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A note on the partial sums of z(s) (II)
by

J. van de Lune & H.J.J. te Riele

ABSTRACT

This note is a continuation of the first named author's Mathematical
Centre Report ZW 53/75. It is shown that for N = 8,9 and 10 one has that
;N(1+it) # 0, YVt ¢ R, where CN(S) = Z§=l n“s, s € €. The case N = 10 is

handled by use of a partially numerical argument.
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0. INTRODUCTION

This note is a continuation of the first named author's Mathematical

Centre Report ZW 53/75.
In this note it will be shown that for N=8 and N=9 one has that

(0.1 gN(l+it) # 0, VYVt e R
where
N -s
(0.2) () = I 0%, (se@.
n=1

Actually we will prove the above assertion by showing a little more,

namely that

0.3) Ry (£) def re £ (1+it) > 0, Vt ¢ R

for N =8 and N = 9. Next, it will be shown (by a partially numerical argu-
ment) that also Rlo(t) > 0 for all t € R. Finally, the smallest positive
zeros of RN(t) are listed for N = 7, 11(1)100.

THEOREM 1.1. R8(t) > 0, t € R.

PROOF. We will use the following notation

u
(1.1) {

X

]

t log 3;

t log 2; v

cos uj y cos v.
It is clear that

1

~100

(1.2) R8(t) = L 3 cos(t log n) > 1 + é— cos u + 313- cos v + 2]? cos(2u) +
--;—+%cos(u+v) --;—+—%-cos(3u) > 1 +§+§+%—(2x2-1) - =+
G e e Te e S e T R e
+ 383 + 523 + 5; + % + 3‘-6X - %V(l—xz)(l—yz) def ¢ (x,y), (-l<x,y<1).



Note that
1 1 1
(1.3) l—z—§“7>0.407
and that for -1 < x,y < | we have
/S 2

(14) @.:.l_+x+§.x2+.y_+_}£ l-y

‘ 3x 8 2 6 6 /]_xz
and
(1.5) %=l+§+l l_xz

) 3y 3 6 6 /l—yz

We will show first that ¢(x,y) assumes its minimal value in the Znter-
Zor of the square [-1,1] x [-1,1]. First, observe that the minimum of ¢ (x,y)
over the vertices of the square [-1,1] x [~1,1] lies in the vertex [-1,-11.
Furthermore, it is easily verified that the minimum of ¢(x,y) on the edge
y = -1 is not assumed at the point x = -1, so that ¢(x,y) does not assume

its minimum in one of the vertices of the square [-1,1] x [-1,17.

Next, observe that for -1 < x < 1 we have
(1.6) lim —g-?' = 4 and 1im -?P- = -,
yr1 Y yi-1Y

so that ¢(x,y) does not assume its minimum on the edges y = %I. Similarly,
it follows that ¢(x,y) does not assume its minimum on the edges x = *1, so
that indeed its minimal value is assumed in the Znter<or of the square
[=1,17 x [~1,17.

It follows that ¢(x,y) is minimal at a point (x,y) satisfying

-1 < x,y <1 and

8]

(1.8)

00| —
+
]

+
o w
E
+
<
+
S

and



(1 9) ._]_ + X + pA ]_xz = 0
3 6 6 /l_yz
Since x > -1 we have
1 X 1 1
.10 3+5>375>0

(r.11) y < 0.

It is easily verified that (1.8) and (1.9) do not admit x = O.
From (1.8), (1.9) and the fact that x # 0 it follows that

V)
(1.12) L] {l +x o+ %_xz + Z} - - Yl-y

x (8

and (recall that y # 0)

/12
(1.13) 9—{§-+ %} i

y /g2
so that

6 J1 3.2 yl__vy
(1.14) x {8 X oxo4+ 6} 7+ x

or, equivalently,

(1.15) -y =

W

(2+x)(3x2 + 2x + %).

