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INTRODUCTION 

For practical reasons, it has appeared useful (c.f. [1], [2]1 to generalize 

the concept of a filter as follows: Instead of the requirement that every 

finite set of elements of the filter has non-empty intersection, one only 

requires th~t every pair of elements intersects. A collection satisfying 

this weaker requirement is called a linked system. Thus we have linked 

systems as compared with centered systems and maximal linked systems as 

compared with maximal centered systems or ultrafilters. All kinds of 

extensions of spaces which are defined by using ultrafilters as points 

can now be generalized by using maximal linked systems. The extensions 

obtained in this way are called superextensions (actually, there are many 

superextensions of a space}. This report is the first in which we try to 

study this concept in some generality and although it is communis opinio 

among the authors that we have only scratched the surface of the subject, 

we hope to make it clear that the results obtained so far are satisfactory 

and not pathological. 

Also, the superextensions seem to supply us with a new method by which we 

can create new (bigger} spaces from old ones (c.f. hyperspaces, products, 

unions, cones, suspensions, inverse limits}. 

The superextension of a discrete space of 1, 2, 3, 4 and 5 points 

is a discrete space of 1, 2, 4, 12 and 81 points, respectively. The super­

extension of a compact Hausdorff space is a compact Hausdorff space of 

the same weight. In particular, the superextension of a compact metrizable 

space is a compact metrizable space. Superextensions are even supercompact 

(i.e. there exists an open subbase such that every cover by subbase elements 

has a subcover consisting ot two elements). The interest in this strengthening 

of compactness is enhanced by a recent proof (by J. O'Conner l)J at the 

Univ. of Florida) that every compact metrizable space is supercompact. 

Extensions of continuous mappings over the superextensions are 

- as almost always - important, and a necessary tool. The results obtained 

here are as good as can be expected. This part of the work has mainly been 

carried out by the second author who also proved the weight theorem. 
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There is an external (though seemingly not internal) relationship 

between the superextension of a space and the hyperspace of a space. Just 

as the finite point sets of the space play an important role in the theory 

of the hyperspace, the more sophisticated.finitely determined maximal 

linked systems (see section 3} play an important role in the theory of 

superextensions. The introduction of this notion and the development of 

techniques are due to the third author. His main result in this section 

(Theorem 3). states that under very general conditions, the superextension 

of a connected space is both connected and locally connected. 

In the fourth section, we analyse a wide range of exemples. 

Much time and energy have been spent on this section by the second and 

third authors (well yes, the first author wrote the introduction and 

served as stand-by and fortune teller). 

From the unsolved problems mentioned at the end of the paper, we 

emphasize one. Is the superextension of the unit interval homeomorphic to 

the Hilbert cube? The answer is certainly yes, but it might be very difficult 

to prove this because the corresponding problem for the hyperspace is also 

unsolved (although the superextension is essentially bigger, there seems 

to be no natural "mapping relation" between them). The Hausdorff metric 

is a natural metric for the hyperspace in the compact metric case, and 

there is a similar metric for the superextension {given by the third author) 

in section 2. 
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l. Definitions and direct consequences. 

This section contains most of the definitions and preliminary results 

which are needed throughout the remainder of this report. We also include 

a number of related results which help to give insight into the theory 

and background of the subject. 

"(SUB)BASE" will always mean "(sub)base for the CLOSED sets". 

DEFINITION 1. 1. Let J be a subbase for a space X. --Sis said to be 

a T1-subbase in case for each xE:X, l.x}= n {Se--:f/x<=:S}, and for each 

xe::=:X with x<$: S, there exists T G --:f with x4G. T and S nT = 0. 

DEFINITION 1.2. Two subsets A and B of a set X are said to be screened 

by a family @ of subsets of X if (t covers X and each element of (; meets 

at most one of A and B. 

DEFINITION 1, 3, Let .,,$ be a subbase for a space X. -J' is said to be 

normal in case each S,TG:--:f with S(l T = 0 be screened by a pair of elements 

of ·"1. 
,j is said to be weakly normal in case each S,TG:--J with snT = 0 can be 

screened by a finite family of elements of -1'. 

ad def.1. 1. Any closed subbase containing all singletons is a T1-subbase. 

For any space X: 

(Xis T1) 

~ (X has a T1-subbase) 

~ (the closed sets of X constitute a T1-subbase) 

ad def. 1 . 2. Usually {; is a finite ( two element) subfamily of a sub base -! 
of X. Now "b screens A and B" is eq_ui valent to "A and B 

have disjoint open neighbourhoods which are elements of the 

open sub base (base) that corresponds with .J". 
ad def. 1.3. The collection of all closed sets of a topological space X 

forms a normal subbase iff Xis normal. 

Any normal subbase is weakly normal. 
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If f,g: X • [o, 1) are two continuous functions such that 
-1 -1 f -1 r, , ] f \ -1 ( J 

f ( 0 1 n g ( 0 } = ¢ ' then ( f+ ) Lo ' 2 and ( f+ J L 1 form 
g -1 -1 g 

a pair of zerosets screening f (O} and g (O}. 

The theory of superextensions originates from the following theorem: 

A T1-space Xis completely regular if and only if X has a (weakly} normal 

T 1-subbase. 

The first proof has appeared in [2]. In this report it is a corollary to 

proposition 'I • 5. 

DEFINITION 1.4. If J is a collection of subsets of a space X, then 

a linked sysi~ of J is a subcollection of J with the property that 

every pair of elements of the subcollection has nonempty intersection. 

It is easy to see, with the aid or Zorn's lemma, that every linked 

system of a collection 'J" of subsets of a space Xis contained in a 

maximal linked system (m. 1. s.} of J (i.e. maximal in J with respect 

to the property of being linked). We will use the script letters 

)(,m,17,{jJ to denote maximal linked systems of a given collection of 

subsets of a space X. 

EXAMPLE 1.1. Let D be a discrete space of n elements with all n 
nonempty subsets as a normal T1-subbase for Dn. 

For n3 = {1,~i,3}, the maximal linked systems of the base of all closed 

sets are m11 = {{1},{1,2},{1,3},{1,2,3}}, m2 = {{2},{1,2},{2,3},{1,2,3}}, 

m 3 = { { 3}, {'.I , 3} , { 2, 3} , { 1 , 2, 3} } , and m 4 = { { 1 , 2} , { 2 , 3} , { 1 , 3} , { 1 , 2, 3}}. 

EXAMPLE 1.2. Let s1 be the unit circle (i.e. circle of radius 1) 

and as a normal T1-subbase for s1, let .,1 be the collection of all intervals 

of S 1 . One m .. l. s. of /J is the set of all elements of ~ whose length is 

at least II. 

For other examples of maximal linked systems, see section 4. 
PROPOSB~ION 1. 1. Let /J be a subbase for a T 1-space in X. Then/.) is 

a T1-subbase for X iff for each xe.X, {S€,,,f lxE..S} is an m.l.s. of A. 



DEFINITION 1.5. If ,J is a T 1-subbase for a space X, then we let 

A-5X denote the collection of all maximal linked systems of ..-1. If X 

is any T1-space, then we let \X denote the collection of all maximal 

. linked systems of the base of all closed sets of X. 

For each Ac. X, define 

For each Se.~, it is easy to see that 

DEFINITION 1.6. If/) is a T 1-subbase for X, then {S+lse.,,S} is 

a sub base for a topology on >.1 x and >-1 x equipped with this topology is 

called the superextension of X with respect to /J. In case.,{ is all of 

the closed sets of a T 1-subbase X, then Af:,X = AX is called the superextension 

of X. 

In example 1. 1 above, AD 3 = cm1 , m 2 , -nJ 3 , m 4}. Moreover, { 1} + = C'fJ?.7 } , 

{ 2 t = { m?. } , {3 t = rm 3 } , { , , 2 } + = { m1 , m 2 , 1114 } , { , , 3 t = { m 1 , -111 3 , ·111 4 } , 

{2,3}+ = (nJ2 , J/7 3 , 11J 4}, and {1,2,3}+ = \D3 . It is easy to see that \D3 

is discrete with 4 points. It is also the case that >.D4 is discrete with 

12 points and AD 5 is discrete with 81 points. 

The following proposition contains some immediate consequences of 

the preceding definitions. We omit the proof. 

PROPOSITION 1. 2. Let ,,,J' be a T 1-subbase for a space X. 
+ + 

(1) If A,BCX and AnB =¢,then A nB = ¢. 

(2) If S,T6<f', then snT = ¢ iff s+n T+ = ¢. 

(3) If S,TE-f with ScT and S61Jlc. >:j<, then T<E.·m. 
+ + 

(4) If ACBCX, then AC B . 

(5) If 'Jnc:.,1_;.. ~X and SE..] with 1Jl U{S} linked then se1J1. 
' + ~+ + + 

(6) If se , then S U (X\ S;_ = A-j'X (and by ( 1 }: S n (X\ S) = QJ). 

(7). If 11/E:>--_fX and n'YJ1t, ¢, then by proposition 1 there exists a 

unique xE.X with n·m= {x}. Then 1f/.= {S1::._,f /xG.S}. 

