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INTRODUCTION

For practical reasons, it has appeared useful (c.f. [1], [2]) to generalize
the concept of a filter as follows: Instead of the requirement that every
finite set of elements of the filter has non—empty intersection, one only
requires that every pair of elements intersects. A collection satisfying

this weaker requirement is called a linked system. Thus we have linked

systems as compared with centered systems and maximal linked systems as

compared with maximal centered systems or ultrafilters. All kinds of
extensions of spaces which are defined by using ultrafilters as points
can now be generalized by using maximal linked systems. The extensions
obtained in this way are called superextensions (actually, there are many
superextensions of a space). This report is the first in which we try to
study this concept in some generality and although it is communis opinio
among the authors that we have only scratched the surface of the subject,
we hope to make 1t clear that the results obtained so far are satisfactory
and not pathological.

Also, the superextensions seem to supply us with a new method by which we
can create new (bigger) spaces from old ones (c.f. hyperspaces, products,

unions, cones, suspensions, inverse limits].

The superextension of a discrete space of 1, 2, 3, 4 and 5 points
is a discrete space of 1, 2, 4, 12 and 81 points, respectively. The super-
extension of a compact Hausdorff space is a compact Hausdorff space of
the same welght. In particular, the superextension of a compact metrizable
space 1s a compact metrizable space. Superextensions are even supercompact
(i.e. there exists an open subbase such that every cover by subbase elements
has a subcover consisting ot two elements). The interest in this strengthening
of compactness is enhanced by a recent proof (by J. O'Conner [Bj at the

Univ. of Florida) that every compact metrizable space is supercompact.

Extensions of continuous mappings over the superextensions are
- as almost always - important, and a necessary tool. The results obtained
here are as good as can be expected. This part of the work has mainly been

carried out by the second author who also proved the weight theorem.
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There is an external (though seemingly not internal) relationship
between the superextension of a space and the hyperspace of a space. Just
as the finite point sets of the space play an important role in the theory
of the hyperspace, the more sophisticated.finitely determined maximal
linked systems (see section 3) play an important role in the theory of
superextensions. The introduction of this notion and the development of
techniques are due to the third author. His main result in this section
(Theorem 3) states that under very general conditions, the superextension

of a connected space is both connected and locally connected.

In the fourth section, we analyse a wide range of exemples.
Much time and energy have been spent on this section by the second and
third authors (well yes, the first author wrote the introduction and

served as stand-by and fortune teller).

From the unsolved problems mentioned at the end of the paper, we
emphasize one. Is the superextension of the unit interval homeomorphic to
the Hilbert cube? The answer is certainly yes, but it might be very difficult
to prove this because the corresponding problem for the hyperspace is also
unsolved (although the superextension is essentially bigger, there seems
to be no natural "mapping relation" between them). The Hausdorff metric
is a natural metric for the hyperspace in the compact metric case, and
there is a similar metric for the superextension (given by the third author)

in section 2.
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1. Definitions and direct conseguences.

This section contains most of the definitions and preliminary results
which are needed throughout the remainder of this report. We also include
a number of related results which help to give insight into the theory

and background of the subject.

"(SUB)BASE" will always mean "(sub)base for the CLOSED sets'.

DEFINITION 1.7. Let j7 be a subbase for a space X. ffis said to be
a T, -subbase in case for each x€X, ix}= N {s€-f|xes}, and for each
xeX with x&S, there exists Te S with x&T and SNT = @.

DEFINITION 1.2. Two subsets A and B of a set X are said to be screened
by a family @ of subsets of X if @ covers X and each element of Cr) meets
at most one of A and B.

DEFINITION 1.3. Let 4 be a subbase for a space X. 3‘7 is said to be
normal in case each S,Té/f with S/1T = @ be screened by a palr of elements
of /f

5 is sald to be weakly normal in case each S,T@u{g with S/IT = ¢ can be

screened by a finite family of elements of 4.

ad def.1.1. Any closed subbase containing all singletons is a T1—subbase.
For any space X:
(X is T])
<> (X has a Trsubbase)
%= (the closed sets of X constitute a T1-subbase)

ad def.1.2. Usually @ is a finite (two element) subfamily of a subbase »f
of X. Now "(5 screens A and B" is equivalent to "A and B
have disjoint open neighbourhoods which are elements of the
open subbase (base) that corresponds with /f".

ad def.1.3. The collection of all closed sets of a topological space X
forms a normal subbase iff X is normal.

Any normal subbase is weakly normal.
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If f,g: X » [O 1] are two continuous fUnctions such that
-1 =1
(0)Ng (0} = @, then ( [Q,g] and ( ) [%,1] form

a pair of zerosets screenlng f 1(0) and g (O)

The theory of superextensions originates from the following theorem:
A T1—space X is completely regular if and only if X has a (weakly) normal

T1-subbase.
The first proof has appeared in [2]. In this report it is a corollary to

proposition 1.5.

DEFINITION 1.4, If 7  is a collection of subsets of a space X, then
a linked system of 77 is a subcollection of 7 with the property that

every pair of elements of the subcollection has nonempty intersection.
It is easy to see, with the aid or Zorn's lemma, that every linked
system of a collection 77 of subsets of a space X is contained in a

meximal linked system (m.l.s.) of 77 (i.e. maximal in 7~ with respect

to the property of being linked). We will use the script letters
)(,ZW,77,OD to denote maximal linked systems of a given collection of
subsets of a space X.
EXAMPLE 1.1. Let Dn be a discrete space of n elements with all
nonempty subsets as a normal T1-subbase for Dn.
For D3 = {1,2,3}, the maximal linked systems of the base of all closed ‘
sets are /N = {{1},{1,2},{1,3},{1,2,3}}, 7, = {{2},{1,2},(2,3},{1,2,3}},
m, = {{3},{1,3},{2,3},51,2,3}}, and 77], = {{1,2},12,3},11,3},11,2,3}}.
EXAMPLE 1.2. Let S be the unit circle (i.e. circle of radius 1)
and as a normal Tl-subbase for Sj, let <f be the collection of all intervals
of S1. One m.l.s. of.<f is the set of all elements of,<f whose length is
at least 1.
For other examples of maximal linked systems, see section k.
PROPOSITION 1.1. Let <f be a subbase for a T1-space in X. Then,<{ is

a T1-subbase for X iff for each x&X, (seS |xes} is an m.1l.s. of 5.
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DEFINITION 1.5. If /f is a T1-subbase for a space X, then we let
)\JX denote the collection of all maximal linked systems of /f If X
is any ‘I‘1—space, then we let AX denote the collection of all maximal
‘linked systems of the base of all closed sets of X.

For each AcX, define
+ .
= {Mer x| IselM with scal.
For each Sé:/f, it is easy to see that
* s {’mex/fx| seM.

DEFINITION 1.6. If . is a T, -subbase for X, then {8'|s€ 4} is
a subbase for a topology on )\/J,X and A/fX equipped with this topology is
called the superextension of X with respect t_oJ. In case 4 is all of

the closed sets of a T —subbase X, then A, X = AX is called the superextension

1 4
of X.
In example 1.1 above, >\D3 777 W? 77? . Moreover, {1y {w}
@2y = My, 33 = {77?}{12} 777777 7,{13}—{777,777,777
+ g 1 3 h
(2,3} = {/7?2, 7773 7/}7 } and {1,2,3} = AD,. It is easy to see that AD,

is discrete with 4 points. It is also the case that ADh is discrete with

12 points and AD_ is discrete with 81 points.

>
The following proposition contains some immediate consequences of
the preceding definitions. We omit the proof.
PROPOSITION 1.2. Let S be a T,
1) If A,BCX and ANB = ¢, then ATNB" = 4.
2) 1f 8,Te-f, then SNT = ¢ iff sTNT" = g.
3) If s Té/f with Sc T and Sé‘.ME)\{X then Tém
L) If ACBCX, then A CB .
5) 1 Mex X and se€f with # U{s} linked then s&7/.
6)
7)

-subbase for a space X.