Now observe that
(1.16) -y < 1,

so that we must have
(1.17) %-(2+x)(3x2 + 2x + %0 < 1.

Since 2 + x > 0 this may also be written as



3 2 1 I
(1.18) E(3x +2X+Z)_2+x<0

Since the left hand side of (1.18) is increasing for x > 0 and takes a pos-

itive value at x = 0.04, we may conclude that
(1.19) x < 0.04.

From (1.9) it follows that

¢l~x2 -y

(1.20) 1 <2+x=-y b
Ni-y2 7 V/1-y2
so that
2
(1.21) 1<« L
I-yz

from which we obtain (recall that y<0)
(1.22) y < - 13 V2.

From (1.8) it is clear that

—

(1.23) =+ x + % X7+ % = —
so that, in case x < 0, we must have

(1.24) -—+x+%x +%'->O

OO rme

so that in view of (1.22)
(1.2 2% +x+E-L sy sy
2 12 )

From this it is easily seen that

(1.26) X < =0.659 or x > -0.008.



Case I. -0.008 < x < 0.04.

In this case we have

1

(1.27) 6Ge,y) > 0.407 + £ x = Lixllyl + 1 -2 /152 >

3

> 0.407 - é—* 0.008 - 15*0.04 " lE 12y - V1-y2}.
Defining
(1.28) £(y) = 2y - /1-y2,  (-1<y<-4/2)

we find that

. 2
(1.29) min f(y) = £(- y = - /5
-1<y<-}4/2 73 ’
so that
(1.30) 6(x,y) > 0.407 - 0.001 - 0.007 - é— /5 > 0.026.
Case II. -1 < x < =0.659

In this case we have

\Y%

(1.31) ¢(x,y) > 0.407

+

3

X + 1 Xy + -l-y - % V(l-xz)(l-yz) >

> 0,407 + (3 + X+ D - é J1-0.659)2) (1-(4/2) 2y .

+

Defining

ool i

(1.32) Gy =g+ +3

for -1 < x < -0.659 and -1 < y < -}/2 we have

(1.33)

(o3 Neb4
gl
!
N M
+
w|—

so that y(x,y) is minimal on the edge with y = -Il.

Since



1 X
(1.34) v(x,-1) = --3—"*2-'4—
we obtain that
1 1
(1.35) VY(x,y) 2 - §-+ Ez—*0.659 > -0.306

so that, in view of (1.31), it follows that

(1.36) 6(x,y) > 0.407 - 0.306 - 0.089 = 0.012.
This completes the proof of theorem 1.1. [

REMARK. Substituting (1.15) in ¢(x,y) we found numerically that ¢ (x,y) as-
sumes its minimal value 0.03419... at the point (xo,yo) where

X = 0.02204... and Yo = -0.89641...

THEOREM 2.1. Rg(t} > 0, VteR.

PROOF. Using the same notation as in the proof of theorem 1.1 we have

O

- 1 11 _1_ 1
(2.1) Rg(t) = nz1 - cos(t log n) > 1 A B 7 9 +

1 2 1 3 1 1 2 2 1 / 2 2
X+oX +5X +3y+exy+tgy - (1-x7) (1-y7)

W]

def
£ ¢(X,Y), (_l;x’y—il)’

Similarly as in the proof of theorem !.1 it is easily seen that ¢(x,y)
assumes its minimal value in the interior of the square [-1,1] x [-1,1].
It follows that ¢(x,y) is minimal at a point (x,y) satisfying

-1 < x,y <1 and

(2.2) 09 _




and
(23) -§-9L=1_+£y+_l_x+z 1’x2=
3y 39 6 6 Sy
Since
1 1 1 1
(2.4) §-+'gx>§ -6->0

it follows from (2.3) that

(2.5) y <

0.

Next we show that x < 0. From (2.2) and (2.3) it is easily seen that

(2.6) x ¢

0.

Therefore we assume that x > 0 and derive a contradiction.

lows from (2.2) that

(2.7) %+%y<0
so that
(2.8) y<-2, -y > 2.

