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A note on compactifications of G-spaces *) 

by 

J. de Vries 

ABSTRACT 

Let< G,X,rr > be a topological transformation group (ttg) such that all 

orbit-closures are compact and, in addition, the action is equicontinuous. 

If Xis a Tychonoff space, then< G,X,rr > can equivariantly be embedded in 

a ttg < G,Y,o > where Y is a compact Hausdorff space. In particular, for 

any compact Hausdorff group G, every Tychonoff G-space can equivariantly 

be embedded in a compact Hausdorff G-space. 

KEY WORDS & PHRASES: G-spaae, equivariant embedding, aompaatifiaation 

*) This paper is not for review; it is meant for publication elsewhere. 



I • PRELIMINARY RESULTS 

A t9pologiaal transformation group (ttg) or a G-spaae is a triple 

< G,X,rr > where G is a topological group, Xis a topological space, and rr 

is an action of G on X, i.e. rr: G x X +Xis a continuous mapping satisfying 

the conditions 1r(e,x) = x and 1r(t,1r(s,x)) = rr(ts,x) (x e X and s,t e G; 

e denotes the identity of G). We refer to [5] as a general reference for 

~tg's. The notation of [5] will be us~d wit1:1:_ the following modification: 

function symbols are written as operators from the left. Thus, the transi

tions rrt and the rrotions 1r of a G-space are defined by 1rtx := 1r(t,x) =: rr t 
X X 

(t E G, XE X). 

If we speak of a Tychonoff or of a compact Hausdorff G-space, we mean 

that the space X (and not G) has the corresponding topologfcal properties. 

Unless otherwise stated, we shall always asswne that Xis a Tyahonoff spaae. 

Any uniformity in X which is compatible with the topology of X will be 

called a uniformity for X. Since several uniformities for X will be con

sidered, we shall often indicate explicitly the uniformity with respect to 

which a certain uniform notion is used. Thus, a ttg < G,X,rr > is called U

bounded* whenever U is a uniformity for X and h : , x E X} is an equicon-
. X • 

tinuous set of functions from G into the uniform space (X,U). Note that 

< G,X,1r > is U-bounded if and only if {rrx: xe X} is U-equicontinuous ate, 

that is, 

Va e U, 3U e V 
e 

t ( rr x,x) e a for all t e U, x E X 

(here V denotes the neighbourhood filter of e in G). e 
If< G,X,1r >and< G,Y,o > are G-spaces, then a mapping f: X + Y is 

t t called equivariant whenever f P ~ = o O f for every t e G. We will be 

concerned with a special case of the following general problem: does there 

exist. for every (Tyahonoff) G-spaae < G,X,1r >, an equivariant embedding 

* The term bounded occurs in [3] and also in [8] and [9]. In [I] the term 

motion equiaontinuous is used. 
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into a aompaat Hausdorff G-spaae < G,Y,a >?Fora categorical setting of 

the problem, see sub-section 7.3 of [8]. In [l] and [2] one can find results 

which are closely connected with this question. In particular, in [1] BROOK 

proved: 

THEOREM 1. Let < G,X,rr > be a ttg and Zet U be a uniformity for X suah that 

(i) 

(ii) 

< G ,X, 'IT > is U-bounded; 
'C Eaah 'IT , t e: G, is U-uniformZy aontinuous. 

Then X aan equivariantZy be embedded in a aompaat Hausdorff G-spaae. 

In [1], the proof is given by extending each transition to a homeo

morphism of the Samuel compactification sX of the uniform space (X,U). In 
- '" 

[8], we gave a different proof, which was based on an application of 

ASCOLI's theorem in the space C ,(G,sX). In that proof we did not need con-
e 

dition (ii). It is not difficult, however, to show here directly that this 

condition can be omitted from the hypothesis of Theorem 1. The proof is 

based on the well-known fact that any Tyahonoff G-spaae X admits a unifor

rrrity U * suah that every transition is U *-uniformZy aontinuous. The unifor

mity U * can be obtained in the following way. Let U be any uniformity for 

X, and let U * be the weakest uniformity in X making all transitions 

rrt: (x,U*) + (X,U), t e: G, uniformly continuous. Since each rrt is a homeo

morphism of X, U * is compatible with the topology of X. And since the com

position of rrt: (x,U*) + (x,U*) with any rrs: (x,U*) + (X,U) is uniformly 

continuous, being equal to rrst : (x,U*) + (X,U), it follows that rrt is u*~

uniformly continuous (t e: G). 

