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e . *
A note on compactifications of G-spaces )

by

J. de Vries

ABSTRACT

Let < G,X,m > be a topological transformation group (ttg) such that all
orbit-closures are compact and, in addition, the action is equicontinuous.
If X is a Tychonoff space, then < G,X,r > can equivariantly be embedded in
a ttg < G,Y,o > where Y is a compact Hausdorff space. In particular, for
any compact Hausdorff group G, every Tychonoff G-space can equivariantly

be embedded in a compact Hausdorff G-space.
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) This paper is not for review; it is meant for publication elsewhere.



1. PRELIMINARY RESULTS

A topological transformation group (ttg) or a G-space is a triple
< G,X,r > where G is a topological group, X is a topological space, and n
is an action of G on X, i.e. m: G x X >+ X is a continuous mapping satisfying
the conditions n(e,x) = x and w(t,n(s,x)) = n(ts,x) (x e X and s,t e G;

e denotes the identity of G). We refer to [5] as a general reference for
ttg's. The notation of [5] will be used with the following modification:
function symbols are written as operators from the left. Thus, the transi-
tions t° and the motions T of a G-space are defined by rtx = m(t,x) =: mt
(t e G, xe X).

If we speak of a Tychonoff or of a compact Hausdorff G-space, we mean
that the space X (and not G) has the corresponding topological properties.
Unless otherwise stated, we shall always assume that X is a Tychonoff space.
Any uniformity in X which is compatible with the topology of X will be
called a uniformity for X. Since several uniformities for X will be con-
sidered, we shall often indicate explicitly the uniformity with respect to
which a certain uniform notion is used. Thus, a ttg < G,X,m > is called U-
bounded” wﬁenever U is a uniformity for X and {ﬂx Elx € X} is an equicon-
tinuous sé£ of functions from G into the uniform space (X,U). Note that
< G,X,m > is U-bounded if and omly if {r_: x e X} is U-equicontinuous at e,

that 1is,

Yo e U, U € Ve : (ntx,x) € o for all t e U, x e X

(here Ve denotes the neighbourhood filter of e in G).

If < G,X,m > and < G,Y,0 > are G-spaces, then a mapping f: X » Y is
called equivariant whenever £ o nt = ot o f for every t € G. We will be
concerned with a special case of the following general problem: does there

extst, for every (Tychonoff) G-space < G,X,m >, an equivariant embedding

* The term bownded occurs in [3] and also in [8] and [9]. In [1] the term

motion equicontinuous is used.



into a compact Hausdorff G-space < G,Y,o >? For a categorical setting of
the problem, see sub-section 7.3 of [8]. In [1] and [2] one can find results
which are closely connected with this question. In particular, in [1] BROOK

proved:

THEOREM 1. Let < G,X,m > be a ttg and let U be a uniformity for X such that

(i) < G,X,m > s U-bounded;

(ii) Each nt, t € G, 28 U~uniformly continuous.

Then X can equivariantly be embedded in a compact Hausdorff G-space.

In [1], the proof is given by extending each transition to a homeo-
morphism of the Samuel compactification sX of the uniform space (X,U). In
[8], we gave a different proof, which was based on an épplication of
ASCOLI's theorem in the space CC(G,SX). In that proof we did not need con-
dition (ii). It is not difficult, however, to show here directly that this
condition can be omitted from the hypothesis of Theorem 1. The proof is
based on the well-known fact that any Tychonoff G-space X admits a unifor-—
mity U* such that every transition is U*—wzif‘or'mly continuous. The unifor-
mity U™ can be obtained in the following way. Let U be any uniformity for
X, and let U” be the weakest uniformity in X making all transitions
ﬂt: (X,U*) + (X,U), t € G, uniformly continuous. Since each nt is a homeo-
morphism of X, u*is compatible with the topology of X. And since the com-—
position of nt: (X,U*) +~(XJ1*) with any nS: (X,U*) + (X,U) is uniformly
continuous, being equal to ﬂSt! (X,U*) + (X,U), it follows that wt is U™ -
uniformly continuous (t € G).

The following lemma shows that in Theorem 1 the uniformity U can simply

be replaced by the corresponding uniformity u*.