1r se4, then 87U (X\ 81" = X (and by (1): TN (x\8)" = 0).
) If WG‘)VX and ()77796 @, then by proposition 1 there exists a

unique x&X with N7/ = {x}. Then M= {sef |xes}.
(8) If 8,Te £ with SUT = X, then STUT' = A X.
(9) Let N be a linked system of 4)”, and let W= {SéJIHTGﬁ with
TC S} be an m.1.s. of 4. Then W= (seA|Y U{s} is linked}.
Moreover, if ACX, thenNea’™ iff there exists Te?] such that TCA.
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(10) Let i:X - A X be the mapping i(x) = {Sé/ﬂxe S}. Then i is
1-1 and for each Sé-/f:

i(s) = stNixl

COROLLARY 1. If & is a T,
is an embedding of X in AgX. (ef. (10)).

From now on we will identify x with {se/jlxes} for each x&X.
COROLLARY 2. If § is a T,
subbase for )\/5)( (ef. (6)).

-subbase, then the mapping x » {S e/.f|x€S}

-subbase, then {(X\ S)+|S€/f} forms an open

We remark that generalizations of (2) (and hence (1)) and (8) are not

necessarily possible, in example 1 above,

(1,217 N2,31°N (1,317 = (7,3, wnile ({1,231(2,3}N1(1,3})" =

and (11U UGB = (M, My, M3, wnile ({11ufi2ruizh’ =

PROPOSITION 1.3. If /5 is a T1-subbase for X, then Agx is a compact

T1-space; indeed, >\5X is supercompact ﬁ]
Proof. To see that AgX is a T.-space, note that for each MC)\JX
(M = Nis*|sem.

Since supercompactness implies compactness, we show that A, X is super-

4
. + . .
compact with respect to the subbase {S ISé/f}; i.e., every linked

1

system of {S+|S€/)p} has nonempty intersection. (Compare this with
Alexander's lemma which states that compactness is equivalent to "every
centered system of {S+|S€/f} has nonempty intersection".)

Let /.ZC £ so that {s+|se /f1} is a linked system. By proposition

1.2 (2), ‘41 is a linked system of/j and so is contained in a maximal
linked system 7/ of 4. It follows that e ﬂ{S+|S€/f} and so A X is

supercompact.

In general, it is not the case that A{X is Hausdorff, even when X

is a compact Hausdorff space (c.f. example L.1).
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However, if £ is a "nice" subbase, then A, X is Hausdorff. To make this
more precise, we introduce the following definition. Though this is the
weakest condition we did find, it is not satisfactory.

DEFINITION 1.7. Let -4 be a subbase for X. We say that a pair
S,T624f is nicely screened by {S],...,Sn}<2<f in case {81""’Sn}
screens S and T and if {T seeesT }ed  with Ti(]si =@, 1i=1,...,n,
then {T1,...,T } is not llnked.

This means that a pair S'Té/f is nicely screened by {S ,...,S }
iff {S ,...,S } screens S,T and S oo S: = &{X. This is equlvalent
to: {ST,... S } screens S' and T+ C.f. the proof of the following
proposition.

PROPOSITION 1.k4. If 4 is a T1—subbase for X such that every pair
S,Te/f with SNT = @ is nicely screened by a finite family of‘/f, then
ApX is Hausdorff.

Proof. Let M, M@ rx with 7L # 7]. Then there exist 5,7€4 with

seM, r€¥ and SNT = ¢. By assumptlon, there is a set {S1,..., }C-/f
which nicely screens S and T. If XJX # U S i then there exists

Pe< )\JX such that @45 .: This 1mplles tha.t there exist T1,...,Tné@
with Ti/)si g, 1= ,...,n.

Since {Tl""’Tn} is linked, this contradlcts the fact that {Sj,...,S }
nicely screens S and T. Thus 55X = L) S1 and the Hausdorffness follows

+
from the fact that {S1,... S } screens St and T , and hence screens /.

and 77

Since every normal T -subbase for a space X satisfies the hypothesis

1
of proposition 1.4, we have:

THEOREM 1.1. If 45 is a normal T X is Hausdorff.

-subbase for X, then )\{

1
The remainder of this section is devoted to some results on

compactifications. 1f 4 is a T.-subbase for X, then the closure of X in

1
AgX, denoted by §ﬁ§, is a compactification of X with subbase {S+f\§fX|SéE<(}.
Since X need only be a T1-space, it is clear that Q;X need not be a Hausdorff

compactification of X.
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However, we have the following:

PROPOSITION 1.5, If jis a weakly normal T1-subbase for X, then

B;X is Hausdorff.
The proof is similar to that of proposition 1.4 except that only
+ + . + +
needS (81 Ue-ousn) n ng - BXX lf S1 anuusn - Xo FOI‘ then STUQDDUSn

is a closed set containing X and hence Bé,Xg

Since the zerosets of a T3%—space constitute a (weakly) normal
(sub)base we immediately obtain:the mentioned result of "de: Groot-Aarts [2] .

COROLLARY. A topological space is T_; iff it has a weakly normal T, -

33 1
subbase.

Proposition 1.6 below yields a characterization of the elements of
BJX in the general situation and proposition 1.9 below yields a nicer
characterization in case is a weakly normal T1—subbase for X. Before
obtaining these characterizations, we need the following definition.

DEFINITION 1.8. A subsetx of a collection jof subsets of a set
X is said to be a prime system ofﬁo in case for any S ,”,,S e /f
with U S = X at least one of the S is a member off

f’RE)POSITION 1.6, Let g be a T1—subbase for X and let ﬁZe. )‘j
Then 7726 B<S’X iff 772 is a prime system of

Proof. Since BJX is the closure of X in AooX we have that 77Zé B/SX
iff there exists S ,...,5 €¢f with' 8X C u1 s and 7//¢& U s This

is equlvalent to the condition that there exists ST,“.,SnGLﬂo with

U 5. and S.',...,S &lll; 1.e°m1s not prime.

PﬁOPOSITION 1.7T. Let be a weakly normal T1—subbase for X. Then

each prime centered systemof of is contained in a unique maximal

linked system of ¢/ (which is prime and hence belongs to BJ(X)).
Proof. Since I» is linked, it is contained in some mls. ASL is prime,
this mls is prime and, by proposition 6, belongs to Bo X,

Now let77z and 7z be two different mls s containing I— . Then there
exist S e77Z and Teﬁ with 8 N T = @, By the weak normality ofé? there
exist S1,”.,Sné—3 Z) screening S and T. By the primeness of , there
is and i € {1,...,n} such that S, € T N7] so that this S, meets both

S and T, a contradiction,
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The following proposition contains some well—-known set—theoretical
results on prime and centered systems which are useful for the proof of
proposition 1.9.

PROPOSITION 1.8. Let.d be a collection of subsets of a set X.

(1) Any centered system of/f is contained in a maximal centered system
of A.

(2) Any prime system of A& contains a minimal prime system of /f

(3) Any maximal centered system ofJ is a prime system of A

(4) Any minimal prime system of 4 is centered.

Proof. We first remark that (1) and (3) are well known and (2) and (k)
follow from (1) and (3) using the following two observations: Let ZCJ
(i) x is a prime system of £ ifr {X\SISéJ\X} is a centered system
of {x\ s|s&S}.

(ii) X is a minimal prime system of AL ifr {x\slse/f\x } is a maximal
centered system of {X\8|s&d}.

PROPOSITION 1.9. Let /f be a (weakly) normal T1-subbase for X and
let 7726&_?}( Then mesgx iff N contains a maximal centered system of /f.
Proof. If ! contains a maximal centered system of /f, then the proposition
1.8 (3), that centered system is prime and hence 777 is prime. Thus
mGBfX by proposition 1.6.