(8) If S,TE J with SL)T = X, then S+U T+ = ~X. 

( 9) Let n be a linked system of A, and let m = { s E=. J' I ;j TE: 12 with 

TCS} be an m.l.s. of.A. Then m= {S€,.:fl11U{S} is linked}. 

Moreover, if ACX, then rnEA+ iff there exists Te.1l such that TCA. 
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( 10) Let i:X + AjX be the mapping i(x)_ = {Se.<f Ix~ S}. Then i is 

1-1 and for each S G..J : 

COROLLARY 1. If_,! is a T1-subbase, then the mapping x '"* {S G--&'!x£S} 

is an embedding of X in ~1x. (cf. (101}. 

From now on we will identify x with {S e.,5 lxes} for each xt:::X. 

COROLLARY 2. If,$ is a T1-subbase, then {(X\ S}+lst.::: . .-:f} forms an open 

subbase for A,f- (cf. (6)). 

We remark that generalizations of (2) (and hence (1)1 and (8) are not 

necessarily possible, in example 1 above, 

{ 1 , 2} + n { 2 , 3} + fl { 1 , 3} + = { 1Jl. 4 } , while ( { 1 , 2} (l { 2 , 3} n { 1 , 3} ) + = (ll 

and {1tU{2}+U{3}+ = {~YJ'/1, 11'/ 2 , 1Y/3}, while ({1}U{2}U{3})+ = AD3 • 

PROPOSITION 1.3. If.~ is a T1-subbase for X, then >..1x is a compact 

T 1-space; ind.eed, A5X is supercompact [1]. 

Proof. To see that A_,jX is a T 1-space, note that for each mGA_f-, 
{17l} = n{s+lse112}. 

Since supercompactness implies compactness, we show that ~Xis super­

compact with respect to the sub base { S +IS E .{}; i.e. , every linked 

system of { S+ IS e J} has nonempty intersection. ( Compare this with 

Alexander's lemma which states that compactness is equivalent to "every 

centered system of {s+lsE..--t} has nonempty intersection".) 

Let ~ 1 C ~ so that {S+ IS~ ✓.f 1 } is a linked system. By proposition 

1. 2 ( 2), --11 is a linked system of _,-f and so is contained in a maximal 

linked system -m of ·{. It follows that 112€ n{S+ Is E'. -!} and so ~x is 

supercompact. 

In general, it is not the case that A--5X is Hausdorff, even when X 

is a compact Hausdorff space (c.f. example 4.1). 
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However, if J' is a "nice" subbase, then A_tX is Hausdorff. To make this 

more precise, we introduce the following definition. Though this is the 

weakest condition we did find, it is not satisfactory. 

DEFINI'.rION 1. 7. Let ,5 be a subbase for X. We say that a pair 

S,TE:.,&' is nicely screened by {s 1, ..• ,Sn}c<f in case {8 1, •.. ,Sn} 

screens Sand T and if {T 1, ... ,T }c.,J' with T.fls. = !1), i = 1, .•• ,n, 
n 1 1 

then {T 1, ... ,Tn} is not linked. 

This means that a pair S,TG✓-f' is 
+ iff {s 1, ... ,Sn} screens S,T and s 1 

to: {S~, •.. ,s:} screens S+ and T+. C. f. 

proposition .. 

nicely screened by {S 1, •.• ,Sn} 

s: = \rX· This is equivalent 

the proof of the following 

PROPOSITION 1.4. If 4 is a T1-subbase for X such that every pair 

S,Te.r! with snT = !1l is nicely screened by a finite family of A, then 

AJX is Hausdorff. 

Proof. Let 11f/, 11, <== A.fX with 1f2 # 11. Then there exist 

Se.1Y/, TGM. and snT = ¢. By assumption, there is a 

S,T6.4 with 

set {s 1, ••. ,Sn} c .,J' 
n + 

which nicely screens Sand T. If A~X # .~1 S., then there exists 
n Q 1- 1 

(/JG. \ 1X such that <Pf i~1 s;. This implies that there exist T 1, ... ,Tn ~cP 
with T. n S. = ¢, i = l , ••• ,n. 

1 1 

Since {T 1, ... ,Tn} is linked, this contradicts 
n 

nicely screens Sand T. Thus ~ix= i~1 
+ + 

from the fact that 

and 11. 
{s 1, ... ,Sn} screens 

+ S. and the Hausdorffness follows 
1 

s+ and T+, and hence screens 1Jl 

Since every normal T1-subbase for a space X satisfies the hypothesis 

of proposition 1.4, we have: 

THEOREMi 1.1. If .,j is a normal T1-subbase for X, then A!X is Hausdorff. 

The remainder of this section is devoted to some results on 

compactifications. If A is a T 1-subbase for X, then the closure of X in 

A/4X, denoted by~!, is a compactification of X with subbase {s+n s~xjsc--f}. 

Since X need only be a T1-space, it is clear that s1x need not be a Hausdorff 

compactification of X. 
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However, we have the following: 

PROPOSITION 1o5. If J is a weakly normal T1-subbase for X, then 

a1 x is Hausdorff. 

The proof is similar to that of proposition 

needs (S~ U ••• Us:) n SgX = S:51X if s 1 U ••• VSn = 
is a closed set containing X and hence SJX• 

1.4 except that only 
+ + 

X. For then S1U ••• USn 

Since the zerosets of a T3~-space constitute a (weakly) normal 

(sub)base we immediately obtain:the mentioned result of ·dee Groot-Aarts [2]. 

COROLLARY. A topological space is T3; iff it has a weakly normal T1-

subbase. 

Proposition 1.6 below yields a characterization of the elements of 

SgX in the general situation and proposition 1.9 below yields a nicer 

characterization in case J is a weakly normal T1-subbase for X. Before 

obtaining these characterizations, we need the following definition. 

DEFINITION 1. 8. A subset£ of a collection J of subsets of a set 

X is said to bee .a prime ;s;ystem of .JJ in case for any s1, ••• ,Sn 6. .--:f 

with lJ S. = 
0X, at least one of the S. is a member of~ • 

. 1 ]. (} ]. 
PROPOSITION 1.6. Let -0 be a T1-subbase for X and let m€, "AgX· 

Then 7ll6 a8x iff 7fl is a prime system or .J. 
Proof. Since SgX is the closure of X in "A_JX, we have that 1lU, S-8X 

iff there exists s 1 , ••• ,s e.J witn· · SoX C .81 s: and 1fZ¢, Un s:. This n ~ i= i . i 

is equivalent to the condition that there exists s1, ••• ,S1e\J with 
n n 

X = •U S. and s1 , ••• ,s @:J; i.e. 1Tl is not prime. 
. J l. n 
1 PROPOSITION 1.7. Let be a weakly normal T1-subbase for X. Then 

each prime centered systemL of & is contained in a unique maximal 

linked system of/ ( which is prime and hence belongs to S.3(X)). 

Proof. Since t,,. is linked, it is contained in some mls. Ast is prime, 

this mls is prime and, by proposition 6, belongs to ~X. 

Now let 1TL and n be two different mls-s containing J:,,. • Then tr~;re 

exist S G1fl and T~n with S n T = ~o ~ the weak normality of-,0, there 

exist s1 , ••• ,Sn~ ,/j screening S and T. By the primeness or£, there 

is and i G { 1 , ••• ,n} such that S. e£ C 7Tl nil so that this S. meets both 
]. ]. 

Sand T, a contradiction. 



The following proposition contains some well-known set-theoretical 

results on prime and centered systems which are useful for the proof of 

proposition 1 . 9. 

PROPOSITION 1.8. Let .,6 be a collection of subsets of a set X. 

( 1 ) Any centered system of ✓,f is contained in a maximal centered system 

of A. 
( 2} Any prime system of /2 contains a minimal prime system of /J. 
(31 Any maximal centered system of .,J' is a prime system of ,i'. 
(4) Any minimal prime system of 4 is centered. 

Proof. We first remark that (1) and (3} are well known and (2} and (4) 
follow from (1) and (31 using the following two observations: Let :fc~. 
( i) £ is a prime system of 4 iff {X'\. SIS G.~J\£} is a centered system 

of {x'\slse.-8}. 

(ii)£ is a minimal prime system of.,,S iff {X\Slse.--6'\£} is a maximal 

centered system of {X\. SIS G,,f}. 

PROPOSITION 1. 9. Let 4 be a (weakly) normal T 1-subbase for X and 

let 'rt/E.·1.,jX, Then 17J.ss4 x iff 1J7 contains a maximal centered system of /J, 
Proof. If 111 contains a maximal centered system of .,,.j', then the proposition 

1. 8 ( 3), that centered system is prime and hence 177 is prime. Thus 

msB,5X by proposition 1. 6. 

If 17/6,8-:fX' then 1JJ is prime by proposition 1.6. Using proposition 

1 . 8 ( 2) and 1 . 8 ( 4), 1n contains a prime centered system C5 of 4. 
By 1 . 8 ( 1 } , (g is contained in a maximal centered ystem (i, of A. 
It follows from proposition 1. 7 that (.;•cm. 

