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1. Abstract and Introduction. In the January 1962 issue of this journal R. Bell-

man and B. Kotkin published a short paper under the same title as this one (cf. [1]).

In that paper Bellman and Kotkin presented some of their results concerning the

numerical computation of the continuous function y(x), defined by

y(x) = 1        (Oáígl)

y'(x) = -~-y(x-l)        COI).

Tables of y(x) were given for x = 1(0.0625)6 and x = 6(1)20. In the process of

extending these tables beyond x = 20 we discovered that the second table was

rather inaccurate for all values of x > 9. Bellman and Kotkin found, for example,

that y(20) = 0.149-10-8, whereas the actual value of y(20) can be shown to be

smaller than 10-20. Moreover, in view of the method used by Bellman and Kotkin,

one may expect that it would be quite time consuming to compute y(x) for values

of x up to say x = 1,000.

In this paper we describe a different method which enables us to compute y(x)

for values of x up to about "as far as one would like." |

2. The Main Formula and Some of its Consequences. The function y(x) defined

in the introduction satisfies the following fundamental

Lemma 1.

x-y(x) = /    y(t)dt        (x^l).
J x-l

Proof. Cf. de Bruijn [2].

A simple consequence of this lemma is

Lemma 2.

y(x) > 0        (x ^ 0).

As an easy consequence of this lemma and the definition of y(x) we find that

y (x) is monotonically decreasing on z ^ 1.

Lemma 3. y(x) is concave on x 2: 1.

Proof. From the definition of y(x) it follows that

y (x) = 1 - logx       (1 ^ x ^ 2),

so that

y(x) is concave on 1 á a; | 2.
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Also from the definition of y(x) it is easily seen that y(x) is twice differentiable on

x > 2, whereas y(x) is precisely once differentiable at x = 2. On x > 2 we have

y"(x) = î (- t-^ -1}) = h'yix ~l) + -v-x-^i-y^ -2) > ° •

Since y(x) is concave on the intervals 1 ^ a; ^ 2 and x > 2 and differentiable at

x = 2, we may conclude that y(x) is concave on x ^ 1.

Lemma 4.

!/(i) < 27=1"»i1 - X) ' (*^2).

Proof. On i ^ 2we have by Lemma 3 that

P 1
z-y(aO = /     y(t)dt < -¡r [y(x - 1) + y(x)\

J x-l ¿

and consequently

y(x) < 2x __ x-y(x - i) ■

From Lemma 4 one easily deduces by induction that

»("X 3T5-7- ••1(2n-l) = |3Í'        (« = 2,3,4,...).

Hence, for example,

^20.20!_220 220

40!     = 21-22-23- • • • 40 < 2020
ron\ / 2   -20'._2 / ^_      m-2»

V\M) <-     /im     — 01   00.0Q.  ... /in ^ ™20 _ iu

This rough upper bound for y(20) shows that the value of 2/(20) given by Bellman

and Kotkin is not even of the proper order.

3. The Numerical Computation of y(x). Our starting point is the result of

Lemma 1

y(x) = 1       (Oáíál),

rx+i

(x+ l)-y(x+ 1) = \      y(t)dt       (x = 0).
*x

We have already mentioned that

y(x) = 1 - log x, (1 á x á 2)

so that we only have to compute j(i) on 1 > 2.

If we approximate the integral

/*o+l
í/(í)<ft,        (so^l)

by means of the trapezoidal formula
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i{yM + 2nty(xo + ^) + y(xo+l)

we obtain, because of the concavity of y(x) on x 3: 1, that

/■«o+l if n-J    / i.\
(*o + l)y(xe + 1) = jx      y(t)dt < — \y(xo) + 2 g j/^„ + — j + 7/(x„ + 1)

It follows that

y(xo -f 1) < 0„ ,„_ ^ 1 ̂  _ 1 \ y(xo) + 2 g y(s0 + ~jJ.
2n(x0 + 1) - 1 v »

Thus, if one has upper bounds for y(x) at the points

xo + k/n ,        (k = 0, 1, 2, • • -, n — 1),

one may compute an upper bound for y(xo + 1).

Continuing in this way one may compute upper bounds for y(x) at the points

xo+l+v/n ,(v = 1, 2, 3, • • •).