LEMMA 1. The Tychonoff G-space X is U-bounded if and only if it is u*-
bounded.

PROOF. "Only if'": clear from the inclusion U « Tl

"If": observe that a base of U™ is constituted by all sets of the form

dz := {(x,y) e X xX : (nsx,nsy) e o for all se A}



with a ¢ U and A a finite subset of G. Now suppose that < G,X,m > is U-
bounded. Let o ¢ U and let A be a finite subset of G. By U-boundedness there
is U € Ve such that

(nusx,vsx) € a for all ue U, xe¢ X and s € G.

Since A is finite, there is V ¢ Ve such that sV c Us for all se A. It

follows that
(nsvx,nsx) € a for all ve V, xe X and s € A,

that is, (nvx,x) € az for all ve V and x € X. This shows that < G,X;ﬁ > is
U™ -bounded. 0

COROLLARY. A Tychonoff G-space X can equivariantly be embedded in a compact
Hausdorff G-space if and only if there is a uniformity U for X such that X
8 U-bounded.

PROOF. "Only if'": a straightforward compactness argument (give X the rela-
tive uniformity of the compactification).

"If": Follows from Lemma 1 and Theorem 1. [J

2. MAIN RESULTS

Let < G,X,m > be a ttg with G compact. The topology of G is generated
by a (unique) uniformity R which coincides with both the left and the right
uniformity of G. Let U be a uniformity for X. Replacing U by u*, we may
assume that each ﬂt: X > X is U-uniformly continuous (t € G). Since G is com-
pact and m: G x X > X is continuous, it follows from a straightforward
compactness argument that {m" s t e G} 78 U-equi-uniformly continuous.

The following results were obtained by HIMMELBERG [7]. Let (Y,W) be a
uniform space, Z any set, and f: Y + Z a mapping. Then there exists a finest
uniformity on Z such that f is uniformly continuous (quotient uniformity).

If (£xf)[W] happens to be a uniformity, then it coincides with this quotient

. 3 . . . ‘(- 3
uniformity. If, in addition, f [z] is compact for every z ¢ Z, then the



quotient topology on Z relative to f is the topology of the quotient uni-
formity.
We apply these results to the uniform space (GxX,RxU) and the mapping

m: G x X > X, where < G,X,m >, R and U are as above.

LEMMA 2. The filter U':= (mxn)[RxU] Zn X x X 28 a uniformity in X and it <is
compatible with the topology of X.

PROOF. Observe that m: G x X > X is an open mapping, so that X has the
quotient topology relative to w. Moreover, 7 [x] is a compact subset of
G x X for every xe X, because it is a closed subset of the compact set
G x nx[G]. Hence, by the above-mentioned results it is sufficient to prove
that U' is a uniformity. Clearly only the "triangle axiom" needs verifi-
cation. To this end we introduce the following notation. A base for the
uniformity R of G is formed by the sets Py {(s,t) € G x G : st—1 e U}
with U € Ve. For U ¢ Ve and o € U, set

{U,al :=(ﬂXﬂ)[pUXu] = {(x,y) ¢ X x X ! 3s,t € G with s-]t e U

and (wsx,nty) e al.

We have to show that for every U ¢ Ve and o € U there exist V ¢ Ve and

B € U such that
(1) (V,8] o [V,g] c [U,al.

. t . . . . .
By assumption, {m i te G} is equi-uniformly continuous on X with respect

to U, so there exists B ¢ U such that

(2) (n'xn )[BT o (n'xm")[B] < @

for all u,v ¢ G. In addition, let Ve Ve be such that V2 c U. We claim
that (1) holds for this choice of [V,g]. For let (x,y) ¢ [V,B] o [V,B].
Then there exists z € X such that (x,z) € [V,B] and (z,y) ¢ [V,8], i.e.,

there exist u,v,p,q € G such that



u-lv e V and (nux,ﬂvz) € B,

p—]q eV and (ﬂpz,ﬂqy) € B.

Let s := v_lu and t := p_lq. Then (ﬂsx,z) € (wv xm' ) [B] and (z,nty) ¢
-1 -1
(v xaP )I[BI, so by (2),

(3) (ﬂsx,wty) = (wsx,z) o (z,ﬂty) € Q.