REMARK. We observed earlier that the collection of all zerosets j­
of a Tychonoff space X forlll'i a normal T 1-( sub )base for X. It can easily be 

shown (c.f.[2]} that B~(X) is the Wallman-Shanin compactification of X 

with respect to ~ and thus B? (X) = B(X), the C~ch-Stone-c~mpactificat~on. 

In section 2 we make some comments on the extension of continuous functions 

over \JX and >.1x for certain subbases ,,,J, and prove that BA (X} = B(X} 

by these mea.ns. ( Corollary 1 to theorem 2. 11. ~ 
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2o ~ invariance of~ propertieso 

This section is primarily concerned with the question: If X has a certain 

property, does \1X or \X have this Jroperty? We have already seen that 

if Xis compact Hausdorff and if -0 is a normal T1-subbase for X, then 

AJX is compact Hausdorff. In this section we will discuss such properJies 

as weight, zero-dimensionality, metrizability and super-connectedness. 

Since, continuous functions play a role in the invariance of topological 

properties, we begin this section with a number of results concerning the 

extension of certain continuous' functions. 

THEOREM 2.1. Let J ~ !:, T1-subbase_ .!9!, X, let 7 ~!:,normal 

T1-subbas~ for Y, and~ f be a continuous function of X into Y such 

that f- 1 [91 C J . Then f ~ a continuous extension f from AJX into AfjY. 

Moreover, if f is onto, then f is onto. 

Proof~We not first~t i-;m€ \4X, {T a:r1f-1T em} is a linked 

system of o/ and hence is contained in an m. 1. s. of <J'"' • Suppose that 

{T e9""'1f-1Tem} is contained in two distinct m.l.s.'s 7l1 and ?l2 of~ 

Then there exist T1 ,T· e.<:f' with T1 € n 1 , T e Jl,, 2 and T1 O--T2 = ¢. 

By the normality or'?-, there exist TrT4 € ~with T3 V T4 = Y, T3 n T2 = ~ 
and T4 n T1 = ¢. This implies that f- [T3] U f- 1 fr,4] = X and hence 

f- 1 [T3] or f- 1 [TJ €,'fr/,. If f- 1 [TJ E-lfl, then T3 e {T 8 lf-1T e7JZ} 
and hence T3 €7/,1 n 7l2 ,C n 2 , _:ontrary to T3 0 T2 = ¢. Similarly, 

f- 1 &J 4 7tl and so {T G!J-' jr 1T e. 7'Z} must be contained in a unique 

m.Ls. of7; denote this unique m.Ls. by ""i(ff/J. Clearly f is well 

defined. If x €. x, then r[{s€ -I Ix€ s}J is the unique m.1~-;. of~ 

containing {Te97x € f- 1'I}={Ti~:r[r(x) 6 TJ = f(x). It follows that 

f is an extension of f. To see the continuity of f, let T 1 e_~ and 

suppose that 7r/ t r 1 [T~. Then there exists T2 e,;J- with f- 1 [TJ ~ m 
and T1 n T2 =¢.Using the normality of~ there exists T3 ,T4€9"" with 

T3 tJ T4 = Y, T3 n T2 =¢and T1 n T4 = ¢, Le. \gX \ f- 1 [T;l+ is open/ 

contains 7fl and is disjoint from r 1[T 1]. Hence r 1[T~ is closed and 

so f is continuous. If f is onto and·ne A:rY, then {f-1[T] IT e7l} is 

a linked system of J and hence any m. 1. s. of .ef containing { f- 1 [TJ IT 6 7l } 
is mapped onto n by f. 

We remark that the restriction of the above defined f to SJX = x­
yields a mapping into Y- = ~• 
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If Y is T2 and compact andYis all of the zerosets of Y (or more 

generally, 9'"' is weakly normal), then ~ = Y. Thus we obtain a kind 

of Stone extension theorem for these cases. It should be noted however, 

we have more, in the sense that we can extend such functions over all 

of ')..JX into "A~Y. 

Applying this result to the case when Y is the unit interval, g-is 

collection of all closed intervals of Y, andJ is a T1-subbase for X 

the 

which contains all zerosets of X, we can conclude that all bounded 

real-valued continuous functions on X can be extended over "A_rX, and 

hence 

COROLLARY 1. If~ is the collection of zerosets of a T3~ space X, then 

S~(X) = s(X), the Cech-Stone-compactification. 

As a corollary to theorem 2.1, we also have: 

COROLLARY 2. IfJ is a normal T1-subbase for X, then the identity 

function on X has a closed continuous extension from "AX onto "AgX. 

It should be noted, however, that "AjX need not always be a quotient 

space or even a continuous image of "AX (c.f. examples 2 and 3 in §4). 

Related to the extension problem, we also have the following 

proposition, the proof of which is straightforward. 

PROPOSITION 2.1. Let J be a T1-subbase for X and let f be a 

continuous mapping of X into the unit interval I. Then 

(1) f: "AjX • I defined by f(7/l) = inf {sup f(S) Jse7Jl} is an upper 

semi-continuous extension off. 

(2) f: "A.JX • I defined by f(/7/,) = sup {inf f(S) I se7Tl} is a lower 

semi-continuous extension off. 

(3) 

( 4) 

(5) 

f <.. b· 
If-4 contains all zerosets of X, then.!= f is continuous. 

If;;/ contains all zerosets of X, and one uses as a subbase 
- -for I all of the closed intervals of I, then f = f is the f of theorem 2.1. 

NOTATION. If Xis an infinite T1-space, we let w(X) denote the 

weight of X (i.e. the minimal cardinality of a subbase for X). 

LEMMA 1. If Xis an infinite compact Hausdorff space, then 

w("AX) = w(X). 
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Proof. Let <13 be a base for the topology of X such that I cB I = w(X) 

and (/3 is closed under the taking of finite unions and finite intersections. 

Since Xis compact Hausdorff, it is easy to see that if F1 and F2 are 

disjoint closed subsets of X, then there exist B1 ,B2~<Z3 screening F1 and 

F2 • It follows that {B+IBG:<23} is a subbase for the topology of AX. 

THEOREM 2.2. If Xis an infinite compact Hausdorff space and if /2 
is a normal T11-subbase for X, then w(Ajt-) = w(X). 

Proof. T'his follows from lemma 1 and the corollary 2 to theorem 2.1, 

since the extension of the identity function on X induces an upper semi­

continuous decomposition of AX whose numbers are compact. 

PROPOSIT'ION 2. 2. If X is compact Hausdorff and zero-dimensional, 

and if <f is a subbase for X containing all of the clopen sets of X, then 

is zero-dimensional. 

Proof. If <1J is the base of all clopen sets of X ( or even if (}J is 

a base of clopen sets which is closed under the taking of complements, 

finite unions, and finite intersections), then once can argue as in 

lemma 1 that {B+IBeQ'.3} is a subbase for \rand by proposition 1.2(2) 

and 1.2(8), each B+, for BEcZ:3 is clopen in \f-· 
THEOREM 2.3. If Xis the Cantor space, then AX is homeomorphic to X. 

Proof. Since a Cantor space is completely characterized by the 

properties.; second axiom of countability, zerodimensional, compact Hausdorff 

and dense-it-itself, theorem 2.2 and proposition 2.2 imply that it is 

sufficient to prove that AX has no isolated points. We do this by showing 

that every nonempty basic open set of X contains at least two points. 

We may assume a basic open set is of the form AX'\. ,V1 s:, where s1 , ••• ,S 
m..J.. n + . i- i n 

are clopen in X. Assume· ~.V1 S. and let T. = X'\S., i = 1, •.. ,n. 
i= l. l. l. 

Then T .e 1'f/., i = 1, ... ,n. Since T. n T. "f ¢, X contains no isolated points, 
l. l. J 

and T. n T. is clopen in X, we can conclude that 
l. . J . 1 . 

T. n T. contains infinitely 
l. J 

many points of X. Pick p .. "f p .. in T.nT. 
. . 1 l.J . . l. J l. J 

{p .. li,J = 1, ... ,n}n{p .. 11.,J = 1, ... ,n} = 
l.J l.J 

H. = { p .. I i = 1 , ... , n} . Then H. 
J l.J J 

The collection {H. lj = 1, ... ,n} 

(i,j = 1, ... ,n) so that 

¢. For each j = 1, ••• ,n, let 

is a closed subset of X and H .CT. , J = 
J J 

is linked and so is contained in some 

1 , ••• ,n. 