Consequently, i

(2.9) %+

whereas

(2.10) LI
3

Hence

(2.11) l-x
6

n

4
9

ol

view of (2.3), we have

-y s 3.

6 G—yz 4
1 1 4 3
3V *79°%

from which it is easily seen that

If x > 0 1t fol-



(2.12) x>%.

Combining this with (2.2) we arrive at

(2.13)  0>tex+3xielys
: 8 2 6

oo|—
+

~lw
+

N W

which is a palpable contradiction.

Conclusion:

(2.14) x < 0.

In combination with (2.2) it then follows that

(2.15) %+x+%x2>0

so that

2.16 -1 < x < - 1 or - l-< x < 0.
( ) 5 3

Since y < 0 it follows from (2.3) that

+-g—y+Lx>O

1
(2.17) 3 5

so that

oW
%

3
(2.18) y > 4

Before proceeding we insert two lemmas, the proofs of which are easily
supplied.
LEMMA 2.1. The function g defined by

(2.194) g(x)=-é—x—% 1-x2,  (-1<x<0)

18 convex and assumes its minimal value at x = -

wn|w
.

LEMMA 2.2. The function h defined by

(2.198)  h(y) =%y +%y2, y € R

18 increasing for y > - %w



In the sequel these lemmas will be used a number of times without
further notice.

In order to complete the proof we consider a number of cases.
1
Case I. -1 < x <-§.

Case Ia. -1 < x £ =0.9.
From (2.18) it follows that

33 3
(2.20) Yy >~ 380 (> Z)
1 1 1
so that (note that 1 - - - $TF " — > 0.296)
(2.21) o(x,y) > 0.296 + —~x2(l+x) + %—- %—Vl-xz} + =y + % y2 >
[-0.9 1 / 21l 1 33 . 2,33,2
> 0.296 + 1 g 3 1-(0.9) f 3 80 + 9(80 > 0.011.

Case Ib. -0.9 < x < -0.7.
From (2.18) it follows that

39 3

(2.22)  y>r-55 G-

so that

(2.23) $(xay) > 0.296 + $(0.7)°(1-0.9) - £%0.7 - % /1-0.7)% +

39 2.,39,2
"30 " 380

|

3 > 0.004.
Case Ic. =-0.7 < x < -0.5.

From (2.18) it follows that

(2.26) y> -2 (-
so that
(2.25) $(x,y) > 0.296 + £(0.5)°(1-0.7) = 5+ 0.6 - 1 /1-0.6)% «

2 6

1 9 2,9,2
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Case II. - %—< x < 0.

From (2.18) if follows that

3
(2.26) y> -
Defining
1 1 .2 1 .3 1 1 2 2
(2.27) f(x,y) =gx+ 35X +5X +3y+ Xy +gy
on the rectangle - %-érx £ 0; - % <y 2 0, we have that
(2.28) ¢ (x,y) > 0.296 - %-+ f(x,y).

If f(x,y) is minimal in the interior of its domain then

of _ 1 32,1,
(2.29) el t gy 0
and

of _ 1 1 b
(2.30) 55—3+6X+9y'0

so that, in view of (2.30)

(2.31) y=-=-=x,

In combination with (2.29) this yields

! 32,0 L3 3 A5,
(2.32) 3 + X + > + 3 ( . 8 x) X (16 + > x) = 0,
the solutions of which are
- 5
(2.33) x, =0 and X = - =,
1 2 8

It follows that f(x,y) is minimal on the boundary of its domain.

Case Ila. y = 0.