If WEZBJX, then 77] is prime by proposition 1.6. Using proposition
1.8 (2) and 1.8 (L4), M contains a prime centered system 67 of 47
By 1.8 (1), @ is contained in a maximal centered ystem G or A,
It follows from proposition 1.7 that &'C 7.

REMARK. We observed earlier that the collection of all zerosets 5,
of a Tychonoff space X formsa normal T1—(sub)base for X. It can easily be
shown (C-f-[2]) that B8(X) is the Wallman-Shanin compactification of X
with respect to 5 and thus 8.,(X) = 8(X), the Cech-Stone-compactification.
In section 2 we make some comments on the extension of continuous functions
over AJX and AJ,X for certain subbases /f, and prove that B}(X) = B(X)
by these means. (Corollary 1 to theorem 2.1).
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2. The invariance of some properties,

This section is primarily concerned with the question: If X has a certain
property, does AgX or AX have this property? We have already seen that
f is a normal T, -subbase for X, then

1
AgX is compact Hausdorff. In this section we will discuss such properties

if X is compact Hausdorff and if
as weight, zero-dimensionality, metrizability and super-connectedness.

Since, continuous functions play a role in the invariance of topological
properties, we begin this section with a number of results concerning the
extension of certain continuous’ functions.

THEOREM 2.1. Let < be a T1-subbase for X, let?a_’g_e’ a normal

T1-subbase for Y, and let f be a continuous function of X into Y such

that £ [97] C f . Then £ has a

continuous extension f from AJX into AB;YQ

Moreover, if f is onto, then f is onto.

Proof. We not first that if /1] € AX, T 69’|f-1T em} is a linked
system of g“ and hence is contained in an m.l.s. of 9’ Suppose that
T egllf Tem} is contained in two distinct m.l.s.'s 7Z and 72 of?/
Then there exist T 7 with T, € 72 e 722 and T ﬂ T ¢,

1
By the normality of , there exist T with T U Th = Y T N

T e
and Thﬂ T, = @. This implies that f §[T ]U £ [T] X and hence
1[11 orf1[TJ677Z If £~ [3]6772 thenTe{TeJ 157 e 7703

and hence T 672 fl 722 < 722, contrary to T3 N T2 = @, Similarly,

_1 ETJ and so {T e?’ |f T €77Z} must be contained in a unique
m.l.s. of 5 denote this unique m.l.s. by f(ﬁZ)o Clearly T is well
defined. If x € X, then f[ {se lx € S}J is the unique m.1.s. of S/V
containing {Temx €f 'IL"IT 69/[ (x) € T] = £f(x). It follows that

f is an extension of f. To see the continuity of f let T, & and

suppose that Wé f [Tt[ Then there exists T ey'wnzh £ ET; €77Z

and T1 N T2 @. Using the normality of . there exists T3 The with

N N = T
T3U T, =Y, T,NT, = ¢ and T Th g, i.e. xgx \ 7 [:T3] is open,
contains 772 and is disjoint from T [T] Hence [T;[ is closed and

so f is continuous. If f is onto and?Z Q,Y, then f [T] | T 672}

p = ¢

a linked system of J and hence any m.l.s. of contalnlng f [T_[ ]T e?Z ’;
is mapped onto n by f.

We remark that the restriction of the above defined T to BJ;X =
yields a mapping into Y = Bsz
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If Y is T2 and compact andus}/is all of the zerosets of Y (or more
generally,g?/is weakly normal), then %7X = Y. Thus we obtain a kind

of Stone extension theorem for these cases. It should be noted however,
we have more, in the sense that we can extend such functions over all
of MX into Ag-Y.

Applying this result to the case when Y is the, unit interval, Srzis the
collection of all closed intervals of Y, and is a T1—subbase for X
which contains all zerosets of X, we can conclude that all bounded
real-valued continuous functions on X can be extended over %?X, and
hence

COROLLARY 1, If is the collection of zerosets of a T_; space X, then

=

3
6%§(X) = g(X), the Cech-Stone-compactification.

As a corollary to theorem 2.1, we also have:

COROLLARY 2, If(f:is a normal T1—subbase for X, then the identity
function on X has a closed continuous extension from AX onto AgXe

It should be noted, however, that @fX need not always be a quotient

space or even a continuous image of AX (c.f. examples 2 and 3 in §k4).

Related to the extension problem, we also have the following
proposition, the proof of which is straightforward.

PROPOSITION 2.1, Let be a T1—subbase for X and let f be a
continuous mapping of X into the unit interval I. Then

(1) £: AgX > I defined by ?(772) = inf {sup f(S)|SeWZ} is an upper
semi-continuous extension of f,

(2) £: 24X > I defined by _f;(m) = sup {inf £(8)]| S€77Z} is a lower
semi-continuous extension of f.

(3) £ < %.

(L) If~éﬁcontains all zerosets of X, then £_='§ is continuous.

(5) If é/ contains all zerosets of X, and one uses as a subbase

for I all of the closed intervals of I, then f = T is the f of theorem 2.1.

NOTATION, If X is an infinite T1—space, we let w(X) denote the
weight of X (i.e. the minimal cardinality of a subbase for X).

LEMMA 1., If X is an infinite compact Hausdorff space, then
w(AX) = w(X),
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Proof. Let 3 be a base for the topology of X such that |@| = w(X)
and @ is closed under the taking of finite unions and finite intersections.

Since X is compact Hausdorff, it is easy to see that if F1 and F2 are

disjoint closed subsets of X, then there exist B, ,B C@ screening F and

1 E
F2. It follows that {B |Bé‘@} is a subbase for the topology of AX.
THEOREM 2.2, If X is an infinite compact Hausdorff space and if A

is a normal T -subbase for X, then W()\{X) = w(X).

Proof. This follows from lemma 1 and the corollary 2 to theorem 2.1,
since the extension of the identity function on X induces an upper semi-
continuous decomposition of AX whose numbers are compact.

PROPOSITION 2.2. If X is compact Hausdorff and zero-~dimensional,
and if 40 is a subbase for X containing all of the clopen sets of X, then
AJX is zéro-d.imensional.

Proof. If @B is the base of all clopen sets of X (or even if @ is
a base of clopen sets which is closed under the taking of complements,
finite unions, and finite intersections), then once can argue as in
lemma 1 that {B" IBE@} is a subbase for AX and by proposition 1. 2(2)
and 1.2(8), each BY, for BB is clopen in A:fX.

THEOREM 2.3. ;[_f_ X is the Cantor space, then AX is homeomorphic to X.

Proof. Since a Cantor space is completely characterized by the
properties; second axiom of countability, zerodimensional, compact Hausdorff
and dense-it-itself, theorem 2.2 and proposition 2.2 imply that it is
sufficient to prove that AX has no isolated points. We ‘do this by showing
that every nonempty basic open set of X contains at least two points.
We may assume a basic open set is of the form X\ U S 19 where S1""’Sn
are clopen in X. Assume 77?4: U S and let T X\Si’ i=1,...,n.
Then Tié M, i=1,...,n. Slnce T.ﬂ'I'. #0, X contains no isolated points,
and T.('\TJ is clopen in X, we can conclude that ‘I‘ N T, contains infinitely
many points of X. Pick p i # p ; in TinTj (1, = 1,...,n) so that
{pi.|i,j = ,...,n}n{p |1,J = 1,...,n} = @¢. For each j = 1,...,n, let
H,j = {pijli = 1,...,n}. 'I‘hen Hj is a closed subset of X and HjCTj, J=1,.0.,0.
The collection {Hj lj =1,...,0} is linked a.nd so is contained in some
maximal linked system 771 in the base of all closed sets of X. It is clear
that n1¢ i§1 S;:. Similarly, using the {pl

maximal linked system 7?2 such that 7?2 3!

i,j=1,...,0}, we obtain a
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Since fp ll,J = T,000,0} 6721 and {p;j[i,j = 1,0“,n}e7Z then

¢7Z

29

THEOREM 2.4, Let M be a compact metric space with metric p and let

'ﬁa(s) =

B :AMxAM >~ R, defined by
ST = int (ae | ¥sell, rell, T (mell 5 (s)€7] 1,

is a metric for AM.
Proof. It is clear that ’5(772,72) = 3(72,772) for every 772,71 € M.