On the other hand, approximating / by

1 A   (     ,  2ft - A
n iZ

one finds, also because of the concavity of y(x) on x 3: 1, that

2/(3:0 +1)> n(xo\ 1) 5 V\Xo + ^t) '

Hence, as soon as one has lower bounds for y(x) at the points x0 + (2k — l)/2n,

(k = 1, 2, 3, ■ ■ ■, n) one may compute a lower bound for y(xo + 1). If one also

knows lower bounds for y(x) at the points x0 + k/n, (fc = 1, 2, 3, • • -, n — 1), one

can apply the same method to compute a lower bound for y(x0 + 1 + l/2n).

Repeating this process one finds lower bounds for y(x) at the points xo + 1 + fc/2rc,

(fc = 2, 3, 4, • • • ). As a starting point for the computations one may take of course

Xo = 1.
If one chooses the grid sizes in the above integral-approximating procedures

small enough, one may expect that the corresponding upper and lower bounds for

y(x) will not differ very much. Actual computations show that this is indeed the

case.

Performing the computations on the Electrologica X8 of the Mathematical

Centre in Amsterdam, using an ALGOL-60 program (with grid size 0.005), we found

that the corresponding upper and lower bounds for y(x) were equal up to at least

the first significant digit for all x < 100.

Using more refined integral-approximating formulae and smaller grid sizes we

were able to compute y(x) for values of x up to at least x = 1,000. Below we include

a table for y(x) with an accuracy of five or more significant figures.

Finally we will compare some of the results of Table 1 with the known asymptotic

formula of de Bruijn (cf. [2])

2/0*0 ~ ——TTTi exp \ 1 - e* - - j    —— dsf        (x ->- °o )
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where £ is the positive root of e£ — 1 = x% and y is Euler's constant. De Bruijn's

formula can be rewritten in terms of the exponential integral Ei(¿) = JLK (e'/s)ds as

1 1
2/0*0 -•exp {-£•£ + Ei(f)} ,        (x->°o)

(2irx)U2   £

which is somewhat more convenient for numerical computations. Writing B(x) for

de Bruijn's asymptotic approximation we have

Table 1. y(x) = a(x)-10r*^

a(x) b(x) a(x) b(x) a(x) b(x)

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

306852
486083
491092
354724
196496
874566
323206
101624
277017
664480
141971
272918
476063
758990
111291
150907
190135
223542
246178
254805
248638
229371
200549
166580
131725
993606
716213
.494179
.326904
207626
126782

.745257
422222
230808

0
1
2
3
4

10
12
13
15
17
19
20
22
24
26
28
30
32
34
36
38
40
43
45
47
49
51
53
56
58
60

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

0.121869
0.622168
0.307395
0.147112
0.682549
0.307253
0.134297
0.570381
0.235551
0.946492
0.370280
0.141120
0.524252
0.189943
0.671533
0.231788
0.781464
0.257465
0.829313
0.261272
0.805427
0.243046
0.718206
0.207907
0.589802
0.164025
0.447329
0.119673
0.314165
0.809545
0.204821
0.508958
0.124246
0.298056

62
65
67
69
72
74
76
79
81
84
86
88
91
93
96
98

101
103
106
108
111
113
116
118
121
123
126
128
131
134
136
139
141
144

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
200
500

1000

0.702809
0.162933
0.371471
0.833076
0.183819
0.399153
0.853156
0.179535
0.372043
0.759361
0.152686
0.302503
0.590640
0.113672
0.215679
0.403511
0.744510
0.135495
0.243271
0.430958
0.753402
0.129996
0.221416
0.372331
0.618228
0.101374
0.164183
0.262667
0.415161
0.648360
0.100059
0.983383
0.505734
0.458767

147
149
152
155
157
160
163
165
168
171
173
176
179
181
184
187
190
192
195
198
201
203
206
209
212
214
217
220
223
226
228
530

1558
3463

Table 2

X 2/0*0 B(x)

y(x)

B(x)

20 0.246178 -10"28
100 0.100059 TO-228

1000 0.458767 TO-3463

0.219619 • 10-28 1.121
0.090892-10-228 1.101
0.422946 • 10-3463  1.085
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