Commentationes Mathematicae Universitatis Carolinae
4, 1 (1963)

ON THE PRODUCT AND SUM OF A SYSTEM OF TRANSFORMATION SEMI-GROUPS

P.C. BAAYEN and Z. HEDRLÍN, Amsterdam

1. Introduction

If X is a set, then (F;X) will denote a semigroup F of transformations of X into itself. Now if a system of transformation semigroups is given, $\{(F_{\alpha};X_{\alpha}): \alpha \in A\}$, there are several ways to construct from these a transformation semigroup F operating on the set $X = \bigcup_{\alpha \in A} X_{\alpha}$. We will consider two methods; as they give us essentially the direct product and the direct sum in the case that the X_{α} are pairwise disjunct, we call the transformation semigroups (F;X), constructed from the $(F_{\alpha};X_{\alpha})$ by the methods considered, the product and the sum of the transformation semigroups (F,X).

We are mainly interested in the situation when the new transformation group (F;X) turns out to be commutative. In the case of the product, it is sufficient to assume that all factors (F_c;X_c) are commutative; in the case of the sum, another condition is needed.

In the last section, the theory is applied to obtain an embedding of a given commutative transformation semigroup (F;X) into a commutative transformation semigroup (G;X) that leaves the same subsets of X invariant as F does, and that is maximal in this respect. The semigroup (G;X)

Ø2

turns out to be uniquely determined. Then the previous results are applied to generalise a theorem on the existence of a common fixed point of a commutative system of mappings. And finally we use them to prove that every commutative semigroup is contained in a product of algebraically generated transformation semigroups.

2. Notation

If X is a non-void set, the class of all mappings $f:X\to X \quad \text{will be denoted by } X^X \text{ . This is a semigroup under functional composition } o:$

$$(f \circ g) (x) = f(g(x))$$

for all f, $g \in X^X$ and all $x \in X$.

If F is a subsemigroup of X^X , we will often write (F;X), to indicate the set transformed by the elements of F.

A system $F \subset X^X$ is called <u>commutative</u> if f o g = g o f for all f, g ϵ F.

A subset Y of X is said to be invariant under $F \subset X^X$ if $F(Y) \subset Y$. Here $F(Y) = \{f(y) : f \in F \text{ and } y \in Y\}$. If $f \in X^X$ and $A \subset X$, then $f \mid A$ denotes the restriction of f to A. If $F \subset X^X$ and $A \subset X$, then $F \mid A = \{f \mid A : f \in F\}$.

If $F \subset X^X$ and $x \in X$, then F(x) is called the <u>orbit</u> of x'under F; every orbit is an invariant set.

Let γ be a family of subsets of a set X. A system $F \subset X^X$ is said to be γ -invariant if every member of γ is an invariant set under F. The system F is called a maximal commutative γ -invariant system if it is commutative and γ -invariant, and if there is no commutative γ -invariant

system $G \subset X^X$ such that $F \subset G$, F + G. The system F is called a <u>maximal commutative</u> system if it is a <u>maximal commutative</u> tative $\{\emptyset\}$ - invariant system. Here \emptyset denotes the empty set.

A maximal commutative γ -invariant system is always a commutative semigroup containing the identity mapping $i: X \to X$.

The cartesian product of sets F_{α} , $\alpha \in A$, is denoted by π F_{α} . If $f \in \pi$ F, then f_{α} denotes the component of f in F_{α} , and we will also write $(f_{\alpha})_{\alpha \in A}$ instead of f.

3. The product of a system of transformation semigroups

In this section and in the next one we consider a family $\{(F_{\alpha}; X_{\alpha}) : \alpha \in A\}$ of transformation semigroups: A is a non-void set of indices, and $F_{\alpha} \in X_{\alpha}^{X_{\alpha}}$ for each $\alpha \in A$. The identity map of X_{α} onto itself will be denoted by i_{α} ; it is assumed that $i_{\alpha} \in F_{\alpha}$ for each $\alpha \in A$. The union of all sets X_{α} will be denoted by X:

$$X = \bigcup_{\alpha \in A} X_{\alpha},$$

and the identity map of $\, \mathbf{X} \,$ onto itself will be denoted by i .