In this case we have



_ly,l2.103
(2.34) f(x,0) = g X + 5 + 5 X
so that
d _ 1 3.2 1
(2.35) Ix f(x,0) = 3 + x + 5 > 0, (x> - E)_
Hence f(x,0) is minimal at x = - %-with minimal value f(- %-,0) = - T%g
Case IIb. x = 0.
In this case we have
1 2 2
(2.36) £(0,y) = 39 + §-y
so that, in view of lemma 2.1, f£(0,y) is minimal at y = - %—with minimal
value f(0 -~§) = -1
>4 8’
3
Case IlIc. y = A
In this case we have
3, _1,1,2,1.3_ 1,12 1
(2.37) f(x, Z) = 8 + 5 x° + 7 X 8 + 5 X (1+x) > g
Case IId. x = - %u
In this case we have
1 2 2 11 1
(2.38) f(—g,y)——g—y +-—g-y_]_0§
so that
d 1 4 11
(2.39) E;—f(—'g, y) = 9y + 6
. . 11 3 1 L 1
which equals 0 if y = = — (> - =). Hence f(- —, y) is minimal at y = - —
16 4 6 16
1
with minimal value f (- %-,-—%%) = -0.11429... > - g.
From cases IIa through IId it follows that
(2.40) F(x,) > — %, (-4 <x<0; -3<y<0)
. b 8’ 6 9 4

so that in view of (2.28)
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(2.41) 6(x,y) > 0.296 - ¢ - 5 > 0.004.

Combining case I and case II the proof of theorem 2.1 is complete. [J

REMARK. From (2.2) and (2.3) one may derive that

(2.42) —§—y2 ¥ G(1+bx+6x2)y + 3(2+x)(%+ 2x+3x%) = 0
so that
(2.43) y = —Z—{-B . B2 - (2+3) (B-3)}
where
2
(2.44) B =1 +4x + 6x°.

Substituting (2.43) in the right hand side of (2.1) we found numeri-

cally that ¢(x,y) assumes its minimal value 0.03974... at the point (xo,yo)
where

(2.45) xo = -0.03633... and yO = -0.51262...

3. N=10

THEOREM 3.1. RlO(t) > 0, Vt € R.

PROOF. In addition to the notational conventions used in sections | and 2

we will write
(3.1) w=+¢t log 5 and cos w = z.

Then we have that

(3.2) R a1l ol lox 2
) 1007 = 4 7978772 2
2
RANS SIS AN WY/ T A
+ 3+ S - Uy +
z xz 1/ 2 2 def
3510 IO(IX)(IZ) = ¢(x,y,2)

for



(3.3) (x,y,2z) < € %€ 1_1,173,

We want to prove that the continuous function ¢ is positive on the cube
K. Some tedious but easy calculations reveal that ¢ is positive on the skel-
eton of all edges of K, its minimal value on this skeleton being 0.17598... .

In the interior of K we have

V1ev2 _.2
(3.4) %%~= é—+ x + %~x2 + é-y + %._l_z_ + T%'z + %%./q )
1-x2 Vl—xz
(3-5) éi:_l_+iy+_]_x+lV]—x2
dy 3 9 6 6 JT:;E
and
<36) Eﬁq}—:.‘-+,l__x+_}__VI—x2
' 3z 5 10 10 f_2°

-2

from which it is easily seen (compare (1.6)) that ¢ cannot assume its mini-
mal value in the interior of any one of the faces of the cube K. Hence, if
¢ is minimal on the boundary of K we are done.

Therefore we assume that ¢ is minimal in the interior of K. Then we
must have

9% _ 3¢ _ 3¢ _
.7 Ix 3y 23z
Similarly as before it follows from (3.5) and (3.6) that
(3.8) y <0 and z < 0.