However, sult = u_]vp—]q € V2 c U, so (3) implies that (x,y) e [U,al. 0O
LEMMA 3. The mapping w: (GxX,RxU') + (X,U') Zs uniformly continuous.

REMARK. By Lemma 2 and HIMMELBERG's results it is clear that
m: (GxX,RxU) -+ (X,U') is uniformly continuous. We want to replace here the

uniformity of the domain by the possibly weaker uniformity RxU'.

PROOF. Let U € Ve and o ¢ U. We have to find V ¢ Ve and B ¢ U such that for
all s,te G and x,y e X,

st_l e V& (x,y) e [V,B] #f(nsx,nty) e [U,al.

Take We Ve such that WZ.E.U. There exists V e_ye for which Vw ¢ wW for all
we G ([6], Theorem 4.9; this is equivalent to saying that the left and the
right uniformity coincide on G). Note that V ¢ W.

Consider s,t € G with st-l.e V. In addition, consider %,y ¢ X with
(®,y) € [V,al. Then there exist u,v € G with u_lv e V and (nux,nvy) € O.

Set p := us ! and q := vt—l. Then

q

and (npnsx,n nty) = (nux,nvy) € a, so that, indeed, (ﬂsx,nty) e [U,al. O

THEOREM 2. Every Tychonoff G-space X with G a compact Hausdorff topological
group can equivariantly be embedded in a compact Hausdorff G-space.

PROOF. Let U' be as in the Lemmas 2 and 3. Then the ttg < G,X,m > is clear-
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ly U'-bounded. Now the result follows from the corollary to Lemma 1. [

If G is not assumed to be compact, we can prove the following theorem

(of which Theorem 2 is a special case):

THEOREM 3. Let < G,X,m > be a ttg such that for every x e X the orbit-
closure K[x] := chnX[G] 18 compact. If {nt ! te G} s equicontinuous on X
with respect to a uniformity U for X, then X can equivariantly be embedded

in a compact Hausdorff G-space.

PROOF. Let EX be the enveloping semigroup of the ttg < G,X,m >, i.e. the
closure of {n® : te Gl inm xX. It follows from Theorem 7 in [4], that Eg is

a compact Hausdorff topological grou; . Equicontinuity of (rtite g ime
plies equicontinuity of EX’ and this, in turn, implies that the evaluation
mapping §: (h,x) = h(x): EX x X -+ X is continuous. Clearly, 8 is an action of
E, on X, and Theorem 2 implies that the ttg < EX,X,G > can equivariantly be

X

embedded in a ttg < E_,Y,0 > with Y a compact Hausdorff space. Let f: x > Y

X’
denote this embedding. An action Z of G on Y can be defined by z(t,y) :=
o(nt,y), te G, ye Y (observe that the mapping t » it ¢~ Ex is continuous).
So < G,Y,z > is a compact Hausdorff G-space. Because

£(n(t,x)) = £(6(r°,%)) = o(n,fx) = £(t,fx),

te G, xe X, it follows that f is an equivariant embedding of < G,X,m > in-

to < G,Y,z >. 0O

REMARKS. As to the equicontinuity of {ﬂt : t e G} it may be useful to remark

that in [4] only equicontinuity of {ﬂtl ¢t e G} is required for every

K[x]
x € X. The following example (which is a modification of the example given

in [4]) shows that this condition may not imply equicontinuity of {rt P te G}
on all of X; nevertheless, the G-space under consideration can equivariantly

be embedded in a compact G-space.

EXAMPLE. Let X be the following open subset of the complex plane:
X :={ze C Pa < |z| < b} with 0 < a < b. Define m: R x X > X by n(t,z) =

= z exp(it[z[). Then each orbit-closure is compact, on each orbit-closure



K[z] the set {nth[z] : te R} is equicontinuous, but {n* !te Rlis not

equicontinuous on X. However, the action m extends continuously to an action

of R on the compact space Y := {ze¢ € : a < Iz[ < b} (this is in accordance

with Proposition 2 in [8], since X is locally compact).
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