Proposition 1. Let S be the following subset of $\underset{\alpha \in A}{\mathsf{T}} F_{\alpha}$:

(3.2) $S = \{(f_{\alpha})_{\alpha \in A} \in \underset{\alpha \in A}{\mathsf{T}} F_{\alpha} : (\forall \alpha, \beta \in A) \ (f_{\alpha} | X_{\alpha} \cap X_{\beta} = f_{\beta} | X_{\alpha} \cap X_{\beta} \}$ Furthermore, let $F_{\alpha} \in X^{X}$ be defined in the following manner:

(3.3) $F = \{f_{\alpha} \in X^{X} : (\exists s \in S) \ (\forall \alpha \in A) \ (f | X_{\alpha} = s_{\alpha})\}$.

Then F is a semigroup of transformations of X into itself, containing the identity map i. If F_{α} is commutative for

every « A , then F is also commutative.

Proof.

First we show the following: if $s = (s_{\alpha c})_{\alpha c \in A} \in S$ and $t = (t_{\alpha c})_{\alpha c \in A} \in S$, then also $(s_{\alpha c} \circ t_{\alpha c})_{\alpha c \in A} \circ S$.

As the F_{α} are semigroups, it is clear that $(s_{\alpha} \circ t_{\alpha})_{\alpha \in A} \in \pi$ are semigroups, it is clear that show that

$$(3.4) \qquad s_{\alpha} \circ t_{\alpha} \mid X_{\alpha} \wedge X_{\beta} = s_{\alpha} \circ t_{\alpha} \mid X_{\alpha} \wedge X_{\beta}.$$

But we know that

$$(3.5) s_{\alpha}(X_{\alpha} \cap X_{\beta} = s_{\beta} \mid X_{\alpha} \cap X_{\beta}),$$

$$(3.6) t_{\alpha} | X_{\alpha} \cap X_{\beta} = t_{\beta} | X_{\alpha} \cap X_{\beta} ,$$

as s, t ϵ S; this implies that $X_{\alpha} \cap X_{\beta}$ is invariant under s_{α} , s_{β} , t_{α} and t_{β} . The assertion (3.4) now follows from (3.5) and (3.6).

We now can prove that F is a semigroup. It is evident that F is non-void, as $(i_{\alpha})_{\alpha \in A} \in S$, and hence i.e. F. Take f, g \in F. There exist s, t \in S such that for every $\alpha \in A$

(3.7)
$$f \mid X_{\infty} = s_{\infty}$$
, $g \mid X_{\infty} = t_{\infty}$.

It follows that $f(X_{\alpha}) \subset X_{\alpha}$ and $g(X_{\alpha}) \subset X_{\alpha}$; hence (3.8) $f \circ g(X_{\alpha}) = s_{\alpha} \circ t_{\alpha}$.

As (so otal ses, this shows that fogeF.

Finally, we assume that every F_{∞} is commutative. Take again f, g ϵ F and let s, t ϵ S such that (3.7) holds. Then it follows from (3.8) that

for every $\alpha \in A$; hence fog = g of. Thus F is commutative.

<u>Definition 1</u>. The transformation semigroup $F \subset X^X$, defined in proposition 1 (by (3.2) and (3.3)), is called the <u>product</u>

of the transformation semigroups $(F_{\alpha};X_{\alpha}), \alpha \in A$, and is denoted by

PAFa or PfF : ac A}.

It follows from the construction of $F = P_{\alpha \in A} F_{\alpha}$ that every set X_{α} is an invariant subset of X under F. Hence: Proposition 2. The transformation semigroup $P_{\alpha \in A} F_{\alpha}$ is $\{X_{\alpha} : \alpha \in A\}$ - invariant.

<u>Proposition 3.</u> If the sets X_{α} , $\alpha \in A$, are pairwise disjoint, then the abstract semigroup ($P_{\epsilon A}$ F, o) is isomorphic with the (unrestricted) <u>direct product</u> of the abstract semigroups (F, o).

<u>Proof.</u> If S and F are as in (3.2) and (3.3), then, under the assumption that the X_{∞} are pairwise disjoint, the set S is equal to the set $\prod_{\infty\in A} F_{\infty}$. If we define a multiplication . in S by

then (S, .) is even isomorphic with the direct product of the semigroups (F_{cc}, o) . The proposition now follows from the fact that

$$(3.9) f \rightarrow (f|X_c)_{ceA}$$

is an isomorphism of (F, o) onto (S, .) .