J 
maximal lin~ed system 121 in the base of all closed sets of X. It is clear 

that -n,¢i\j1 s:. Similarly, using the_JI)~;bj_=1, ... ,n}, we obtain a 

maximal linked system 1/2 such that rJ ~ 1~ 



Since {p .. j i,j 
'i'J lJ 
I /,,1 "f n 2• 
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= 1 , ••• ,n} 6 n 1 and { p ~ . j i, j = 
lJ 

1, ••• ,n}e n 2 , then 

THEOREM 2.4. ~ M ~ !: com12act metric space~ metric p ~ ~ 

Ua(S) = {x S Mlp(x,s).:. a} for SC M ~a!:~ number.~ 

p:AMxAM + R, defined .E.l, 

p (ff/,, n) = inf { a e fR I V s e. m, T G. n , u ( T ) e lTl 'u ( s ) €, 7l }, 
a a 

is a metric for AM. 

Proof. It is clear that p(7fl/fl) = p((L,77/,) for every m,n e AM. 

We prove next that 

= min {a elRI 't/s et/Z,TB7l, u (T)e.71Z,u (s)e1Z}. 
a a 

Let c = 'p(l7l, i/,,). Suppose that there is an S Gt/l with U (S) $72,. Then 
C 

there exists TE.![ such that T n U (S) = ~ and hence an £ > 0 such that 
C 

T n U + (S) = ~, a contradiction. Thus U ( S) €- ?l for every S e7fl . 
CE ~ C 

Similarly, U (T) e 7fl for every T e11,, • Hence the desired assertion. 
C 

Since S closed in M implies that u0(s) = S, it follows immediately from 

the definition that p( t'fl, 'fl,) = 0 iff JrL = J'l • Thus we only need to prove 

the triangle inequality. Let m, n,/J G AM and suppose that 7[(1Tl,'Jl,) = a 

and p( n, /J) = b. Then for each seifl , T <! n, and Pe f , U (S)e il , 
Ua(T) G-1r/,, ~(T) S v) and Ub(P)en • Thus, for every semaand pefJ , 

Ub(Ua(S)) eCf-1 and Ua(Ub(P))e77Z. Now Ub(Ua(S))C Ua+b(S) and 

U a (Ub (P)) C U a+b (P) imply that a + b ;:_ p (tfl, (j)) and the triangle 

inequality follows. Before showing that the metric topology on AM 1s 

compatible with the superextension topology, it is useful to remark that 

p ( 7TL, 72,) = min { a I V s e 71l , u ( s ) e. 7Z } . 
a 

We need only prove<, since the reverse inequality is obvious. Suppose 

we have an a such that for every Sfem ' u (S)G'll • Then Vs $71l, 
a 

T e'1l , it follows that U (S) n T "f ~, and hence U (T)n S "f ~; 
io e. U (T) G: ?7z , V- T G 7Z ~ It follows that a > ?;(/fL, '/Z). 

a -
To see that pis compatible with the topology on AM, we show that 

the topology induced byp on AM is weaker than the superextension 

topology ( which is compact) and hence these two topologies must coincide. 



-14-

Let e: > 0 and 'rY}e:.).M. Let p 1, ••• ,P be an e:/3-net of M and let U (p} = n a 
= {xe:Mlp(x,p} < a}, where ac'fR and peM. We let er be the finite 

collection of open sets which are unions of sets of the form U 13(p.} 
+ + e: 1 

(i = 1, ••• ,nl. Let O = n{u luE& and meu }. It is clear that O is 

an open set in M containing 1f/. Moreover, if Se 1f/, then there exists 

ue::.0' such that scucu2 13(sl, namely, U = U {u 13(p.}lp(p.,S} < e:/3}. 
+ e: + e: 1 + 1 

Therefore, OCU C (U2 e:/3( S) l and hence oc Q11/. (U2 e:/ 3( S)} • It follows 

that if -nso, then for eachTcr;;.11, Tnu2 e:13(s1 :/, 0 for every S€11/. 

Thus u2 e:/ 3(T)n S :/, 0 for even Se11/ and so u2 e:/ 3(T}E1?1 for every TC: 1'/. 
Hence tcrn, 111 2- f e: < e: and hence {11 E- AM I ten ,11/ l < d is open. 

We can derive more information about p. We list a few of the results 

but omit the proofs. 

( 1 ) p(rfl, 11) = sup inf sup p(x,S). 
SG.m TG1J xc::: T 

(2) ?5(1n, 11 l = max min sup p(x,S). 
se.111 TG.'11. xe: T 

(3) p(m, 111 = sup inf d(T,S), where dis the Hausdorff 
Sc.111 Te1l 

metric on the collection of all closed sets of M. 

(4) tlM x M = p. 

(5) Ue:(m) = O<~e: s~,m(Ua(S:)t and 1\("'W!) = S~1J'/ {i\(s})+. 

THEOREM 2.5. Let {Xa.;<j>a.B} be an onto inverse spectrum of spaces 

such that <j>a.a. is the identity .Q!!. Xa. with ,,,fa..!. normal T1-subbase for Xa. 

and ~ that <j> :! [.-:fa.] CA a. for each a. > S. 

Then lim AL X = A1 lim X where /j is the relativized natural subbase 
- + ~JO,(). -"J + a. ---
for the product topology of g Xa.. 

Proof. Let Tia be the Sth projection of IT X. Then lim X = .., - a.a. + a. 
= {xeIT X I n8(x} = <j> a On (x) for all a. > B}, and 4 is the 

a. a. a..., a. -1 
restriction to lim X. of the collection {n r,1] se.,,-5; all a.} 

+ a. a. ~ a. a. 
which is a subbase for the product topology. It is not difficult to see 

that -<f is a normal T1-subbase for lim Xa.. By theorem 2.1, each <j>a.B has 

an extension <j> a.B from ~ a.X onto A! 8x8. 
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-Making use of the definition of ~aS' one can show that if a> B > y, then 

¢ = ¢ 0 0 ~~ 0 so that { Ao X ; ¢ 0 } is an onto inverse spectrum. ay ~y a~ ?a a a~ _ 1 
Considering each TT as· a mapping of lim X onto X , then TT [s J E. 5 for 

a + a a a 
each S G. ~ • Thus TT has an extension ; from A1 lim X onto Ap X 

a a a ~ + a oa a 
with the property that ; 8(1fh = ¢aB O ;a (1fll for all a > B, It is now 

easy to exhibit a map of A; lim X onto lim A X and to show that the 
:> + a + .',fa a 

map is a homeomorphism. 

We conlcude this section with a result on super-connected spaces 

{3] which are of interest only for non-T2-spaces. We omit the easy proof. 

PROPOSITION 2.3. Let X be a nonempty T1-space. Then (i) through 

(vi} below are eq_ui valent, (vi} implies (vii) and ( viii 1, and (viii) 

through (x} are equivalent. 

( i) 

<=> .1,,..t- (ii) 

<=> (iii} 

<=> (iv} 

<=> (v} 

<=> (vi) 

( V )=> (vii) 

(v)=> (viii} 

<=> (ix) 

<=> (x} 

Xis super-connected. 

Each open set of Xis connected. 

Each nonempty open set of Xis dense. 

Each pair of nonempty open sets of X has nonempty intersection. 

Each n nonempty open sets of X have nonempty intersection. 

The open topology of Xis centered. 

Xis dense in AX. 

The open subbase of AX is centered. 

The open topology of AX is centered. 

AX is superconnected. 
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3. Finitely determined maximal linked systems. 

In this section Xis a fixed T1-space and.1 is a fixed subbase for X 

which contains all of the finite subsets of X. 

We define a special kind of m. l. s. of .,5 and with the aid of this 

special m.l.s., we obtain some results on the connectivity of the super­

extension A,1X, 

DEFINITION 3,1. Let F be a finite subset of X. An m.l.s. with 

respect to Fis a maximal linked system of the collection of all subsets 

of F. 

An "m.l.s. with respect to a finite set F" is usually not an m.l.s. of .✓.f, 

but we have: 

PROPOSITION 3,1. If 1Y/ is an m.l.s. with respect to a finite subset F of 

X, then tr/ is contained in a unique m.l.s. of ,,5; we denote this unique 

m.l.s. by ffl.. • 
Proof. Let 1/ = {se/271 S contains a member of m}. Since 1f/ is linked, 

also f/ is linked. If TG..J and T meets every member of 'fl, then T 

meets every member of 11/. Thus T/l F meets every member of ·rrJ so that 

Tn F e'rJ?. (proposition 1. 2 ( 5}), since .~ contains all finite subsets 

of X:~ Hence T contains a member of rJ1, and so Tc r/_ , i.e. fl is an m. l. s. 

in /) . Clearly any m. l. s. in ,,! that contains 111, must contain Y/ , and 

thus equals f/., proving that r/ is the unique m. l. s. containing 1f/. 
DEFINITION 3.2. If ri7 is an m.l.s. with respect to a finite subset 

F of X and if' f/ ~ \f X and 11,:::J rJ1, then we say that r/ is defined on F 

and that r/. is generated £Y. 1r/. 
PROPOSITION 3,2. (a}. If F is a finite subset of X and r/.c \rX, then 

n is defined on F iff {sen lscF} is an m.l.s. with respect to F. 

(b). If F 1 and F2 are finite subsets of X with 

F 1c F 2 and if 1'/. G \sX with 'fl defined on F 1 , then 11. is defined on F 2 . 