We prove next that

(M) =nin {a er|¥s eM,rel, T (T)e77z,ff (s)e7L}.

Let ¢ =7 772 72 Suppose that there is an S 6772 with U (8) 4372 Then
there exists T €7Z such that T (]U (8) = ¢ and hence an € > 0 such that
TN UC+€(S) = @, a contradiction. 'I'hus U ) € 7Z for every sell .
Similarly, Uc 6772 for every T 67z . Hence the desired assertion.

p(x,s) < a} for SC M and a a real number. Then

Since S closed in M implies that U (8) = 8, it follows immediately from

the definition that ?)’(772, n) =0 igf m = 7Z . Thus we only need to prove
the triangle inequality. Let 772, 72,@@ AM and suppose that ’5’(77Z 7Z =g
and 57, ) = b. Then for each sl , 1€7, anapel® | U (S)e 7.

U (T)GWZ @ and Ub e?Z . Thus, for every Sem and Pe R

Ub(U eGDb and T_(T, () e 7] . Wow T, (T (s))c T, (8) and

U (Ub(P))C Ua,+b(P) imply that a + b > p( 77[,@ and the triangle
a
inequality follows. Before showing that the metric topology on AM is

compatible with the superextension topology, it is useful to remark that
S, 7) = min {a|"v‘se77Z, ﬁa(s)e 72}0

We need only prove <, since the reverse inequality is obvious. Suppose
we have an a such that for every SG77Z €7Z o Then ‘v‘ Séﬁz
? e/l , it follows that T (8)N'T # 6, ana “hence T(T)N s # 9;
ie. U (T) ye 7, VTe7Z . It follows that a > 517/, 7]).

To see that p is compatible with the topology on AM, we show that
the topology induced by P on AM is weaker than the superextension

topology (which is compact) and hence these two topologies must coincide.
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Let € > 0 and Men. Let Pys+--»P, be an e/3-net of M and let Ua(p) =

= {xeM|o(x,p) < a}, where a=R and peM. We let U be the finite
collection of open sets which are unions of sets of the form U /3( .)
(i=1,...,n). Let 0 =N{U" |[UET anda MeU'}. It is clear that O is

an open set in M containing 7”. Moreover, if 8657”, then there exists
Ue & such that SCUCU2€/3(S), namely, U = U {U€/3(pi)|p(pi,8) < g/3}.
Therefore, oc:U"'c:(U2 /3( 5))" and hence ocSQm (U2€/3(S))+. It follows
that if 7€ 0, then for each Te¥, TNU,, /3( S) # ¢ for every s&€ ).
Thus U 2e/3 (TN s # ¢ for every SeM| and so U (T)e/l/i? for every T& /.
Hence B(M, M) < -s < ¢ and hence {M& |5 77 7” < e} is open.

We can derive more information about '5 We list a few of the results

but omit the proofs.
sup inf sup p(x,8).

(1) (M, N)
SeMm Te?] x= T

(2) M, %) = max min sup p(x,8).
s TeNl xe T

(3) F(M, ) = sup inf 4a(T,S), where d is the Hausdorff
seM ren

metric on the collection of all closed sets of M.

(5) U (M) = o M O () ana T_0) = ;0 (T (s))F

THEOREM 2.5. Let {X ;¢ } be an onto inverse spectrum of spaces
such that ¢> 1s the 1dent1ty on X with 40 a normal Trsubbase for X
and such that ¢> -1 [/f ]C/f for each o > B
Then l<1_m

JO‘XOL = }‘4 11m X where 4’ is the relativized natural subbase

for the product topology _g_f; IOIl Xa.

Proof. Let 'nB be the Bth projection of I X . Then lim X, =

= {xeg Xa' T (x) = ¢ o8 om (x) for all a > B} andop is the
restriction to lim Xa of the collectlon {TT ]:4’ ] SéJ ; all a}
which is a subbase for the product topology. It is not dlfflcul't to see

that -4 is a normal T1-subbase for 1lim Xu' By theorem 2.1, each ¢0£B has

ion ¢ A A .
an extension ¢0t8 from 5ocX onto JBXB
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Making use of the definition of aus’ one can show that if o > B > y, then

¢aY = ¢BYO ¢a8 so that {Aga X, ¢u8} is an onto inverse spE?trum.
Considering each T as’ ' a mapping of l%E Xa onto Xa’ then ﬂa [s]ez<§ for
o

with the property that ;8(1”) = EGB 0 ;a (Wi for all o > 8. It is now
easy to exhibit a map of A{ lim Xa onto lim %5a Xa and to show that the

each S&4 . Thus ™ has an extension T from A, 1lim X onto A X
a a a £ - %o Sa

map is a homeomorphism.

We conlcude this section with a result on super—connected spaces

[3] which are of interest only for non-T,=spaces. We omit the easy proof.
PROPOSITION 2.3. Let X be a nonempty T1-space. Then (i) through

(vi) below are equivalent, (vi) implies (vii) and (viii), and (viii)

through (x) are equivalent.
(1) X is super-connected.
<=2 (ii) Each open set of X is connected.
<=> (iii) Each nonempty open set of X is dense.
<=> (iv) Each pair of nonempty open sets of X has nonempty intersection.
<=> (v) Each n nonempty open sets of X have nonempty intersection.
<=> (vi) The open topology of X is centered.
(v)=> (vii) X is dense in XX.
(v)=> (viii) The open subbase of AX is centered.
<=> (ix) The open topology of AX is centered.

<=> (x) AX is superconnected.
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3. Finitely determined maximal linked systems.

In this section X is a fixed T.-—-space and 4 is a fixed subbase for X

1
which contains all of the finite subsets of X.

We define a special kind of m.l.s. of .4 and with the aid of this
special m.1l.s., we obtain some results on the connectivity of the super-
extension AKX'

DEFINITION 3.1. Let F be a finite subset of X. An m.l.s. with
respect to F is a maximal linked system of the collection of all subsets
of F.

An "m.1l.s. with respect to a finite set F" is usually not an m.l.s. of .&5,
but we have:

PROPOSITION 3.1. If 777 is an m.l.s. with respect to a finite subset F of
X, then M is contained in a unique m.l.s. of /f; we denote this unique
m.l.s. by 7 .

Proof. Let 7/ = {seo”ls contains a member of M/}, Since 777 is linked,
also 72 is linked. If T&€.§ and T meets every member of 72, then T

meets every member of 777 Thus TN F meets every member of m so that
TﬂFem (proposition 1.2 (5)), since 4 contains all finite subsets

of X, Hence T contains a member of 77/7, and so Tc—:'?’l, i.e. 77 is an m.1l.s.
in 4 Clearly any m.l.s. in 4 that contains 'ﬂf, must contain 7? , and
thus equals n, proving that N is the unique m.l.s. containing 7”

DEFINITION 3.2. If m is an m.1l.s. with respect to a finite subset
F of X and if e AgX and N2> M, then we say that 7/ is defined on F
and that 77 is generated by 777

PROPOSITION 3.2.(a). If F is a finite subset of X and /& A X, then
7/2 is defined on F iff {se¥] ISCF} is an m.l.s. with respect to F.