If x > 0 then it follows from (3.4) that

1 3.2 1 1
(3.9) §+X+-2-X +gy+T62<0
so that certainly (put y =z = -1)
17 3.2
(3-10) -1_26 + X + 5}( <0

from which it is easily seen that

3.11) x < 0.121.
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From (3.6) we obtain

2+Xx -z
(3.12) = —
/1-x2 /1-22
so that in view of (3.8) we must have
+
(3.13) z = - E__f.
V5+4x%

Substitution of (3.13) in ¢(x,y,z) yields

2
(3.14) d(x,v, - 2+x) =c_ + §-+ %r + %?-+ %-+ _%_ + %¥.+
V5+4x
1/ 2 2, _ 1 e
- g/ U=xD)(I=y") - 757/5+4x,
where
(3.15) e =1 -L1-L_ 1. 0,49
: 0 4 7 9 : :

Using the numerical result mentioned at the end of section 2 we thus find

that

(3.16) $(x,y,2) > 0.039 + —;— - T]o"/m

so that in view of (3.11) we have

(3.17) 6(x,y,2) > 0.239 - ““/110 5% 4%0.121 > 0.004

proving (by a partially numerical argument) that Rlo(t) > 0 for all t € R.

REMARK. From (3.4), (3.5), (3.7) and (3.13) one may derive that

8 2 3 1
(3.18) 7Y + 4By + (2x)(B~-3) = 0
where
(3.19) B=1+4x+6x2—% !

V5+4x

Solving (3.18) for y we obtain
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{-B /132 - (2+x)(B—-]2-)}.

~lw

(3.20) y =

Substituting (3.13) and (3.20) in ¢(x,y,z) we found numerically that ¢ as-

sumes its minimal value 0.01570... at the point (xo,yo) where

(3.21) x0 = 0.04270... and Yo = ~0.53115...

FINAL REMARKS. In ZW 53/75 it was already mentioned that R7(t) has at

least one real zero. Furthermore, numerical computations indicate that
RN(t) has at least one real zero for every N > 1l. Hence, in order to

prove our conjecture that
gy(1+it) # 0, Vt ¢ R,

for all N € N one will have to search for a method of proof also involving
the imaginary part of cN(l+it). To the best of our knowledge this is still
an unsolved problem.

For the sake of completeness we list, in the table below, the smallest
positive zero t](N) of (the even function) RN(t) for N=7 and N = 11(1)100,

the machine proof of the table being based on the following almost trivial
PROPOSITION. If the differentiable function f£: R~ R s such that

f(to) >0 for some t. ¢ R

0
and

[£'(t)| <h for all t € R
where h Zs a constant, then

f(t) >0 fort, < t<t +36,

0 0

where
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TABLE
N £, (W) N £, (V) N )
7 1008.9095
11 1180.3887 41 1.0124 71 0.8580
12 3098.0590 42 1.0044 72 0.8547
13 1919.3622 43 0.9968 73 0.8514
14 1379.8280 44 0.9894 74 0.8483
15 1.5897 45 0.9823 75 0.8452
16 1.5120 46 0.9754 76 0.8421
17 1.4566 47 0.9688 77 0.8392
18 1.4114 48 0.9625 78 0.8362
19 1.3727 49 0.9563 79 0.8334
20 1.3388 50 0.9504 80 0.8306
21 1.3086 51 0.9446 81 0.8278
22 1.2814 52 0.9390 82 0.8251
23 1.2567 53 0.9336 83 0.8225
24 1.2342 54 0.9284 84 0.8199
25 1.2135 55 0.9233 85 0.8173
26 1.1943 56 0.9183 86 0.8148
27 1.1765 57 0.9135 87 0.8124
28 1.1599 58 0.9089 88 0.8100
29 1.1444 59 0.9043 89 0.8076
30 1.1298 60 0.8999 90 0.8052
31 1.1161 61 0.8956 91 0.8029
32 1.1032 62 0.8914 92 0.8007
33 1.0910 63 0.8873 93 0.7985
34 1.0794 64 0.8833 94 0.7963
35 1.0684 65 0.8794 95 0.7941
36 1.0580 66 0.8757 96 0.7920
37 1.0480 67 0.8720 97 0.7899
38 1.0385 68 0.8683 98 0.7879
39 1.0294 69 0.8648 99 0.7859
40 1.0208 70 0.8613 100 0.7839