( c). If an m. 1. s. 'fle ')..!X is defined on a finite 

subset of X, then there is a smallest among the subsets of X on which 

r/. is defined. 



Proof. The (a} is obvious. Note that {SE.r/._ lscF} = {SnFjSG.11}c11, 

(b): Let fYl1 = {sc:nJscF1}. fl is defined on F 1 means: 

1'f/,1 generates 77.. If F2.::JF 1 then {TcF2 1T contains a member 

of M1} is a mls with respect to F2 (c.f. the proof of proposition 

3,1.}. It is readily verified that this collection is contained 

in 1Z ' i.e. n is defined on F 2. 

(Cl: Let n* be the collection of minimal sets in }? . Since 

11. is defined on a finite set, say F, any element se.r/ contains 

a finite set, which belongs to n and hence S contains a set 

TE: 11_*. It is easily cheg_ued that UY/.* is the smallest set on 

which n. is defined. 

DEFINI'I'ION 3,3, If nE. ~X and r/ is defined on some finite subset 

of X, then 11 is called a finitely determined maximal linked system (f.m.l.s.} 

of /j . If n is defined on a finite set of at most n elements, then (l__ is 

called an n maximal linked system (n-m.l.s.) of A. We let 

and 

Af,r- = {J1e:. A-5X 111 is an f .m.l. s. of..{}, 

A~= {7/E.AXjr/ is an f.m.l.s. of the base of all closed sets of X}, 

It is easy to see from the definitions that 

PROPOSI'rION 3. 3. X ~A 1,? = A2-:!XC. A3?- C ••• cn'ii/11/ \.JX = Af.fX. 

REMARK. Using the technique of the following proof, one can show 

that if {A 1, ... ,A} is a linked system of subsets of X, then 
n + n 

( [}1 Ai )(I Ar'.?- :f:. ¢. We use this remark without further comment. 

PROPOSITION 3,4. Let A1, ... ,AnCX with {A 1 , ... ,An} linked. Then 

+ n + n + 
(clXAi}CclA.tX ((iQ1 Ai)_()Arf)c:clA X (iQl Ail, 

•'J '-{ 
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Proof. Let 7J2 G r, (cLA. )+. Then there exists s1 , ••• ,s e:."17Z such 
. 1 x--i n 
i= m + m + 

that S. C cLA., i = 1, ••• ,n. If we let A0 X \ U T. = n (X '\ T.) be 
i :x--i :, . 1 i . 1 i i= i= 

any basic open set containing J1l. , then there exist U 1 , ••• ,Um e. JlZ with 

U. CX \T., i = 1, ••• ,m. Since {s1 , ••• ,S ,u1 , ••• ,U} is a linked system, 
i i n m 

then {cy1, ••• ,cyn,X, T1 , ••• ,x \ Tm} is linked. It follows that 

{A1 , ••• ,An,X \ T1 , ••• ,X \Tm} is linked. For each i,j = 1, ••• ,n + m we choose 

p ... = p~.€ X; for i,j = 1, ••• ,n, pick p .. €. A. (7 A.; for each i = 1, ••• ,n 
iJ Ji iJ i J 

and j = n + 1, ••• ,n + m, pick p .. 6 A. n (X \T. ); for each i,j = n + 1, ••• , 
iJ i J-n 

n + m, pick p .. E. (X '\ T. )n (X \ T. ). Let F = {p .. 1 i,j = 1, ••• ,n + m} 
iJ i-n J-n iJ 

and let H. = {p .. 1j = 1, ••• ,n + m} for i = 1 , ••• ,n + m. Then {H.li=1, ••• ,n+m} 
i iJ i 

is a linked system of F and is contained in an m.l.s. n with respect to F. 

It follows that H1 , ••• ,H +m 6 rz and since H. CA. for i = 1, ••• ,n, then 
n n - i i 

JL e (7 A:. Moreover, H.+ C X '\ T. for i = 1, ••• ,m implies that 
. 1 i i n i i= 'fl G (1 (X \ T. ) +. Hence every basic open set containing 7lZ contains an 
. i 
i=1 n + . m A + 

element of (( n A. )n Af 0 X); i.e. file clA X(( I I A. )n Af0 X). The last 
i=1 i a ::f i=1 i -:, 

inclusion of the proposition is trivial. 
n + n + 

COROLLARY. If A1 , ••• ,A CX, then() A. C cl, X((n A.)n Af..X). 
n · 1 i /\ 0 • 1 i ~-n i= ~ i= n 

Proof. If n A: = ¢, then the inclusion is trivial. If n A: "F ¢, 
i=1 i i=1 

then {A1 , ••• ,An} is linked and the result follows from proposition 4. 

PROPOSITION 3.5. A subset A of a T1-space Xis nowhere dense in X 
. + . . iff A is nowhere dense in AX. 

+ + Proof. Suppose first that A is nowhere dense in X. Let o1 (l ••• n On 

be a nonempty basic open set in AX, where 0 1 , ••• ,on are open in X. For 

each i,j = 1, ••• ,n, let 0 .. = 0. n 0. () (X\ cLA). Then 0 .. is a nonempty 
iJ i J 7C iJ 

open set of X since 0. n 0. is a nonempty open set and A is nowhere dense. 
. i J • n + 

For i = 1, ••• ,n, let U. = o. 1u ... U 0 .• It follows easily that() U. i i in . 1 i 

is a nonempty open set in AX which is disjoint n ' . n + A+ ' h d contained in 0 .• Thus is now ere ense 

+ i= 
from clAI' and which is 

in AX. 
. 1 i i= 

Conversely, if A+ is nowhere dense in AX, then AX'\ cl __ __A+ is dense in 
+ + +AX-- + 

AX. By proposition 3.4, ( cy) C. cl Al' so that AX '\ clAI' C AX '\ ( cy) = 

= (X \ cyt and (X \ cl0)+ is dense in AX. 
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It follows that cl0 can contain no nonempty open set of X and hence A 

is nowhere dense in X. 

We remark that in general it is not the case that if A is nowhere 
+ dense in X, then A is nowhere dense in AJX (c.f. example 2 in §4). 

THEOREM 3.1. If J is a T1-subbase containing all finite sets then 

the set of all fmls-s is dense in the superextension with respect to J, 
i.e.: (Af~x)- = A5X. 

. + 

by 

Then 

Proof. A~X = X C 

(i) 

(ii) 

(iii)~ is continuous. 

Proof. We first show that the range of~ is contained in Af1x. 
Let m, ii, , vJ e:. A f!l. By proposition 3. 2 ( b) , we may assume if/,, fl ,f) 
are all defined on the same finite subset F of X. Let 

1Tl1 = {s~m1s CF}, let 1/,1 ={sell 1s·c F}, and let~1 = {seP 1 SCF}. 

By proposition 3o2 (a), 77Z 1, JZ 1,~1, and fJ1 are m.l.s. 9 s with respect 

to F. Let J( = (ll?.1 n ll1) u (rr/,1 n p 1) U( 721 n P,) 0 We will show that 

JC is an m.l.s. with respect to F. If G ,T G.IC, then S,T belong to at 

least one of m1 ,721 ,P1 both and hence s n T "'f ~- Suppose now that TC F 

and ~U{T} is linked. If T is not in at least two of 11/.1 ,121, ~, say 

T ~ 7/Z1 and T ~ 72..1 , then there exist s 1 e 71/,1 and s 2 6 7/,,1 such that 

s 1 n T = ~ and Sg_,(\ T = ~. It follows that s 1 U s 2 C F so that 

s1 lJ s2e m1 n ll1 c:X and T()(s1 U S2) = ~, contrary toX U {T} 

being, linked. Thus T is in at least two of 11/.1 , 1/,_1 , and If; and hence 

T -G.J( . Therefore./( is an m. lo s. with respect to F and hence .J::. is 

contained in a unique m.l.s.-.K of .J by proposition 3.1. 
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It 1S easy to show now that </>( m, n.' {jJ 1 = J{ and since X is defined in 

F, the range of <I> is contained in Ar?-· 

( i 1 If m = rl, then rJl nn = 17/c <P(rll, r/ /Pl and hence </>( m, 'fl, (j)) = 1!/. 
( 1• 1· ) A A X d th t ·m M ~ nn A+ Let 1, •.• , C an suppose a , fl=-. 1 .• Then there n 1= 1 · 

exist S., ••. ,serr/.1 andT 1, ••• ,Te:.1'!1 such that S.,T.CA., for i = 1, ••• ,n. 
1 n n 1 1 1 

Thus S. UT.CA. , i=1, ... ,n and S. UT .c.1i/.1n 11_1cq,(1f}, n ,(iJ}. Therefore 
1 1 1~ + 1 1 

<Pcm, n ,<P ).6=. ( i~1 Ai). 

(iii) Let SE'.,,j and V = S+n Af&'X, then 

U = (V XV X Ar_f)U(V X AfJ'x XV) U( Af,jx XV XV} 1S closed in 

Afjl- x Af,JX x Af.S'X. 

