STICHTING MATHEMATISCH CENTRUM 2e BOERHAAVESTRAAT 49 AMSTERDAM

ZW 1953-017

H.J.A. DUPARC

A short proof of a property of Ward on recurring series.

1953

A short proof of a property of Ward on recurring series H.J.A.Duparc.

M.Ward ¹⁾ proved the following theorem.

Let u_1, u_2, \ldots be elements of a ring R satisfying a linear recurring relation of order N of which the characteristic polynomial f(x) is irreducible in R[x]. Let further two positive integers a en b satisfy

(1)
$$u_{a+sb} = r (s = 0, 1, ..., N),$$

where r is an element $\neq 0$ of R.

Then f(x) is a cyclotomic polynomial and every solution of the difference equation, of which f(x) is the characteristic polynomial, is periodic.

In the below proof, contrary to Ward's proof, no use is made of the roots of f(x) = 0.

Introducing the operator E which transforms u_n into u_{n+1} (n = 1,2,...) one has

$$f(E)u_n = 0 \quad (n = 1, 2, ...).$$

Let T(F) denote the resultant belonging to R[F] of f(E) and E^{b} -F. Then there exist polynomials P(E,F) and Q(E,F) of R[E,F] such that

(2)
$$T(F) = P(E,F)f(E) + Q(E,F)(E^{b}-F),$$

where Q(E,F) is of a degree $\leq N-1$ in E. Moreover from the Sylvester representation of T(F) as a determinant one immediately finds that T(F) is a monic polynomial of degree N in F.

From (2) one gets

$$T(E^b) = P(E, E^b)f(E),$$

hence

$$T(E^{D})u_{n} = 0.$$

Now put

$$v_n = u_{a+bn}$$
 (n = 0, 1, ...);

then, if the operator G transforms v_n into v_{n+1} , from $v_{n+1} = u_{a+bn+b} = E^b u_{a+bn}$ and from (3) one finds

$$T(G)v_n = 0 \quad (n = 0, 1, ...).$$

1) M.Ward, A property of recurring series, Proc. Nat. Acad. of Sci. 19 (1933), 914-916. Taking n = 0 and using (1) one obtains $0 = T(G)v_0 = T(1)r$,

hence T(1) = 0 on account of $r \neq 0$.

Then (2) gives

$$O = T(1) = P(E, 1)f(E) + Q(E, 1) (E^{D}-1)$$

hence

$$f(E) | Q(E,1) (E^{b}-1).$$

Since Q(E,1) is of a degree $\leq N-1$ and f(E) is irreducible and of degree N, one obtains f(E) $| E^{D}-1$, whence follow both the assertions immediately.