(b). If F, and F, are finite subsets of X with

1 2

F1C F‘2 and if %EA{X with 7] defined on F1, then 7] is defined on F

X
(¢). If an m.1l.s. 776_‘)\{}( is defined on a finite
subset of X, then there is a smallest among the subsets of X on which

7/2 is defined.
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Proof. The (a) is obvious. Note that {s&?] [scF} = {sNF|seN}ic 7] .

b): Let 7’721 = {S€n|SCF1}. N is defined on F, means:

7721 generates n. 1r FQJF] then {TCF2|T contains a member

of M1} is a mls with respect to F, (c.f. the proof of proposition

5
3.1.). It is readily verified that this collection is contained
in 72, i.e. 71 is defined on F,.
(e): Let 7™ be the collection of minimal sets in 7]. since

77 is defined on a finite set, say F, any element Seﬂ contains
a finite set, which belongs to 77 and hence S contains a set

TE 7?*. It is easily chequed that UM is the smallest set on

which n is defined.

DEFINITION 3.3. If Ne AJX and 77 is defined on some finite subset

of X, then 7] is called a finitely determined maximal linked system (f.m.l.s.)

of/f . If 7] is defined on a finite set of at most n elements, then W is
called an n maximal linked system (n-m.l.s.) of A Ve let

)‘ffx = {Nle AJXIW is an f.m.l.s. of A4},
Afx = {%é AX]” is an f.m.l.s. of the base of all closed sets of X},

and

2 {Tle x X|7’Z is an n-m.1l.s. of .J}.

It is easy to see from the definitions that

PROPOSITION 3.3. X;VAMX = )\2{XC>\3{XC... GN )\ X = }\f«fx'
REMARK. Using the technique of the following proof, one can show

that 1f {A y e ..,A } is a linked system of subsets of X, then

( f) A nkf5X # (25 We use this remark without further comment.

PROPOSITION 3.k4. Let A1 sees ,AnCX with {A1 se e ,An} linked. Then

,r% + % +) no 4
{0y (clghy) < ehx (G0, 4,00 )\fKX)CCl)\{X (0 ;1.
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Proof. Let /}ZG N (chA.) . Then there exists 8, ,...,8 67? such

i=1 * mo, m O +

Ty eoosne If we let X\ U T, = N (X\'T,)" e
i=1 i=1

any basic open set containing 772 then there exist UT,MQ,U Gw with

that S, C el A, i =

UiCX \Ti’ i=1, ¢.0,m. Since 181,°M,Sn,U1,wo,Umj is a linked system,
then {c]_XA1,°.,o,clen,X N T.,..,X \T } is linked. It follows that
{A1,o.o,An,X \ T1,.”,X \Tm} is linked, For each i1,J = 1,...,n + m we choose

py; = p,'jie X3 for i,j = 1,0..,n, pick pije Aiﬂ Aj; for each i = 1,.00,n
and J =n + 1,...,n + m, pick p.je A.n (x \Tj_n); for each 1,J = n + 1,404,

n+m,p1ckae(X\T )n(x\T _p)e Let F = ,j=1,m,n+m}

1J|
and let Hi = lJ = 1,°.e,n +m¥ for i=1,000,0 +m. Then H |1 1,00.,n+m;

is a linked system of F and is contained in an m.l.s. [{ with respect to F.

It follows that H, ,0..,H € 72 and since H. C A. for i = 1,...,n, then
1 ntm — 1 1

_72 (= n A . Moreover, H, C X \Ti for i = 1,...,m implies that
Zz e m (X \ ‘I‘ ) . Hence every basic open set containing WZcontains an

. +
element of ﬂ A; N Ae x ice. Me cl, (n) AN Ang). The last
i=1 :f i=1
inclusion of the proposition is tr1v1alnn
COROLLARY, If A1,.,.,O,A C X, then 1(31 AT ;<el Q Al)n Aﬁ,x
Proof. If n A = @, then the inclusion is trivial. If ﬂ A # 0,

i=1 i=1
then {A eoo s } is linked and the result follows from proposition 4.
1° n

PROPOSITION 3.5. A subset A of a T, -space X is nowhere dense in X

1
. + . .
iff A 1s nowhere dense 1in X.
. . . + +

Proof. Suppose first that A 1s nowhere dense in X. Let 01(lonﬂon
be a nonempty basic open set in AX, where 01,0“ ,On are open in X. For

1 j = o0 e . o = . 3 n o . o 1
each 1,j = 1, ,n, let OlJ 0, N OJ (X\ cJXA) Then O1J is a nonempty
open set of X since Oi n Oj is a nonempty open set and A is nowhe:r}a1 dense.

: . +

For i = 1,...,n, let U, = 0. U... U 0, . It follows easily that M u;
i=1
is a nonempty open set in M\X which is disjoint from cl}\XA and which is
contained in n O . Thus A is nowhere dense in AX.
i=1
+
Conversely, if A is nowhere dense in AX, then AX \ cl X‘A is dense in

AX. By propoiltmn 3.k, CJXA Ccl}\XA so that AX \ cl)\XA C AX\ cle)
= (X \ cle) and (X '\ chA is dense in AX.
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It follows that chA can contain no nonempty open set of X and hence A
is nowhere dense in X,
We remark that in general it is not the case that if A is nowhere

. + . . .
dense in X, then A" is nowhere dense in AzX (c.f. example 2 in §k4).

THEOREM 3.1. If <//is a T,
the set of all fmls-s is dense in the superextension with respect to

i.e.: (A X) )\5X@

-subbase containing all finite sets then

Proof. ABX—X Ccl 3X fAXﬂX ).
PROPOSITION 3.6. Define a function ¢: ')\f/SX X }\fgx X }\fgx > AﬂgX
by
oD = ATy o ofy v 7] o,
Then

(i) 1If 77Z—7Z then¢7727Z,W) =77Z,
n
(ii) 1If 772 726(_\ A 1’°°°’Anc X, then ¢(77Z,?Z,p) e(ﬂ A:.:)
i=1

(iii) ¢ is contlnuous@

Proof. We first show that the range of ¢ is contained in }\f:f
Let 772 7Z W X° By proposition 3.2 (b), we may assume WZ,?Z,W

are all deflned on the same finite subset F of X. Let
7721 = {se7l]|s CF}, 1et 721 = {s e7z.lsc Fl, and 1e1;@1 = {sep | scri.
By proposition 3.2 (a), Za , 22 ., ., and are m.l.s.'s with respect
1 1 1 1

to F. Letjf 77 ﬂ7Z p1) O( 7Z1 n @)o We will show that

is an m.l.s. with respect to F. If G,T , then S,T belong to at
least one ofﬁz ,7Z ,W both and hence S NT # @. Suppose now that TC F

1 1

and.jt{J{T} is linked. If T is not in at least two of Z? ,ZZ ,67, say
T d:, ?72 and T 4; ?21, then there exist S 6.772 and S (S 72 such that
5,1T=¢and 5,NT=g. It followsthat 8, US CFsothat
S L S, € 777 n 32 C.j( and T()(S U 82) = ¢, contrary to-jCU T}
belng llnkeda Thus T is in at least two of‘7zz1,;z1, and ] and hence
T €21£ Thereforei?( is an m.1l.s. with respect to F and hence\j? is

contained in a unique melesoi of by proposition 3.1.
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It is easy to show now that ¢( 'ﬂQ, 77,(7)1 = _-2{ and sinceji is defined in
F, the range of ¢ is contained in Af{x.

(i) 1f 777= 77 then 772/7%: 77ZC¢ m, 7? @ and hence ¢(777,77,@)»= 7.

(ii) Let A1,...,AnCX and suppose that 77? ﬁé 0, A:L Then there
exist S ,...,Sém and T] ..,Tnéﬁ such that S. ,TlCA , for i = 1,...,n.
Thus S, O, (CA., i=1,...,n and 5,UT, EMNT o 77? N, @). Therefore

ip
o (M, TP A, a0,

(iii) Let SC/_f and V = S *n )\ﬂ,X then

U= (VxVx )\ffX)U(Vx xﬂva) U (A
1(.X X )\ X x Afgx

Let (7], 7’2 ®Pieu, say W]evcs and Neves®. By (ii), oM, N,P=

™NA_x =V s i.e. UCY ( ).

o - P @
Suppose now that (M, W,W)c—:q: (V). Then (M, N, eV so seo(M,N,F).