Proposition 4. If $X_{\infty} = X$, for every $\infty \in A$, then $P_{\infty A} = \bigcap_{\alpha \in A} F_{\alpha}.$

Proof. If again S and F are as defined in (3.2) and (3.3), then (f_c)_{a,e} S implies

 $f_{\alpha} = f_{\alpha} | X = f_{\alpha} | X_{\alpha} \cap X_{\beta} = f_{\beta} | X_{\alpha} \cap X_{\beta} = f_{\beta} | X = f_{\beta}$ for all α , $\beta \in A$. Conversely, if $(f_{\alpha})_{\alpha \in A} \in \mathbb{T}$ and $f_{\alpha} = f_{\beta}$ for all α , $\beta \in A$, then $(f_{\alpha})_{\alpha \in A} \in S$. This proves

the assertion, as $f_{\alpha} = f_{\beta}$ for all α , $\beta \in A$ implies $f_{\alpha} \in \bigcap_{\alpha \in A} F_{\alpha}$.

4. The sum of a system of transformation semigroups

Definition 2. Let $\{(F_{\alpha}; X_{\alpha}) : \alpha \in A\}$ be a system of transformation semigroups, and let $X = \bigcup_{\alpha \in A} X_{\alpha}$. The transformation semigroup $F \subset X^{X}$, generated by the set

(4.1) $T = \{f \in X^{X} : (\exists \alpha \in A) (\exists f_{\alpha} \in F_{\alpha}) (f | X_{\alpha} = f_{\alpha}) \text{ and } f | X \setminus X_{\alpha} = 1 | X \setminus X_{\alpha} \}$

is called the sum of the transformation semigroup $(F_{\chi}; X_{\chi})$, and is denoted by

& F_{α} or & $\{F_{\alpha}: \alpha \in A\}$.

It follows from the definition that for every $\propto \epsilon$ A there is an isomorphism of F_{∞} into $\frac{45}{46}$ A F_{Δ} .

We are mainly interested in the case that $\mathcal{L}_{c,c,A}$ $F_{c,c}$ is a commutative semigroup. By the above remark, every $F_{c,c}$ then has to be commutative. But this is not sufficient; e.g. if $X_1 = X_2 = \{0, 1\}$, and if F_1 consists only of i and the map f_1 such that $f_1(0) = f_1(1) = 0$, while F_2 consists of i and the map f_2 such that $f_2(0) = f_2(1) = 1$, then $(F_1; X_1)$ and $(F_2; X_2)$ are commutative, but $f_1(0) = f_2(1) = 1$, is not commutative.

The following condition on the family $\{(F_{\infty}; X_{\infty}) : \alpha \in A\}$ will turn out to be sufficient, together with the commutativity of all F_{∞} , in order to ensure that $A \in A$ $A \in A$ is commutative:

(c) for all α , $\beta \in A$, the sets $X_{\alpha} \cap X_{\beta}$ and $X_{\alpha} \setminus X_{\beta}$ are invariant subsets of X_{α} under F_{α} , and if $f_{\alpha} \in F_{\alpha}$ and $f_{\beta} \in F_{\alpha}$, then $f_{\alpha} \mid X_{\alpha} \cap X_{\beta}$ and $f_{\beta} \mid X_{\alpha} \cap X_{\beta}$ commute.

<u>Proposition 5.</u> Let $\{(F_{\alpha}; X_{\alpha}) : \alpha \in A\}$ be a family of commutative transformation semigroups, each contatining the identity mapping $i_{\alpha} : X \to X_{\alpha}$, and let condition (C) be satisfied. Then $A \to A$ is a commutative transformation semigroup containing the identity map.

<u>Proof.</u> Let T be as in (4.1), and let F be the subsemigroup of X^X generated by T. As it is evident that ieF we have only to show that T is commutative. Let f, g e T.

Then there are x, x e A and x e x such that

$$f|X_{\alpha} = f_{\alpha}; \qquad g|X_{\beta} = f_{\beta};$$

$$f|X \setminus X_{\alpha} = 1|X \setminus X_{\alpha};$$

$$g|X \setminus X_{\beta} = 1|X \setminus X_{\beta}.$$

As condition (C) is assumed to be satisfied, $f(X_{\alpha} \cap X_{\beta})$ and $g(X_{\alpha} \cap X_{\beta}) = g(X_{\alpha} \cap X_{\beta}) = i(X_{\alpha} \cap X_{\beta}) = i(X_{\alpha} \cap X_{\beta}) = i(X_{\alpha} \cap X_{\beta})$. Hence we need only check what happens with points in $X_{\alpha} \cap X_{\beta}$ or in $X_{\alpha} \cap X_{\alpha} \cap Be$ cause of the symmetry of the situation, we may restrict our attention to points in $X_{\alpha} \cap X_{\beta}$.