Let (m, r},(J)leu, say 11/cVCS+ and n€VC.S+. By (ii}, <P(1f/,, "fl,</J}l!E 
+ . -1 

T nAf X = V; i.e. UC</> (V). 

Suppos! now that (11'/,1/,<JJ}6</>-1(V). Then <P(1n,11,(J)}G.V so S(;;:qi(1f/,fl,@L 

Since S must belong to at least two of m, 7/, IJJ, then cm , ·r/, (/)) G. U. It 

follows that <P- 1(V) = U and hence <Pis continuous. 

PROPOSITION 3.7. Let {i) be an f.m.l.s. that is defined on 

P = {p1, ••. ,P }CX and let 7: P -+ X be a function. If we let 'i"(p.) = x. 
n r,) 1 1 

and let F = {x 1 , ..• ,x11 }, then the system '-Cf, defined by <J?-- = 

{SE:..-0 l3Te.cP 'r'(T)CS} is an f.m.Ls. of4 and is the unique m.l.s. 

of 4 containing {1"( S) I SCP and se@}. 

Proof. It is easy to verify that (j}r is a linked system of ,4 which 

containes U''(S}lsc.P and S€.P}. If Td and Tns :/: 0 for every s4, 

then Tn'l"'(S) :/: 0 for every SCP with SecP. Then sn7V- 1T :f: ¢ for every SCP 

with S€':(j). Since (jJ is defined on P, then this implies that ,r-1Te@ and since 

T::r7"(1"- 1T), this means: Te.<Pr. Uniqueness follows immediately. 

THEOREM 3,2. Let (j) be~ f.m.l.s. of 4 defined .Q!l P = {p1 , ... ,pn}. 

For each X = (x1, .•. ,x v-=xn, let r_: P -+ X be defined bv , (p.) = x. 
---- n'- -- X - .::JI... X 1 ,,f 

( i = 1, ... ,n). Let 1/Jn : Xn -+ Af&X be defined EZ, I/In ( (x1 , ••• ,xn)} = 0v , 
X 

where x = (x 1 , ••• ,xn}. 

Then ljJ is a continuous function. -- n--
Proof. It is clear from proposition 7 that 1/J is well defined. Let 

n 
SE.J, i.e. S+ is a subbasic closed set of ~X. For each Te(j) with Tc.P, 
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-1 + 
let ST = {j IP~€.T} s X {j IP~E.T} x. We show that l/Jn (S f) Arr} = 

{STITG:cP ~nd TCP}, whi~h is closed in r; 
-1 + ril + r,1 

Let (x1, ... ,xn) = xE:l/Jn (S ()Af-JX). Then v-1' cS, and so SE:.V-J'1'-'· Thus 

there exists T~-@ with TCP and such that xr.. (T}CS. This x implies 
X 

that (x , ... ,x }€ST, for this particular T. ] n 
If on the other hand (x 1, ... ,xnle.ST for some TE=(f), then?'x(T)CS 

(/JI ~ +n - ] ( +() \ • • • and hence 1"..,;::; S Ar.?-· Thus l/Jn S Ar.,?- 1 is closed and so l/Jn is continuous. 
X 

PROPOSITION 3.8. If X is a connected space, then for A1, •.. ,~CX, 

A~ n ... n~ ( = (/J or l is connected. 

Proof. In view of the corollary to proposition 4, it is sufficient 
k + ·1 

to prove that ( .(]1 A.)/] Af:.PX is connected. We may also assume that IX I> 7' 0 i- i "J k -
since the case when lxl = 0 or 1 is trivial. Let--m, r/E(/J1A:)/}Ar-?- and 

suppose that 112 is defined on M = {p 1, ••• ,pm} and r/ is defined on 

N = {q1, ... ,qn}. By the cardinality assumption on X, we may choose mn dis­

tinct points of X disjoint from MUN; denote this set by R = {r. -I i=1, ... ,m; 
iJ 

j=1, ... ,n}; Let JV1: R • M be defined by r.1(r .. ) = p .. Similarly, we can 
iJ i 

define a function ,r,2 : R • N by ·7"',2 ( r .. ) = q. . Let 
iJ J 

(jJ ={·7"'~ 1(s} f11"; 1(T) Is <=-fYl with SCM, Te:n with TC.N}. 

It is clear that CB is a linked system of subsets of R. Let (j) be any m.l. s. 

of,,{ which is defined on R and which contains 03. Suppose that S E(p, 

If ·7"' 1 ( S /) R 1 ¢ 'f'l/, then M \ '7"/ S .fJ R) I= 'fY/ since if/ is defined on M. Thus 

·'(~ 1 (M \ , 1 ( S/7 R)) ECB C <P and S n·?' ~ \M \ r; ( S () R}} = ¢, contradiction. 

Therefore, for every S£.<P, '1',(S/1 R)E 112, and similarly1"'2 (Sf1R)tf::.777. 

By the uniqueness in proposition 3-7, (Pr= '11/ and (?7"' = n. Let iµmn: 

. .m+n • 1 2 x Ar/ 'be the continuous function defined in Theorem 3. 2, where the 

domain of the ·y 'sis now Rand the m.l.s. defined on R is the <P from 
X 

above. Since (f)J"' = ·712 and @, = r/, then m, 7J are in the image of 

l/Jmn For the Jr/. 1and 7l, as fix~d above, we can define a function 0 

Ari • Ar?- by 

e('.)() = q>(°rr/,, 12.,J(}, where q> defined in proposition 3.6. 
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It follows from proposition 3, 6 that 0 is continuous, 0( nz.} = 117, and 
k + k + 

0('fl.) =17. Also, since11J,nc{:J1 (Ail, then 0(X1cig1 Ai for all 
J,/ 0 • .m+n ' ' . . h tc>..f.jl-· Therefore, -o$mn: x + Af Xis a continuous ff1ct1on sue 

that 117 and 1/. are in3rz(0o$ ) and ;;:(00$ 1 C ~0c(.tl 1A':}n>..-P,l'X. Since 
mn mn 1= 1 J.'J 

~+n is connected, then ~(0o$ } is connected. It follows immediately 
k + mn 

that ( .(!1 A. ) n >...p.,.X is connected. 
1- 1 J.•:J 

With a somewhat different technique one can prove that if A is a 
+ connected subset of the space X, then A is a connected subset of >..1 x. 

It was conjectured that if A is connected subset of a space X and 

A1, .•• ,AnC X, then 

example 10 in §4). 

+n + n I'"\ + · · · ( A A1 ••• , ,An·is connected. This is false c.f. 

THEOREM 3. 3. If X is ~ connected space and -,J is ~ T 1-subbase 

containing all finite subsets of X £!:_ if 4 is a normal T 1-subbase for 

X, then >..5x is connected and locally connected. (c.f. example 4.7). 
Proof. Suppose first that ✓.f is a T1-subbase for X which contains 

all finite subsets of X. By proposition 3.8, A.fX is connected and locally 

connected. In case -4 is a normal T1-subbase for X, then by Th 2.1, coro 2 

~1x is a quotient of >..X which is connected and locally connected by the 

previous remark. Thus >..1x is connected and locally connected. 

We conclude with some remarks concerning the existance of example 

and/or counterexamples. 

1. If hv is the natural numbers with the usual topology, then >.. ft./ 

is not locally connected although IN is locally connected (example 4.6). 
2. If >..~Xis connected, then X need not be connected (c.f. [4] 

or example 4.8}. 

3, If I is the unit interval and---$ is merely a T1-subbase for I, 

then ~I need not be locally connected or connected (c.f. examples 4.2 

and 4. 3). 
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4. Examples. 

This section is primarily devoted to the construction of various 

counterexamples that were mentioned in the previous sections. We also 

include some problems that we have been unable to solve as of now. 

We begin this section with a lemma which is useful in the computations 

of the examples. 

LEMMA 1 • Let X be a compact space and /J a T 1-subbase for X. If 

mt::.·"A1 X and :JYc7J'/. with ';/: a fil terbase and n 'Jf 6. <f' , then n 'lf e ff/ . 

The proof is a straightforward application of compactness. 

EXAMPLE 4. l. There exists a weakly normal T 1-subbase ,.f for the unit 

interval I such that "A,I is not Hausdorff. 

Proof. Let ,,J be the set of all intervals and all doublets which are 

contained in I. If O .::_ x .::_ y .::_ z ..::_ 1 , we define 

£! xyz = {se:::/2'1s contains at lest one of {x,y},{y,z},{x,z}}, 

x£ = {S6:,-j Is contains [y ,z] or S contains a set of the 
yz 

form {x,y} for ue[!,zJ}, 

xy'£ = { S e./j IS contains [x,y] or S contains a set of the 
z 

form {u,z} for u<=: [x,y] }. 