Since S must belong to at least two of 7/, 7, ﬁ, then (777,‘77,@)6& It

X xVx V) is closed in

i}

follows that ¢>_1(V) = U and hence ¢ is continuous.

PROPOSITION 3.7. Let @ be an f.m.l.s. that is defined on
P = {pT,...,p }JCX and let ™ P > X be a function. If we let ”"(p ) = X,
and let F = {x],...,x }, then the system @ defined by @/—» =
{SCJIE{TQ(\ 7 (T)cs} is an f.m.1l.s. ofJand is the unique m.l.s.
of .f containing {?’(S)I ScP and se¥}.

Proof. It is easy to verify that @7\, is a linked system of . which
containes {7(S)|ScP and S€P}. If red and TNS # @ for every SE@\,,
then TNT(S) # @ for every SCP with se®. Then Sﬂ'7"_1T # ¢ for every SCP
with s€@ . since @ is defined on P, then this implies that 7" Té@ and since
T OMT 1T), this means: T€¢7« . Uniqueness follows immediately.

THEOREM 3.2. Let ¢ be an f.m.l.s. of -J defined on P = {p1,...,pn}.

For each X = (x],...,xn)exn, let e P +~ X be defined by 77 ;) =X
. ) qf‘
(i =1,...,n). Let vy P X > Ap X be defined by n((x1,... n >

where x = (x1,...,xn).

Then Y is a continuous function.

!

Proof. It is clear from proposition 7 that v, is well defined. Let

. + . . .
SG./f s 1.. S 1s a subbasic closed set of ?B’X' For each Te@ with TCP,
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let Sy = Glp €.T} {.| C.T} X. We show that w (s /ij,x)
{S ITé@ gnd TCP}, Whléh is closed in X.
Let (X1""’Xn) = xcw (S f))\ X) Then OD es’ , and so 86(7)//},. Thus
there exists T€® with TCP and such that X’/\_; (T)CS.  This * implies
that (x],...,xn)EST, for this particular T.
If on the other hand (x] o for some T C@ then’l" (T)C S

and hence(/D CS N jpX Thus Lp ](S /) Af:f)( is closed and so lp is contlnuous.
x

seensX l€s

PROPOSITION 3.8. If X is a connected space, then for A1,...,A.kCX,

. nA; (= ¢ or) is connected.

Proof. In 1wgiew of the corollary to proposition L4, it is sufficientr
to prove that (]._Q1 AI)/) ApgX is connected. We may also assgme that |X[i'7<0
since the case when |X| = 0 or 1 is trivial. Letm ne (iQ1AJir)/Mffx and
suppose that 772 is defined on M = {p1,...,pm} and 7] is defined on
N = {q1,...,qn}. By the cardinality assumption on X, we may choose mn dis-
tinci? points of X disjoint from MUN; denote this set by R = {rij|i=1,.. .o}
j=1,...,n}; Let 7"1: R -+ M be defined by 7’1(rij) = p;. Similarly, we can
define a function 7":2 : R >N by '?’2(rij) = qj- Let

@) ={‘7“;1(s) n-7";1(T)|sem with SCM, TEN with TCN}.

Tt is clear that@ is a linked system of subsets of R. Let (P e any m.l.s.
of £ which is defined on R and which contains (3. Suppose that S &P,

If 7" (S/)R)¢ M, then M \7'(Sf)R Cm since 7] is defined on M. Thus

7' (M \7’ (S/)R))CQSCG3 and Sf)7’ (M \'I"’(S/)R)) = @, contradiction.
Therefore, for every S & @, /)’1(8/) R)é M), and similarly ’?‘2(8/) R)€ /7.

By the uniqueness in proposition 3.7, @7 = 777 and 07\, = 7. Let w

Xm+n > A fX be the continuous function de%lned in Theor%m 3.2, where the
domain of the 7’ s 1s now R and the m.l.s. defined on R is the ® from
above. Since O?’ =7] ana @ = 77 then 77? 77 are in the image of

11: . For the m and 72 as flxed above, we can define a function 0 :
> A b
ffx £ oY

o(K) = ¢(M, N, ), where ¢ defined in proposition 3.6.
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It follows from proposition 3.6 that © is continuous, @kin) ==ﬁ7 and
. k + +
o(M) =M . Also, since 7], N &€ Q, (), then 0(X)E .0, A, for all

. + . . .
HEN 4X° Therefore, Ooy : ™ 5> A_X is a continuous function such
f mn k

f
. : + .
that M and 7 are in %(Oowmn) and gm(eowmn) (e gnOC(iQ1Ai)/) AMX. Since

) Gk connected, then ;%(Oowmn) is connected. It follows immediately

ko4
. . A i .
that (lQ1 Al)fl fJX is connected

With a somewhat different technique one can prove that if A is a
+ .
connected subset of the space X, then A 1is a connected subset of lfx.
It was conjectured that if A is connected subset of a space X and

o+ + .
Ajs...sA CX, then A f)A1lq...f)An'1s connected. This is false (ec.f.

example 10 in §4).

THEOREM 3.3. If X is a connected space and 4 is a T1—subbase

containing all finite subsets of X or if -§ is a normal T, -subbase for

X, then ﬁfX is connected and locally connected. (c.f. example L4.T).

Proof. Suppose first that -4 is a TT-subbase for X which contains
all finite subsets of X. By proposition 3.8, AfX is connected and locally

connected. In case 4{ is a normal T, -subbase for X, then by Th 2.1, coro 2

1
XJX is a quotient of AX which is connected and locally connected by the

previous remark. Thus %{X is connected and locally connected.

We conclude with some remarks concerning the existance of example
and/or counterexamples.

1. If N is the natural numbers with the usual topology, then AﬁJ
is not locally connected although N is locally connected (example 4.6).

2. If A\,X is connected, then X need not be connected (c.f. Dq
or example 4.8).

3. If I is the unit interval and-<§ is merely a T1-subbase for I,
then A,I need not be locally connected or connected (c.f. examples k4.2

1
and 4.3).
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4. Examples.

This section is primarily devoted to the construction of various
counterexamples that were mentioned in the previous sections. We also
include some problems that we have been unable to solve as of now.

We begin this section with a lemma which is useful in the computations
of the examples.

LEMMA 1. Let X be a compact space and‘éf a T1-subbase for X. If
Mexﬁ,x and AC ) with # a filterbase and NFeS , then NFE .

The proof is a straightforward application of compactness.

EXAMPLE k.1. There exists a weakly normal T1—subbase 4 for the unit
interval I such that A ;’I is not Hausdorff.
Proof. Let ,J be the set of all intervals and all doublets which are

contained in I. If 0 < x <y < z < 1, we define

L

Xyz
x&L

Yz

{se£|s contains at lest one of {x,y},{y,z},{x,z}},

{SGJ|S contains ]:y,z:[ or S contains a set of the
form {x,y} for u&e [y,z] 1,

&

{se/fls contains [x,y] or S contains a set of the
form {u,z} for u€ [x,y] }.