The following lemma shows that in Theorem 1 the uniformity U can simply 

be replaced by the corresponding uniformity u*. 

LEMMA J. The Tyahonoff G-spaae X is U-bounded if and onZy if it is U * -
bounded. 

PROOF. "Only if": clear from the inclusion U e U *. 

* "If": observe that a base of U is constituted by all sets of the form 

* . s s } aA := {(x,y) e: X x X : (rr x,rr y) e: a for all s e: A 
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with a e: U and A a finite subset of G. Now suppose that< G,X,1r > is U

bounded. Let a e: U and let A be a finite subset of G. By U-boundedness there 

is U e: Ve such that 

us s 
(1T x,1r x) e: a for all u e: U, x e: X and s e: G. 

Since A is finite, there is V e: V such that sV c Us for all s e: A. It 
e 

follows that 

for all v e: V, x e: X and s e: A, 

that is, (rrvx,x) e: a~ for all v e: V and x e: X. This shows that < G,X~1r > is 

U * -bounded. 0 

COROLLARY. A Tyahonoff G-spaae X aan equivariantZy be embedded in a aompaat 

Hausdorff G-spaae if and onZy if there is a unifomzity U for X suah that X 

is U-bounded. 

PROOF. "Only if": a straightforward compactness argument (give X the rela

tive uniformity of the compactification). 

"If": Follows from Lemma I and Theorem I. 0 

2. MA.IN RESULTS 

Let< G,X,1r > be a ttg with G compact. The topology of G is generated 

by a (unique) uniformity R which coincides with both the left and the right 

uniformity of G. Let Ube a uniformity for X. Replacing U by u*, we may 

assume that each 1ft: X + X is U-uniformly continuous (t e: G). Since G is com

pact and 1r: G x X +Xis continuous, it follows from a straightforward 

compactness argument that {1rt f t e: G} is U-equi-unifomzZy aontinuous. 

The following results were obtained by HIMMELBERG [7]. Let (Y,W) be a 

uniform space, Zany set, and f: Y + Z a mapping. Then there exists a finest 

uniformity on Z such that f is uniformly continuous (quotient uniformity). 

If (fxf)[WJ happens to be a uniformity, then it coincides with this quotient 

uniformity. If, in addition, f+[z] is compact for every z e: Z, then the 



quotient topology on Z relative to f 1.s the topology of the quotient uni

formity. 

We apply these results to the uniform space (GxX,RxU) and the mapping 

rr: G x X + X, where< G,X,rr >,Rand U are as above. 
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LEMMA 2. The filter U' := (rrxrr)[RxUJ in X x X is a uniformity in X and it is 

compatible with the topology of x. 

PROOF. ObsE~rve that Tr: G x X + X is an open mapping, so that X has the 

quotient topology relative to Tr. Moreover, Tr +[x] is a compact subset of 

G x X for E~very x E X, because it is a closed subset of the compact set 

G x rr [G]. Henc_e, by the above-mentioned results it is sufficient to prove 
X 

that U' is a uniformity. Clearly only the "triangle axiom" needs verifi-

cation. To this end we introduce the following notation. A base for the 

uniformity R of G is formed by the sets Pu :=io {(s,t) E G x G st-IE U} 

with U E V • For U E V and a E U, set e e 

= { (x,y) E X x X 
-1 

• 3s , t E G with s t E U 

and (1rsx,1rty) E a}. 

We have to show that for every U E V and a E U there exist V E V and e e 
B E U such that 

(l) [V,B] 0 [V,B] c [U,a]. 

t 
By assumption, {Tr : t E G} is equi-uniformly continuous on X with respect 

to U, so there exists BEU such that 

(2) 

for all u, v E G. In addition, let VE V be such that v2 c U. We claim 
e 

that (l) holds for this choice of [V,B]. For let (x,y) E [V,B] 0 [V,S]. 

Then there exists z EX such that (x,z) E [V,B] and (z,y) E [V,B], i.e., 

there exist u,v,p,q E G such that 



-I 
u VE V 
-1 

p q E V 

and 

and 

U V 
('IT X,'IT z) E S, 

(lTPZ,'ITqy) E S• 

-1 -1 -1 -1 
Lets := v u and t := p q. Then (nsx,z) E (nv xnv ) [SJ and (z,nty) E 

-1 -1 
('JTP X'JTP )[SJ, so by (2), 

(3) 

-1 -1 -1 2 
However, s t = u vp q E V ~ U, so (3) implies that (x,y) E [U,aJ. D 

LEMMA 3. The mapping n: (GxX,RxU') + (X,U') is uniformly continuous. 