It is easy to show that for each O .::_ x .::_y < z < 1, £ , x-:£ , and 
- xyz yz 

xyX are maximal linked systems of 4 . We will show later that all m. 1. s. 's 
z 

of <f are one of these types. Note that if x =y or y =z, then i:, = 
xyz 

x4 = xy;J.~ = {SE-::f ly€ S} and hence corresponds to the point of y of I. 
yz z 

We first hos that i:0 1 1 and £ 0 1 3 do not have disjoint basic open 

neighborhoods in \ 11. 4 2 4 4 On the contrary, suppose they do 

have such neighborhoods. Then there exist s1 , .•. ,S tE-j such that 
n + + ..P n 

.~ 1s. = \PI and no S. contains both c:(..O 1 1 and £ 0 1 3; i.e. there exist 
J.- 1 u ,.. - 1 "Ii"" 4 1+: 1+ 
[a1,b 1J, ... la ,b-7, {a 1,b 1}, ... {a ,b }, in 4 such that none of these 

- r r..l r+ r+ - n n + + 
sets belong to both O 1 1 and O 1 i and such that (a 1 , b 1] • • . [_ar, b ;J U 

... U{a ,b }+ = 'A.PI. If4x2 > t , the1f tf'0 1 c[a. ,b.]+ implies that 
n n -J - 4 x J. J. 

XO 1 1 and £ 0 1 36'.[ai'b[. Thus it must be the case that 
v> 42 3 '!j:"'!r · + + 

{40 1 xh;:- ..::_x .::_ 1JC {ar+1'br+1} u ... u{an,bn}. It follows that there 

exist 4i such that r < i < n and infinitely many x' s such that 
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{ai,bi}t::: l,0 11 x • This implies that {ai,bi} = {o,¾} and {o,¾} belongs 

to both '£0 1
4

1 and £ 0 1 3 , contrary to the assumption on the Si. 

Thus "\JX is ~oI Hausdorf¥.4 

We next prove that every m. l. s of ~ is of one of the types 

-I' ,xX or xy;f_ for some 0 < x < y < z < 1. Let m be a m.l. s. of dl.,xyz yz z - - - -
and suppose that /) 11/ = rp • It is easy to see that m must contain some 

doublet {a,b} since any linked system consisting of only intervals is 

centered. Since a t:f nm one of the following cases hold: 

il 3 c,d a<$:_ {c ,d}E. 111, hence b~{c,d}, say b = C 

ii} =1 c,d a4- G,~£1?7 
Similarly for b 

iii) =1 e,f b 4- {e,f}6-·Jr;, hence aE.{e,f}, say a = e. 

or iv) 3 e,f b ~ G,:BE 1?? 

If i) and iii) then {c,d}n{e,f}=¢ implies d = f. It is easily chequed that 

the only doublets in rr/ are {a, b}, {b ,d} and {a,dL So 1f2 is of the form 

J:-: xyz. If i) and iv), but tr/ is not a 3m. 1. s., then {a,d} is not in rr/. 
So any doublet contains b = c, and the other point of the doublet must be 

in fl { bi, v] lb (:$1ji., ,JE 112L It is readily verified that this intersection 

its elf belongs to 1'fl, and that 1J2 is of the type x"t' or xy'/:. . 
yz z 

The case ii} and iii} is similar toil and ivl. If not il and not iii} 

then {a, b} is the only doublet in 117, let a < b, and let c = inf{c I a.G;[O,c J E: m}. 
It is easy to show that c = sup{ c I b E:. [c, 1 J ~ 11?} and that hence {a, c} 

and {b, c} € 1Jll, a contradict ion. 

EXAMPLE 4.2. There exists a nicely screening (non-normal) T1-subbase 

for the unit interval I such that 

( i} \fl not connected. 

(ii) I has a nowhere dense subset A with A+ not nowhere dense in A?I. 

p (( l -k -kJ I k Proof. Let-:;:i0 = {L n-1 2 ,n2 k=1,2, ... ; n=1,2, ••. ,2} and let 

1 = J 0 U{0,11}. It is obvious that -J'0 is a nicely screening (non-normal) 
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r 2k -k] T1-subbase for I such that A_,0 1 = I. Since L(n-1 l , n2 and {O, 1} 
,) -k-1 -k-1) k+1 I? 

can be nicely screened by { L ( i-1 )2 , i2 Ii= 1, .•. ,2 } then .<J is 

also a nicely screening T1-subbase for I. First, we note that {{0,1}, 

[o , 2
1], [-½, 1]} is an m.l. s. of .,J. This follows easily from the fact that 

1 · 1 · 
any other element of ,,,J must be contained p_roperly in [o ,2) or 1i! 1 l. 
Next, we note that this is the only m.l.s. m of .4 for which nY~= ¢. 
For if n-Yf/ = !Zl, {O, 1} 6::.-n'/. and there exists k, k', n, n' such that 

[(n-112-k,n2-k] and [(n 1 -1}2-k'}s71l with o~((n-1l2-k,n2-k) and 

14[(n 1 -112-k' ,n 1 2-k')." Since mis linked, it must be the case that k=1, 

n=2, k 1 =1, n'=1. Since >.1 I is Hausdorff and I is compact, it follows that 

Afl is homeomorphic to the union of an interval and an isolated point. 

Thus A3I is not connected. Moreover, {0,1} is nowhere dense in I but {0,1}+ 

is not nowhere dense in A1I. 

Note that (i) and theorem 3.3 imply that Ail is not a quotient of 

AI or even a continuous imag'e of H. 

REMARK. It is worth noting that example 4.2 can be modified so as 

to obtain a superextension of I which is the disjoint union of two inter­

vals. If we let .,,J 1 = JU{ [o,a)} I a E [½,iJ} U{ [a, 1} I aE G,i)} where .,.,f is 

as defined in example 4.2, then one can show that for each m.l.s. mof 
,J'1, there exists an a E. [½,fJ such that 

EXAMPLE 4.3, There exists a weakly normal T1-subbase ,,/ for the unit 

interval I such that AfI is not locally connected. 

Proof. Let .,j = . { (a, bJ I (a, b J C.1} U { , 0 1 [ 1-¾, 1) I n dN} U{{ 0 , 1} }. 

We show that A £1 is homeomorphic to 
;1111 

For any 112'==- >-~. I, n{ [a,b) I [a,b.}s:711} is a singleton because if it were 
. ). [ c+d) r:c+d ~ "WI m . an interval c ,d , then O ,2 and LT' 1J must belong to "l . If "l E Afl 

with /} 1!/= ¢, we define m and k by 

(i} m <:En{ [a,b) I [a,bJt::.117} 

(ii} k = sup {n-11 [o,¾lU(1-;,1)'=-71zL 



We note that {nj[o,.l]v[1-.l,1J<=17?} 'F 0 (however k may be infinite} and 
1 l _n ,mn . 14-1 

that m€(k,1~ kl since n11c = 0. Suppose that 11/16 AJI with ff{'Fm, and 

/)rn_ 1 = 0. If k' and m' are defined for rfl' in the same way ask and m were 

defined, then m'F 1f/' yields that either there exists nE./AJ with (o,.l] U 

(1- ~, 1 }£ 17/ and [o,¾} V [1- ¾, 1J~11l'or there exists [a,b )G:112 with [a,b )<flJZ' . 
In the first case we obtain k'Fk' and in the second case we obtain m;qn'. 

On the other hand, if k'-= flv or k' is infinite and m'<E. (~,, 1- ~, l with 

either k'Fk' or m;qn', then 

m· = {sc.,,Jis contains [o,~,) v[1- ~' ,1) or S contains [~,m) 

or S contains [m,½)} 

defines an m.l.s. rr/''F rf/ and the m and k defined by (i) and (ii) for 

are m' and k'. It follows that if we let (P(m,k) = {Se4 js contains 

[o ,~JV ( 1- ~, 1) or S contains (½,m) or S contains (m,½)}, then \/ = 

I V{lP(m,k) jkE=- hJ or k=00 and m~ (½, 1- ½)}. To complete the proof, we des­

cribe the topology of ")...JI by describing a neighborhood basis of each of 

its points. 

If mtf, I and k:1 < m < t or k: 1 < 1-m < ½ , then for sufficiently 

small£, (m-£,m+£)+ = (m-£,m+£) so that a neighborhood basis form consists 

of { (m-£ ,m+£) I£ Em fR.+ and £ sufficiently small } • 

If mis of the form½ (k~1), then a neighborhood basis form is the 
. 1 1 + r, 1 + 1 j+ collection of sets of the form (k+ 1 , 1- k+ 1) n LO,k + £) () (k - £, 1 = 

(½- £,~ + E)U{l'.P(µ,k)jµE.(½,½ +£)}for£ sufficiently small. 

A neighborhood basis for 1- ½ (k~1) is the collection of sets of the 

form (1-½- e,1- ~ + £)U{<P(µ,k)jµ<£(1- ½- £,1-½)} for£ sufficiently 

small. 

For m=O or 1, merely put k=00 in the above two descriptions and restrict 

the intervals to I. 

A neighborhood basis of <JJ(m, 00 ) is the collection of sets of the form 

([0,£)V(1-£,1})+n[o,m+£)+n(m-£,1}+ = {(P(µ,k)jµG:.(m-£,m+E) and k >; 
or k=00 } for£ sufficiently small. 