Z

It is easy to show that for each 0 < x <y <z <1, foyz, xx 2? and
xyz are maximal linked systems ofJ We will show later that all m.l.s.'s
ofJ are one of these types. Note that if x =y or y =z, then xxyz =

[yz wx {s éf_flyé S} and hence corresponds to the point of y of I.
We first hos that f 1 and x 3 do not have disjoint basic open
neighborhoods in )‘JI' E 2 E E On the contrary, suppose they do
hgve such neighborhoods. Then there exist S1 Sné—f such that
U ST = AfI and no S contains both ZO and f 1 33 i.e. there exist

a1 ,b ], ces Ea. br] & . ,b }, cen {a bﬂ}? in sughﬂthat none of these
sets belong to both ol and 1 and such that [:aT, 1‘1 . @r,brj+u
...U{a b }+ = d’I' Iftrx§>% , then ZO 1 e[a ,b] implies that
X, “and Xy 1 3€[s;,0]" Thus it must be the case that

{,{” tg |LL < 11}-4:2 {a 1D, } U...Ufa ;b }*. It follows that there

exlst i such that r < i <n and infinitely many x's such that
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’ .. a1 1
{ai’bi}é Z’)O P x This implies that {ai,bi} = {O’h} and {O’h} belongs

to both X’O_]”] and XO s contrary to the assumption on the Si'

13
Thus Ag,,X is rbio% Hausdorf%.u
We next prove that every m.l.s ofdo is of one of the types
xxyz,xxyz or nyCZ for some 0 < x <y <z < 1. Let 7N e a m.1.s. of
and suppose that nﬁf = ¢ . It is easy to see that M must contain some
doublet {a,b} since any linked system consisting of only intervals is

centered. Since aénm one of the following cases hold:

i) 3 e,a a¢{c,d}ém, hence b &{c,d}, say b

=c
ii) 4 e,a ad [c.de]
Similarly for b
iii) 9 e,f bd& {e,f}ém, hence ac{e,f}, say a = e.

or iv) 4 e,f b& Ee’fjem

If i) and iii) then {c,d}Me,f}=@ implies d = £f. It is easily chequed that

the only doublets in m are {a,b}, {b,d} and {a,d}. So 77? is of the form

'f?"xyz' If 1) and iv), but 777 is not a 3m.l.s., then {a,d} is not in 777

So any doublet contains b = c, and the other point of the doublet must be

in n{@,ﬂlbé[{;,ﬂem}. It is readily verified that this intersection

itself belongs to 'm, and that 772 is of the type xfyz or xyfz.

The case ii) and iii) is similar to i) and iv). If not i) and not iii)

then {a,b} is the only doublet in '777, let a < b, and let ¢ = inf{c|aE[O,c]E7%}.
It is easy to show that ¢ = sup{c|b & [c,1]é;77?} and that hence {a,c}

and {b,c}ém, a contradiction.

EXAMPLE 4.2. There exists a nicely screening (non-normal) T,-subbase
for the unit interval I such that

(i) A4L not connected.

(ii) I has a nowhere dense subset A with AY not nowhere dense in kfI.

Proof. Let d% = {[(n-1)2'k,n2'k]| K=1,2,0.. 3 0=1,2,...,25} and let
S = /fOU{O,W}. It is obvious that 400 is a nicely screening (non-normal)
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T -subbase for I such that A. I = I. Since [(n-11°F, n2™®] and {0,1}

! . 20 k=1 kT S+
can be nicely screened by {[(i-1)2 i2 ][1 Ty00.52° '} then J is
also a nicely screening T, -subbase for I. First, we note that {{0,1},

[ ,1] [2, ]} is an m.l.s. of‘/f This follows easily from the fa.ct that
any other element of/j must be contained properly in [O ] or -— 11

Next, we note that this is the only m.l.s. ' of‘ /f for which N7 = ¢.
For if NN = @, {0,1}6777 and there exists k, k', n, n' such that
[(n-1)2'k,n2'k] and [(n'=1)2" ]cm with 0&[(n=112"%,n27"] ana
1¢-E(n'—])2-k' o0 ] since /) is linked, it must be the case that k=1

n=2, k'=1, n'=1. Since XJI is Hausdorff and I is compact, it follows that
afI is homeomorphic to the union of an interval and an isolated point.
Thus AJI is not connected. Moreover, {0,1} is nowhere dense in I but {0,1}+
is not nowhere dense in AJI.

Note that (i) and theorem 3.3 imply that %fI is not a quotient of
AL or even a continuous image of AL.

REMARK. It is worth noting that example 4.2 can be modified so as
to obtain a superextension of I which is the disjoint union of two inter-
vals. If we let ~f {(L/{[o é]}lac: ]}k/{[a 1]|aClt§ ]} where - is
as defined in example L. 2 then one can show that for each m.l.s. of

/f], there exists an a & E 5—] such that

m = {{0,1},[0,6.],[0,1] | -%-f_c <a<d i% }.

EXAMPLE 4.3. There exists a weakly normal T -subbase  for the unit

1
interval I such that A,I is not locally connected.

Proof. Let o = {La b] I |/a b]CI}U{w— TJIné/N}U{{O 1} }.
We show that A I is homeomorphic to //—\ X

For any 772&; I, N{ [a b] La,b]cm} is a singleton because if it were
: +

an interval ,é,d], then [0,-02—(1] and C; ,1) must belong to w If mé'XfI

with /)m= @, we define m and k by

(i)  meni(a,p] | [2,0)e ]
(ii) x = sup {n-1| [o,%l U[1-;1l-,1]é77?}.
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We note that {nl [_0 U [1- - 1]C M} # @ (however k may be infinite) and
that mé( 1 —2 since nm ¢. Suppose that M'c )\j,I with M# 7" ana

N M' ¢ If k' and m' are defined for m' in the same way as k and m were
deflned then 77?;&772' yields tha.t either there exists neMN with [O ]

[1— —,1]eM anda [0 —] v |_1- —,1]¢Mor there exists [a,b)€M witn [a. JEI//
In the first case we obtain k#k' and in the second case We obtain m#m'.

On the other hand, if k'€ N or k' is infinite and m'é( 1= ——) with
either k#k' or m#m', then

Pl

m. = {SE/f|S contains [O,ll—.]U[J- e ]J or S contains [Il,m]

or S contains [m,-};]}

defines an m.l.s. m‘#m and the m and k defined by (i) and (ii) for '
are m' and k'. It follows that if we let p(m k) = {s €/f|S contains
[O,—]UU- —,1] or S contains [1 ,m} or S contains [m,k]}, then AJI

IU{GD (m,k) |ké./}\ or k== and mC(-J- 1= =)}. To complete the proof, we des—

k

cribe the topology of A,I by describing a neighborhood basis of each of

. . S
1ts points.
1 1 1 ..
k+1 <m < " or T+ ] < 1=m < X ° then for sufficiently
* = (m-e,m+e) so that a neighborhood basis for m consists

If mgI and
small e, (m-e,mt+e)
of {(m-e,m+e) |EGR+ and € sufficiently small }.

If m is of the form l (k#1 ), then a neighborhood basis for m is the
k+1 , 1= k+1 ﬂ[O + €) ﬂ(—- €, 1J+
(E - a,— + €) U{G)(u, )jue i—f{- +e)} for ¢ suff1c1ently small.

A neighborhood basis for 1- % (k#1) is the collection of sets of the

form (1- % - g,1- % + e)U{@(u,k)lueU- f{- - e,1- %)} for e sufficiently

collectlon of sets of the form (

small.

For m=0 or 1, merely put k=~ in the above two descriptions and restrict
the intervals to I.

A neighborhood basis of (P (m,») is the collection of sets of the form
([0,e)u(1-e,1])+n [O,m+e)+/)(m-e,1]+ = {@(u,k)[uc—;(m-e,m+e) and k > —g'
or k=x} for € sufficiently small.

Finally, a neighborhood basis of @(m k) is the collection of sets of
1 1 + *n 13+ _
the form (]:o 3+ e)V- x e,1]) ﬂ[o,m+e) (m-¢, 1] n(k+1’ k+1] =
{@(u,k)h\ &(m-e,m+e)} for € sufficiently small.



_27—

EXAMPLE L4.L. Let Dh = {1,2,3,4} be a discrete space with four points.
There exists normal 'I‘1
is discrete with n points.

