E^{b}-1$, whence follow both the assertions immediately.