Finally, a neighborhood basis of CP(m,k) is the collection of sets of 

( r. 1 1 J)+ [ + ]+n 1 1 )+ the form lo,k+E)V(1-k-£,1 no,m+E) n(m-£,1 (k+1'1-k+1 = 

{(P ( µ ,k) Iµ E.(m-£ ,m+£)} for £ sufficiently small. 
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EXAMPLE 4.4. Let D4 = {1,2,3,4} be a discrete space with four points. 

There exists normal T 1-subbases J(n) for D4 , n=4, ... , 12, such that A/4rl)D4 

is discrete with n points. 

Proof. Let /j = {{1},{2},{3},{4}} and for n=4, ... ,10, let..J'(n)be as 

follows: 

= .J'uu2,3,4},{3,4},{1,2},{1,2,3}}, 

= .✓.fu{{1,2},{1,3,4},{2,3,4},{3,4},{1,2,3}}, 

= <f'u{{1,2},{1,3},{2,3},{3,4},{2,4}}, 

= .,J6 U{{1,3,4}}, 

= <f U {doublets of D4 }, 

= <f8 U{{2,3,4}}, 

-~ U{{1,3,4}}, 

--~ 0 U { { 1 , 2 , 4 }} , 
2D4. 

It might have been conjectured that if 11l_ is an m.l.s. of a T1-subbase 

for a space X such that every element of fl? is finite, then --;rz_ must be an 

f.m.l.s. The following example disproves this. 

EXAMPLE 4.5. Let X be IN with the cofinite topology. There exists an 

m.l.s. m of the base of all closed sets of X such that every element of 

1r/ is finite but 11/ is not an f.m.l.s. 

Proof. Let ([] 2 = {1,2} and for each n _:_ 2, let r]J 2n-l = {1,2n-1}U 

{jeXlj is even and 3.:_j .:_2n-1} andcll 2n = {2,2n}U{jEXlj is odd and 

2 .:_ j .:_ 2n-1}. These for each n ,:_ 2, we have defined (f] . It is easy to 
n 

verify that {(Vnj n _:_ 2} is an m.l.s. of the base of all closed sets but 

is not an f.m.l.s. 

EXAMPLE 4. 6. Consider IN with the discrete topology. Then >-.IN has 

the following properties: 

( i) :>..fN is a countable, discrete, dense subset of A {ti/. 

(ii) ;~A/ contains converging sequences and hence is not homeomorphic 

to a Cech-Stone compactification s/A/. 

(iii} )\ IN is not locally connected even though /A/ is. 
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Proof. (i) Since /N is countable, Af[J.J is countable so that we only 

need to show that is discrete. To see this' let m E A/N. Then there is a 

finite subset MC IA/ such that ff/ is defined on M. It follows that ffl= 
fl {S+ Is CM,S e.rJ1} and the latter set is open in Aw. 

(ii} For each n E IN , n#: 1 , let 11/ be the unique m. l, s. containing n 
{{1,i}I i=2, ••• ,n}V{{2, ••• ,n}} and let 1f/. be the unique m.l.s. containing 

{ { 1, i} I i=2 ,3, ... }U{ IN "\. { 1}}. We show that m_ converges to 1f/,. If 
+ + n 11'1~s0 U •.• USm, then we may assume that s0 = { 1} and 1~Si for i=1, ••• ,m. 

For i=1, ... ,m, it must be the case that S. #: /N\{1} and so there exists a J. 
natural number k. such that k.4S .• For n > k., { 1,k. }cG: 1r/ and hence 

.+ +J. ii_ i i. n ·m ($s0 U . .. lJ S. • It follows that if we let M = max {k 1 , ••• ,km}, then for 
n J. + + 

n > M we have 1r/. ~s0 U • .. Us • n n 
(iii) Since any open neighborhood of a point in A /N '\ Af IN must 

contain (infinitely many) points of AfN, then because of (ii}, A/A/ is 

not locally connected. 

We next consider an example to illustrate a very special part of 

Theorem 3,3, 

EXAMPLE 7. Let I = { (x,y)~ fR x '/R. I x=O, -1 2,. y 2,. 1} , let 

X = I U{ (x,y )E fl? x ff?. I y=sin l , 0 < x < l } , and let p be the usual metric 
X - -n 

of /RxfR restricted to X. We illustrate a special consequence of Theorem 

3 in §3 by showing the following: for each p~I and U a neighborhood in AX, 

there exists e > 0 such that if q 6. U6:(p) = {xEXlp(x,p) < €}_, then q and 

p cannot be separated in U. 

Proof. Since U is a neighborhood of pin AX, it must contain a finite 

intersection of pluses of open set containing p. Take€ so small that U'=(p) 

lies in the intersection of these open sets. It follows that u6 (p)+cu. 

Let qEi'.. u <::. (p) and for each x E'X, let n1 x = {SI s is a closed subset of x 
containing at least 2 points of {p,q,x}}.It is easy to show that {rt'/ lx~X} 

X 

is homeomorphic to X and hence is connected. Moreover, 

x<::X and so ff/ E::{p,q}+C U (p}+C U. Since m. = p and 
X E p 

is proved. 

{p,q}E 1Jt/ for each 
X 

1/l = q, the assertion q 
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EXAMPLE 4.8. Let X be a linearly ordered set with ordering .:_and 

let ,/J be the ussual closed subbase for the interval topology of X; i.e. 

/j = {{xe:Xlx .:._a}iaEX}U{{x<SX\a .:._x}\ae:X}. Then A-1X is (homeomorphic 

to) the comJ~letion of X by cuts, where the completion is equipped with its 

interval topology. It follows, in this case, that A~X = s4 x. Moreover, if 

X is the rational numbers, then X is not connected but A-!'X = RU {.:t_00 } is 

connected. 

Proof. c.f. [4] for the details. 

EXAMPLE 4.9. Let X = /'NU{a,b,c} be the T1-space consisting of a 

sequence(~/} converging to three different points ({a,b,c}). Then Xis 

compact ( compare example 1 in § 1) but s1x ,:j:. X, where ,! is the set of all 

closed subsets of X. It can be verified that s1x = XU{{s€--fl lsn{a,b,c}i.:._2}}. 

This space is also one of the few compact, non-supercompact spaces 

we know. Whether there exists compact non-supercompact T2-spaces is un­

known. C. f. Introduction, [ 1 J and [5] . 

EXAMPLE 4.10. There exists a space X with a connected subset A and 

A+n +n + . . subsets A1 ,A2 of X such that A1 A2 is not connected in AX. 

Proof. Let X = [o, 1] U { 2, 3} with the relative topology from 1R.. 
Let A= [0,1], A1 = {0,2,3}, and A2 = {1,2,3}. It is easy to show that 

A+ n A~ nA; = { rf/1, 1'f/ 2}, where 11J1 is the unique m. 1. s. generated by 

{{0,1}, {0,2}, {1,2}} and rt/2 is the unique m.l.s. generated by 

{{0,1}, {0,3}, {1,3}}. Since AX is Hausdorff, 1?'/1 and 17/2 are separated 

in A+/1 A~ nA;. 
Let .<f be a T1-subbase for a space X. In [1], de Groot defined the 

following operation * on subsets of X: if ACX, define A*= {Jrlt::.. A-!X\YsG1Jl, 

snA ::f:. 0}. 

It is not difficult to prove that* satisfies the following properties: 

( i) If AG./j + * { 111 E: \fX I A e ti/) . , then A = A = 
+ * (ii) For every A ex, A c A . 

(iii) If A,BCX with ACB = X, + * then A lJ B = X. 
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. + * If A,BCX with AnB = {ll, then A n B = {ll. 

* + For every ACX, ~X,A = (X \A} • 

EXAMPLE 4. 11 • The operations + and * are different. 

Proof. In example 3, let A= {~ , 1- ~ lkehi/} \J{o, 1}. Then 

and 

We conclude this section with a list of unsolved problems, 

1 • Let ~ be a T 1-subbase for a space X. Are the following true? 

(i) For every closed subset A of x, A+ . is closed in ~x. 

(ii} For closed subset A of X, *· closed in \sX, every A is 

(iii} For every open subset A of X, A+ . is open in \fX. 
(iv} For every open subset A of X, * A is open in A,-JX. 

Note that by the properties of* and+, (i} and (iv} are equivalent 

and (ii) and (iii} are equivalent. 

2. If ✓,f is T1-subbase for X such that A1X is Hausdorff, then it is 

not the case that ,,J must be nicely screening. 

3, If Xis a compact, connected metric space, then AX is homeomorphic 

to the Hilbert cube. In particular, if I is the unit interval, then AI is 

the Hilbert cube. 

4. If ACX, it appears that the formula (cl0)+C clA0+ plays a role 

in trying to generalize the theorem on connectedness and locally connected­

ness. What conditions must be imposed on/fin order to make the formula 

valid for \f? 

5. Example 2 shows that the normality condition on ,d' in the extension 

theorem cannot be weakened to nicely screening and hence not to weak normality. 

Can it be weakened in another way? 
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