Proof. Let -5 = {{1},{2},{3},{4}} and for n=k,...,10, let.<ﬁ%9be as

follows:

-subbases <ﬂn)for D), n=k4,...,12, such that %Cﬁﬁeh

&

SUL{2,3,4},{3,43,{1,2},{1,2,3}},
ALU{{1,2},{1,3,4},{2,3,4},{3,4},{1,2,3}},
ASu{1,2},{1,3},{2,3},{3,4},{2,L4}},

&
(e)Y
n ]

./_77 = /56U{{1,3,2+}},

/58 = £ U {doublets of D, 1,
,9’9 = JBU{{2,3,1+}},

S = U 1,3,41,

/511 = ,—ffou{ﬂ,z,h}},

£, = oDl

It might have been conjectured that if Z? is an m.l.s. of a T1-subbase
for a space X such that every element of 7] is finite, then ﬁ? must be an

f.m.l.s. The following example disproves this.

EXAMPLE L.5. Let X be N with the cofinite topology. There exists an
m.1l.s. 7” of the base of all closed sets of X such that every element of
WM is finite but 7/ is not an f.m.l.s.

Proof. Let (3, = {1,2} and for each n > 2, let @, . = {1,20-1}U
{jeX|j is even and 3 < j < 2n-1} and Q22n = {2,2n}VU {j€X|j is odd and
2 < j < 2n-1}. These for each n > 2, we have defined @?n. It is easy to
verify that {Q3n| n > 2} is an m.l.s. of the base of all closed sets but

is not an f.m.l.s.

EXAMPLE 4.6. Consider N with the discrete topology. Then AN has
the following properties:

(i) Afﬁd is a countable, discrete, dense subset of AN .

(ii) Al contains converging sequences and hence is not homeomorphic

to a Cech-Stone compactification BN.

(iii) AN is not locally connected even though N is.
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Proof. (i) Since N is countable, }\fW is countable so that we only
need to show that is discrete. To see this, let 7?76 AfN. Then there is a
finite subset MC N such that 77? is defined on M. It follows that m=
N (s |scM,5€M} and the latter set is open in AN.

(ii) For each n€N , n#1, let 77/n be the unique m.l.s. containing
{{1,i}| i=2,...,n}V{{2,...,n}} and let M be the unique m.l.s. containing
{{1,i}] i=2,3,...3U{N \{1}}. We show that 'mn converges to M. If
'm(fSSU...USI-;, then we may assume that SO = {1} and 1453:.L for i=1,...,m.
For i=1,...,m, it must be the case that Si # /N\U} and so there exists a
natural number ki such that kiési. For n > ki’ {1,ki}c—17ﬁn and hence
';77n¢s; U...Us’iL. It follows that if we let M = max (k;,...,k }, then for
n > M we have mnctsg U... US:-:’

(iii) Since any open neighborhood of a point in AN \ )\f/N must
contain (infinitely many) points of Af/N , then because of (ii), AN is

not locally connected.

We next consider an example to illustrate a very special part of

Theorem 3.3.

EXAMPLE T. Let I = {(x,y)éR x R| x=0, -1 <y < 1} , let
X = TU{(x,y)e R x/kly=sin 1 » 0 < x i':? }, and let p be the usual metric
of [Rx /R restricted to X. W}e( illustrate a special consequence of Theorem
3 in 83 by showing the following: for each p&I and U a neighborhood in AX,
there exists € > 0 such that if q € Ué(P) = {xe&X|p(x,p) < €}, then q and
p cannot be separated in U.

Proof. Since U is a neighborhood of p in AX, it must contain a finite
intersection of pluses of open set containing p. Take € so small that Ué(p)
lies in the intersection of these open sets. It follows that Ué(p)+C U.

Let qé.Ue(p) and for each x &X, let ﬁ?x = {SIS is a closed subset of X
containing at least 2 points of {p,q,x}}.It is easy to show that {mxlx €X}
is homeomorphic to X and hence is connected. Moreover, {p,q}& mx for each
x€X and so Mxe{p,q}+c: U, (p)+(_' U. Since mp = p and ﬂ/q = q, the assertion

is proved.
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EXAMPLE 4.8. Let X be a linearly ordered set with ordering < and
let § be the ussual closed subbase for the interval topology of X ; i.e.
A = {{xeX|x < a}|aeX}U{{xeX|a < x}|a€X} . Then A X is (homeomorphic
to) the completion of X by cuts, where the completion is equipped with its
interval topology. It follows, in this case, that AJX = B,X. Moreover, if
X is the rational numbers, then X is not connected but AX = RU{_-_!-_&}'is
connected.

Proof. c.f. [4] for the details.

EXAMPLE L4.9. Let X = NU{a,b,c} be the T1-space consisting of a
sequence (/N) converging to three different points ({a,b,c}). Then X is
compact (compare example 1 in §1) but BgX # X, where -§ is the set of all
closed subsets of X. It can be verified that B{X = XU{{Se‘/fl [Sn{a,b,c}|12}}.

This space is also one of the few compact, non-supercompact spaces
we know. Whether there exists compact non-supercompact Te-spaces is un-

known. C.f. Introduction, [1] and [5] .

EXAMPLE L4.10. There exists a space X with a connected subset A and
subsets A1,A2 of X such that A+n A-:(")A; is not connected in AX.

Proof. Let X = [O,1JU{2,3} with the relative topology from K.
Let A = [0,1], A, = {0,2,3}, and A, = {1,2,3}. It is easy to show that
I'\a! A-:UA; = {7771 ,7772}, where 7771 is the unique m.l.s. generated by
{{o,1}, {0,2}, {1,2}} and 7772 is the unique m.l.s. generated by
{{o,1}, {0,3}, {1,3}}. Since AX is Hausdorff, 77?1 and 772 are separated
in AN AT N4,

Let /f be a T1-subbase for a space X. In [1], de Groot defined the
following operation * on subsets of X: if ACX, define AT = {7776 A4X|\7/S€777,
SNA # @}.

It is not difficult to prove that * satisfies the following properties:

. +

(i) If AeS , then A" =A™ = {Mer x|ae ).
(ii) For every ACX, I

(iii) If A,BCX with ACB = X, then ATUB™ = x.
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(iv)  If A,BCX with ANB = @, then A'NB = g.

(v) For every ACX, A\ XNA" = (X\A)+.

4
EXAMPLE L4.11. The operations + and * are different.

Proof. In example 3, let A = (L 1-% |k e N} U{0,1}. Then

k H
AT = m = AU{P (n,*)|lme (0,1)}  and
A
K= AV X\ X).

We conclude this section with a list of unsolved problems.

1. Let,g{ be a T1-subbase for a space X. Are the following true?

(i) For every closed subset A of X, A" is closed in éJX.
(ii) For every closed subset A of X, AY is closed in %4X.

+ . .
(iii) For every open subset A of X, A 1is open in %JX.

>
(iv) For every open subset A of X, A 1is open in AX.

Note that by the properties of * and +, (i) and (iv) are equivalent

and (ii) and (iii) are equivalent.

2. If 4 is T,

not the case that § must be nicely screening.

-subbase for X such that AJX is Hausdorff, then it is

3. If X is a compact, connected metric space, then AX is homeomorphic
to the Hilbert cube. In particular, if I is the unit interval, then AI is

the Hilbert cube.

. + +
L. If ACX, it appears that the formula (chA)c: ClAXA plays a role
in trying to generalize the theorem on connectedness and locally connected-
ness. What conditions must be imposed on 4 in order to make the formula

valid for {fX?

5. Example 2 shows that the normality condition on .4 in the extension
theorem cannot be weakened to nicely screening and hence not to weak normality.

Can it be weakened in another way?
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For ACX we have A" = (Merx|Isel sca) 5.
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