Let $x \in X_{\lambda} \setminus X_{\beta}$. Then

$$(f \circ g) (x) = f(g(x)) = f(x) = f_{cc}(x);$$

as $X_{\alpha} \setminus X_{\alpha}$ is supposed to be invariant under F_{α} , $f_{\alpha}(x) \in X_{\alpha} \setminus X_{\alpha}$; hence

$$f_{x}(x) = g(f_{x}(x)) = g(f(x)) = (g \circ f)(x)$$
.

This finishes the proof.

<u>Proposition 6.</u> If the sets X_c , a.e. A, are pairwise disjoint, then the abstract semigroup ($\sum_{\alpha \in A} F_{\alpha}$, o) is isomorphic to the direct sum (restricted direct product) of the abstract semigroups (F_c, o) , a.e. A.

<u>Proof.</u> Let **T** be defined by (4.1). Let **g** be the mapping (3.9). Then maps **T** 1.1 onto the subset of $\prod_{\alpha \in A} F_{\alpha}$, consisting of all $(f_{\alpha})_{\alpha \in A}$ such that $f_{\alpha} \neq i_{\alpha}$ for at most one $\alpha \in A$; and **g** maps **F** 1.1 onto the subset of $\prod_{\alpha \in A} F_{\alpha}$ such that $f_{\alpha} \neq i_{\alpha}$ for only finitely many $\alpha \in A$. It is immediately seen that $g \mid F$ is a homomorphism of (F, o) into the direct product of the (F_{α}, o) ; hence $g \mid F$ is an isomorphism, and g(F) is exactly the direct sum of the (F_{α}, o) .

Proposition 7. Assume $X_{\infty} = X$, for every $\infty \in A$. Then condition (C) is satisfied if and only if $\bigcup_{\alpha \in A} F_{\infty}$ is commutative, and $\int_{\infty \in A} F_{\infty}$ is the subsemigroup of X^{X} generated by

Proof: evident.

5. Commutative semigroups that are maximal with respect to their system of invariant sets

In this section, (F;X) is a commutative transformation semigroup, containing the identity transformation, and $\mathcal J$ will always denote a family of subsets of X that are invariant under F.

If $\mathcal J$ is such a family, then $\cup \mathcal J$ will denote the set $\cup \{A:A\in \mathcal J\}$, and $\mathbb P(\mathcal J)$ will denote the semigroup $\mathbb P(\mathcal J)=\mathbb P\{\mathbb F|A:A\in \mathcal J\}.$

The following lemma is almost obvious:

Lemma 1. $f \in P(\gamma) \iff f | A \in F | A$ for all $A \in \gamma$.

From this lemma, the following propositions follow without difficulty:

Proposition 8. If $U_{\mathcal{J}} = X$, then $F \subset \mathbb{P}(\mathcal{J}) \subset X^X$.

(If $UJ \neq X$, then certainly not $F \subset P(J)$, as P(J) consists of mappings of UJ into itself.)

<u>Proposition 9.</u> Let both \mathcal{J}_1 and \mathcal{J}_2 consist of subsets of X that are invariant under F. If $U\mathcal{J}_1 = U\mathcal{J}_2$, then $\mathcal{J}_1 \subseteq \mathcal{J}_2$ implies $\mathcal{P}(\mathcal{J}_1) \supset \mathcal{P}(\mathcal{J}_2)$.

If \mathcal{J}_1 and \mathcal{J}_2 are both families of subsets of a set X , we will say that \mathcal{J}_1 is a <u>refinement</u> of \mathcal{J}_2 , and write $\mathcal{J}_1 \subseteq \mathcal{J}_2$,

if for every $\mathbf{A_1} \in \mathcal{J}_1$ there is an $\mathbf{A_2} \in \mathcal{J}_2$ such that $\mathbf{A_1} \subset \mathbf{A_2}$.

<u>Proposition 10</u>. Let both \mathcal{J}_1 and \mathcal{J}_2 consist of subsets of X that are invariant under F. If $U\mathcal{J}_1 = U\mathcal{J}_2$ and $\mathcal{J}_1 \leq \mathcal{J}_2$, then $\mathbb{P}(\mathcal{J}_1 \cup \mathcal{J}_2) = \mathbb{P}(\mathcal{J}_2)$.

