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1. Ké&hlerian spaces.
A k&hlerian space is defined as a complex space in which a Herm:i.

tian metric _ » -
(1) ds* = 2 3.7-m bz azX (%inz 3):1 =3‘Ex ).

satisfying
(2) 345, = % %an o

is given, where

- 5 3
2" 22t 9ﬂ= Foe > A7 fEm

and the indices x, A ;, » ,... run over the range 7, 2 ;...,mand th»
indices X , X , K ;... the range 7, 2 ,.+¢R.
If we put

(3)
_ o 3';;,1 ~ & L'JI\K 0 )
?;-ﬂ_ = ( 9ni o ) 5 rd = [ o -AJ:\E 5

0

N
we zan easily verify that ?&ﬂand FC are related by
(4) ;!

gor Fo Fro= gy

<R
and the tensor F, satisfies

(5)

where the indices h, 1, j, k, 1, m run over the range 7, 2 yjoee,n , -

7,...¢£, Equations (4) and (5) show that the tensor

(6) .0
o= F
Foa A Foa
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is anti~symmetric in its two lower indices. The equations (4), (5) enu

(6) are invariant and remain valid if the voordinate system (h) is

not taken special as defined by (3) but general, h, i, j =1 ,.:.,2n
Moreover, the condition (2) is expressed as

(7) \ A
VJFE =0 or VJ- Fie=0

where V; denotes the covariant differentiation with respect to the
Christoffel symbols {5“¢§ formed with %gk ¢

2. Pseudo-kiZhlerian spaces.

Now consider a 2n-dimensional real space in which two tensors 4.
and Fiﬁ satisfying (4), (5) and (7) are givene We call such a space
a pseudo-kdhlerian gpace.

If a pseudo-kidhlerian space is of class ond , then we can prove
that a pseudo-k&hlerian space is a k&hlerim space, but if a pseudo-
kédhlerian space is only of class oad (r =0, 1, 2,es., ¢ the proof
is not yet given. So we call it a pseudo-~kdhlerian space for the time

being.

3. Constant sectional curvature.

In a riemannian space, consider two linearly independent vectors
W and »"at a fixed point P . These vectors determine a 2-dimensional
plane-elements Consider all the geodesics which pass through the poiny
T and are tangent to the 2-dimensional plane~element determined by
wW* and +*. Then these geodesics constitute a 2-dimensignal subspace
which passes through the point ? and are tangent to the 2-dimensional
plane~element determined by w™ and v . The Gaussian curvature or to-
tal curvature of this 2-dimensional subspace is called the sectional
curvature of the Riemannian space at the point P with respect to the
section determined by two linearly independent vectors w™ and v" .

If we denote by 'jéquK the curvature tensor of fthe riemannian
space and assume that the two vectors «* and " are unit vectors
‘and mutually orthogonal,then this sectional curvature X is given
by the formula
(8) P I x

x=-?fwMAK w vt ut

If the sectional curvature is indepentdent of the choice of the
section at each point, the space is sald to be of constant sectional
curvature or simply of constant curvature. For a riemannian space of
constant curvature, we have the classical
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Theorem 1. A rimmannian space of constant curvature has the curvature
tensor of the form

(9)
’PY/ARK: n( g'rn ?MA_ ?’y;\?‘,u-x) s

where X is an absolute constant called the curvature of the space.

Now consider a pseudo-kdhlerian space. If we have a vector wh oot
a point P , We can assgocilate to this Vector a vector F v s« Because
of the relations (4) and (5), the wvector Fi*v° has the same length
% and is orthogonal to'va « We call a holomorphic sec~-
tion a section determined by a vector »* and Fi*v»*  associated to

»* in this way, and call holomorphic sectional curvature the sectio-

as the vector

nal curvature determined by a holomorphic section.

If the holomorphic sectional curvature is independent of the holo-
morphic choice of the section at each point,; the space is said to be
of constant holomorphic sectional curvature, or simply of constant

holomorphic curvature . For a space of constant holomorphic curvature,

we can prove
Theorem 1'. A pseudo-k&hlerian space of constant holomorphic curvatu-
re has the curvature tensor of the form

(10)

K

yx o
%jch T ;‘[(%a‘};a"ﬁhjjﬂ*'(ﬂg F;‘c" F&c Pj&) -2 t-&j FC/{J E

where & is an absolute constante
Theorem 1''e In a pseudo-k&hlerian svace of constant holomorphic cur-

vature, a general sectional curvaturc w determined by two mutually

orthogonal unit vectors «* and v

(11)

is given by

x :-—f— (l+3al)b

where
(12) ;
A = F-L&u "}p‘
. : . Ao h
is the cosine of the angle between two unit vectors F‘L u and v
Consequently a* £ 1 . Thus
(13)

%é)fé% for £>0 and &g,)v:s% for #c¢co .




4. Axiom of planes.

In a riemarnian space, a two-dimensional subspace is called a planc
if a geodesic of the enveloping space joining any two points on the
subspace is contained always in the subspace.

If there exists always a plane which passes through a given point
and is tangent to a given 2-dimensional section, we say that the rie-
mannian space satisfies the axiom of planes. We have
Theorem 2. A necessary and sufficient condition that a riemannian spa-
ce satisfies the axiom of planes, is that the space be of constant cur-
vature.

Now take a pseudo-kdhlerian space. If there exists always a plane
which passes through a given point and is tangent to a 2-dimensional
holomorphic section, we say that the pseudo-kdhlerian space satisfies
the axiom of holomorphic planes. We can prove
Theorem 2'. A necessar: and sufficient condition that a pseudo-kihle-
rian space satisfies the axiom of holomorphic planes is that the spac-

be of constant holomorphic curvature.

5. Free mobility.
If in a riemannian space there exists always a motion which trans-

forms «n wrhr.oaridy given-point P into another arbitrarily given

point P and an arbitrarily given direction »* st P into another

arbitrarily given direction e , then we say that the space admits

free mobility. We have

Theorem 3. In order that a riemannian space admits free mobility, 1:

ig necessary and g-fficient +that it be of constant curvature. If in

a pseudo-kdhlerian space there exists always a motion which transforms

any two vectors w” and F;guf at a point T into any two vectors wr and
'FLA'MC at any point T . then we say that the space admits holomor-

phic free mobility. We can prove

Theorem 3'. In order that a pseudo-kdhlerian space admits holomorphic

free mobility, it is necessary and sufficient that it be of constant

heo ~orphic curvatures

6. Conjugate poi.ts.

In a riemannian space, consider a geodesic and two points T ana &
on it. If all geodesic arcs joining‘? and a point between T and A
realize the relative minimum but the geodesic arc joining T and & or
Peand a point beyond (B do not realize the relative minimum, we say that
two points P and O are consecutive conjugate points.

We have
Iheorem 4.
In a riemannian space of constant positive curvature X, the distance




between two consecutive conjugate points on a geodesic is constant

and is equal to 7/Vx . '
Corresponding to this, we have

Theorem 4'. In a pseudo-kdhlerian space of constant positive ho-

lomorphic curvature R, the distance between two consecutive conju-
gate points on a geodesic is constant and is equal to R/ ANE