REMARK, By Lemma 2 and HIMMELBERG's results it is clear that 

rr: (GxX,RxU) • (X,U') is uniformly continuous. We want to replace here the 

uniformity of the domain by the possibly weakeP uniformity RxU'. 
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PROOF. Let U E V and a E U. We have to find V E V and S E U such that for e e 
all s,t E G and x,y E X, 

st -l E V & (x,y) E [V ,SJ • (1TsX,1Tty) E [U ,aJ. 

2 Take WE Ve such that W c, U. There exists V E Ve for which Vw c wW for all 

w E G ([6J, Theorem 4.9; this is equivalent to saying that the left and the 

right uniformity coincide on G). Note that V c W. 

Consider s,t E G with st-IE V. In addition, consider x,y E X with 
-1 U V 

(x:,y) E [V,aJ. Then there exist u,v E G with u v E V and ('If x,'JT y) E a. 

Set p : = us - l and q : = vt - l . Then 

THEOREM 2. Every Tychonoff G-space X with Ga compact HausdoPff topological 

group can equiV<Zl'iantZy be embedded in a compact HausdoPff G-space. 

PROOF. Let U' be as in the Lemmas 2 and 3. Then the ttg < G,X,'IT > is clear-

BIBLIOTHEEK Mft.THEMr\TISCH CENTRUM 
-AMSTERDAM--



ly U'-bounded. Now the result follows from the corollary to Lennna I. D 

If G is not assumed to be compact, we can prove the following theorem 

(of which Theorem 2 is a special case): 
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THEOREM 3. Let < G ,x, 1T > be a ttg such that for every x E X the orbit

oZ.osUPe K[x] := clX'lrx[G] is oompaot. If {,rt : t E G} is equicontinuous on X 

with respect to a uniformity U for x·~ -then· ·x·-·oan equivariantZy be embedded 

in a compact Hausdorff G-space. 

PROOF. Let EX be the enveloping semigroup of the ttg < G,X,1T >, i.e. the 

closure of {1rt; t E G} in xx. It follows from Theorem 7 in [4], that EX is 

a compact Hausdorff topological grou1. Equicontinuity of {1rt : t E G} im

plies equicontinuity of EX, and this, in turn, implies that the evaluation 

mapping o: (h,x) 1+ h(x): EX x X +Xis continuous. Clearly, o is an action of 

EX on X, and Theorem 2 implies that the ttg < EX,X,o > can equivariantly be 

embedded in a ttg < EX,Y,o > with Ya compact Hausdorff space. Let f: x + Y 

denote this embedding. An actions of G on Y can be defined by s(t,y) := 

0(1rt ,y), t E G, y E Y (observe that the mapping t 1+ 1rt: G + EX is continuous). 

So< G,Y,s > is a compact Hausdorff G-space. Because 

f(1T(t,x)) = f(o(rrt,x)) t = 0(1T ,fx) = s(t,fx), 

t E G, x E X, it follows that f is an equivariant embedding of < G,X,1T > in

to< G,Y,s >. D 

REMARKS, As to the equicontinuity of {rrt : t £. G} it may be useful to remark 

that in [4] only equicontinuity of {1rtlK[x] : t E G} is required for every 

x E X. The following example (which is a modification of the example given 

in [4]) shows that this condition may not imply equicontinuity of {1rt : t E G} 

on all of X; nevertheless, the G-space under consideration can equivariantly 

be embedded in a compact G-space. 

EXAMPLE. Let X be the following open subset of the complex plane: 

X :={zE a:: a< lzl < b} with O <a< b. Define 'Ir: ::m. x X-+ X by n(t,z) = 

= z exp(itlzj). Then each orbit-closure is compact, on each orbit-closure 
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K[z] the set {rrtlK[z] : t € lR} is equicontinuous, but {lrt : t € lR} is not 

equicontinuous on x. However, the action n extends continuously to an action 

of lR on the compact space Y := {z1: IC: as lzl s b} (this is in accordance 

with Proposition 2 in [8], since Xis locally compact). 
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