<u>Proof.</u> By proposition 9, $\mathbb{P}(J_1 \cup J_2) \subset \mathbb{P}(J_2)$ on the otherhand,

 $f \in \mathbb{P} \left(\mathcal{J}_2 \right) \Longleftrightarrow (\forall A \in \mathcal{J}_2) \left(f | A \in \mathcal{F}(A) \right) \Rightarrow (\forall A \in \mathcal{J}_1 \cup \mathcal{J}_2) \left(f | A \in \mathcal{F}| A \right)$ $f \in \mathbb{P} \left(\mathcal{J}_1 \cup \mathcal{J}_2 \right).$

Example. If $X \in \mathcal{J}$, then $\mathbb{P}(\mathcal{J}) = F$.

Remark. If A is not an invariant subset of X, then F|A is not a semigroup. However, if we define $F ||A = \{f|A : f \in F \text{ and } f(A) \subset A\}$ then F ||A| is a semigroup under composition. It is seen at once that

. $\mathbb{P} \{(F;X), (F | A;A)\} = \{f \in F : fA \subset A\};$ hence if A is not invariant, $F \notin \mathbb{P}(F, F | A)$, although of course $X \cup A = X$.

Lemma 2. Let \mathcal{J}_1 be the class of all subsets of X that are invariant under F, and let \mathcal{J}_2 be the class of all orbits under F, and let FcGcXX.

Then G is a commutative \mathcal{J}_1 -invariant system if and only if G is a commutative \mathcal{J}_2 -invariant system. Proof. As $\mathcal{J}_2 \subset \mathcal{J}_1$, every \mathcal{J}_1 -invariant system is \mathcal{J}_2 invariant. On the other hand, if $A \in \mathcal{J}_1$, then

 $A = F(A) = U\{F(x) : x \in A\} = U\{B \in \mathcal{J}_2 : B \subset A\}.$ Hence every \mathcal{J}_2 -invariant system is \mathcal{J}_1 -invariant.

Lemma 3. Let $G \subset X^X$ be commutative. If there exists an $e \in X$ such that G(e) = X, then G is a maximal commutative semigroup.

<u>Proof.</u> Let $f \in X^X$ such that f commutes with every $g \in G$. We will show that $f \in G$. As G(e) = X, there exists a $g_0 \in G$ such that $f(e) = g_0(e)$. Let x be an arbitrary element of X; then there is a $g \in G$ such that g(e) = x, and it follows that

$$f(x) = f \circ g(e) = g \circ f(e) = g \circ g_0(e) = g_0 \circ g(e) = g_0(x)$$

Hence $f = g_0 \epsilon G$.

In particular, we have the following: Lemma 4. If $F \in X^X$ is a commutative semigroup, containing the identity map, then for every orbit F(x) under F, F(F(x)) is a maximal commutative semigroup of mappings $F(x) \to F(x)$. Theorem 1. Let $F \in X^X$ be a commutative semigroup, containing the identity map. Let \mathcal{J} be the class of all subsets of X that are invariant under F. Then there exists one and only one maximal commutative \mathcal{J} -invariant semigroup $G \in X^X$ containing F; and

$$G = \mathbb{P} \left\{ \mathbb{F}(\mathbb{F}(\mathbb{X}) : \mathbb{X} \in \mathbb{X} \right\}$$
.

<u>Proof.</u> Let g be any mapping $X \to X$ that commutes with every $f \in F$ and that maps every $A \in \mathcal{J}$ into itself. We will show

that geG.

Take any $x \in X$. Then g/F(x) maps F(x) into itself, as $F(x) \in \mathcal{J}$, and g/F(x) commutes with every mapping in F/F(x). But by lemma 4, F/F(x) is a maximal commutative semigroup; hence $g/F(x) \in F/F(x)$. It now follows from lemma 1 that $g \in G$.

An immediate consequence is that F c G (this also follows from proposition 8). So it remains only to be proved that G is \mathcal{J} -invariant. But by proposition 2, G is \mathcal{J}_2 -invariant, where $\mathcal{J}_2 = \{F(\mathbf{x}) : \mathbf{x} \in \mathbf{X}\}$; now apply lemma 2.

Corollary: If $F \subset X^X$ is a maximal commutative transformation semigroup, then

A family of orbits $\{F(x) : x \in Y\}$, where Y is a subset of X, is called an <u>F-orbit cover</u>, or shortly an <u>F-cover</u> of X, if F(Y) = X.

From proposition 10 and theorem 1 we deduce at once: Theorem 2. If $\{F(x) : x \in Y\}$ is an F-cover of X, then $P\{F|F(x) : x \in Y\}$ is the maximal commutative \mathcal{J} -invariant semigroup containing F (where \mathcal{J} is the family of all subsets of X that are invariant under F).

In [1] the following theorem was proved ([1], Theorem 1):

"Let F be a maximal commutative semigroup of mappings of a set X into itself, and let r(F) + Ø. If each feF has a fixed point, then all mappings in F have precisely one common fixed point."

Here $r(F) = \{f \in F : (\forall f_1 \in F) (\exists f_2 \in F) (f = f_1 \circ f_2)\}$ is the set of all mappings $f \in F$ that are common multiples

of all mappings in F .

Using the concepts developed in this paper, we may generalise this theorem as follows:

Theorem 3. Let $F \subset X^X$ be a maximal commutative \mathcal{J} -invariant transformation semigroup (where \mathcal{J} again is the family of all subsets of X that are invariant under F). If $r(F) \neq \emptyset$ and if each $f \in F$ has a fixed point, then all mappings in F have a common fixed point.

The proof is exactly the same as the first part of the proof of [1], Theorem 1 . It is easily seen that the mapping g, constructed in [1], leaves all sets of $\mathcal J$ invariant; hence the weaker assumption that F is maximally $\mathcal J$ -invariant suffices in order to conclude that $g \in F$.

Finally we will give one more application of the above product construction. In order to do so, however, we need the concept of an <u>algebraically generated</u> transformation semigroup.

Take an abstract semigroup (X; .) and consider all left multiplications in X , i.e. all mappings f_a , a ϵ X , defined by

(5.1)
$$f_{n}(x) = a.x$$
.

om X such that

These mappings constitute a semigroup $\mathbf{F}_{\mathbf{C}}\mathbf{X}^{\mathbf{X}}$. If \mathbf{X} has an identity element, it is even true that the abstract semigroup $(\mathbf{F}; \ \mathbf{o})$ is isomorphic with $(\mathbf{X}; \ \mathbf{.})$. (In fact, in that case the correspondence $\mathbf{a} \to \mathbf{f}_{\mathbf{a}}$ is an isomorphism of $(\mathbf{X}; \ \mathbf{.})$ onto $(\mathbf{F}; \ \mathbf{o})$.) Now transformation semigroups of this kind will be called algebraically generated. More explicitly:

Definition 3. A transformation semigroup $\mathbf{F}_{\mathbf{C}}\mathbf{X}^{\mathbf{X}}$ is called algebraically generated if there exists a binary operation.

- (i) (X; .) is a semigroup with unit;
- (ii) $F = \{f_a : a \in X\}$, where f_a is as defined in (5.1).

Using lemma 3 , itis easy to give a complete characterisation of all commutative transformation semigroups that are algebraically generated.

<u>Lemma 5.</u> A commutative transformation semigroup $F \subset X^X$ is algebraically generated if and only if there exists an $e \in X$ such that F(e) = X.

Proof.

First assume F to be algebraically generated, say by the semigroup structure (X; .). Then if e is the unit element of (X; .), it is immediate that F(e) = X.

Conversely, assume F(e) = X, for some $e \in X$. From the proof of lemma 3 it follows at once that the mapping $q: F \to X$, defined by

$$q(f) = f(e)$$

is a 1-1-mapping of F onto X . Define a binary operation . in X by

$$x , y = q(\bar{q}^1 (x) \circ \bar{q}(y))$$
.

Then (X; .) is a commutative semigroup, with e as unit element and $F = \{f_a : a \in X\}$, as $f_a(x) = a \cdot x = q(-\frac{1}{q}(a) \circ -\frac{1}{q}(x)) = (-\frac{1}{q}(a) \circ -\frac{1}{q}(x)) (e) = q^{-1}(a)(x)$.

We now prove the following theorem, which states in effect that every commutative transformation semigroup can be built up, using the product construction of section 3, from algebraically generated semigroups:

The orem 4. Let $F \subset X^X$ be a commutative transformation - 41 -

semigroup, and let m be the cardinal number of an F-cover of X . Then F is a subsemigroup of a product m algebraically generated commutative semigroups.

Proof.

Theorem 2 assers that F is a subsemigroup of a product of m semigroups F/F(x), and lemma 5 shows that all these semigroups are algebraically generated (as (F/F(x))).

References:

[1]. Z. HEDRLÍN, Two theorems concerning common fixed points of commutative mappings, CMUC, 3,2 (1962).