stichting mathematisch centrum

≥ MC

DEPARTMENT OF PURE MATHEMATICS

ZW 75/76

JUNE

A. SCHRIJVER

THE DEPENDENCE OF SOME LOGICAL AXIOMS ON DISJOINT TRANSVERSALS AND LINKED SYSTEMS

Prepublication

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-profit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O), by the Municipality of Amsterdam, by the University of Amsterdam, by the Free University at Amsterdam, and by industries.

The dependence of some logical axioms on disjoint transversals and linked systems *)

bу

A. Schrijver

ABSTRACT

Logical axioms on disjoint transversals of two set systems and on linked systems in Boolean algebra are introduced; furthermore their dependence from usual logical axioms (Boolean prime ideal theorem and Order extension principle) is discussed. Finally a combinatorial characterization of two graphs with disjoint transversals is given.

KEY WORDS & PHRASES: linked system, disjoint transversal, prime ideal theorem, infinite graph

^{*)} this paper is not for review; it is meant for publication elsewhere.

1. INTRODUCTION AND DEFINITIONS.

Let $\mathcal{B} = (B, \land, \lor, \neg, 0, 1)$ be a Boolean algebra. A subset L of B is called a *linked system* if a \land b \neq 0 for all a and b in L. A linked system L is called a *maximal linked system* if L is not contained in another linked system. Consider the following axioms on the existence of these linked systems.

LA (weak linking axiom): Each Boolean algebra has a maximal linked system; LA' (strong linking axiom): Each linked system in a Boolean algebra is contained in some maximal linked system.

It is easy to see that these two axioms follow from Zorn's lemma; J. VAN MILL proved that these axioms follow from the Boolean prime ideal theorem. We shall use the Boolean prime ideal theorem in the following two forms, both clearly equivalent to the usual Boolean prime ideal theorem (cf. e.g. JECH [1]).

FA(weak filter axiom): Each Boolean algebra has an ultrafilter; FA' (strong filter axiom): Each filter in a Boolean algebra is contained in some ultrafilter.

The equivalence of FA and FA' follows easily by making the quotient algebra of the Boolean algebra modulo the filter.

Here we shall prove that also LA and LA' are equivalent axioms. Furthermore we prove that FA is independent (does not follow) from LA and that LA is independent from the ZF-axioms, by proving that LA follows from the Order Extension Principle and that C₂ follows from LA. Here:

OEP (Order Extension Principle): Each partial order on a set can be extended to a total order;

 ${\tt C}_{\tt n}$ (Axiom of Choice for n-sets): Each family of n-sets has a choice-function.

(An n-set is a set with n elements.) Note that OEP follows from FA and that $\rm C_2$ follows from OEP, but that FA is independent from OEP and that OEP is independent from $\rm C_2$ (cf. JECH [1]). That is

$$FA \rightarrow OEP \rightarrow C_2$$
,

while none of these arrows can be reversed. We prove

OEP
$$\rightarrow$$
 LA \leftrightarrow LA' \rightarrow C₂.

Another approach to these axioms is by means of so-called "disjoint transversals". Let $\mathcal U$ and $\mathcal V$ be subsets of $\mathcal P(X)$, the power-set of a set X. A

subset Y of X is called a *U-transversal* if $U \cap Y \neq \emptyset$ for all $U \in U$. We introduce the notation:

dt(U,V) = there exist a U-transversal and a V-transversal which are mutually disjoint.

Clearly, dt(U,V) if and only if dt(V,U). Calling a set Y *U-independent* iff no $U \in U$ is contained in Y, we have: dt(U,V) if and only if there exists a *U-*independent *V-*transversal.

Let $P_{\text{finite}}(X)$ be the collection of all finite subsets of a set X and let $P_{n}(X)$ be the collection of all subsets X' of X with $|X'| \le n$.

We define the following axioms.

DT (disjoint transversal axiom): If X is a set, U and V are subsets of $P_{\text{finite}}(X)$ and each two finite subcollections U_0 of U and V_0 of V have $\text{dt}(U_0,V_0)$, then dt(U,V);

DT ...: If X is a set, U is a subset of $P_m(X)$, V is a subset of $P_n(X)$ and each two finite subcollections U_0 of U and V_0 of V have $\det(U_0,V_0)$, then $\det(U,V)$.

In this paper we prove that DT and $DT_{2,3}$ both are equivalent to the Boolean prime ideal theorem (or FA). $DT_{2,2}$ is too weak to imply DT; we prove that $DT_{2,2}$ is equivalent to the linking axiom LA.

We may consider a subset of $P_2(X)$ as the edge-set of a graph with vertex-set X. As a side-result we give a characterization of pairs of graphs $G_1 = (X, U)$ and $G_2 = (X, V)$ such that $\mathrm{dt}(U, V)$, i.e. such that there are disjoint subsets X_1 and X_2 of X with the properties: X_1 meets every edge of G_1 and G_2 meets every edge of G_2 . A corollary is a characterization of classes of graphs $\{G_i \mid i \in I\} = \{(X, U_i) \mid i \in I\}$ (I is an index set), such that there is a collection $\{X_i \mid i \in I\}$ of pairwise disjoint subsets of X with the property that X_i meets each edge of G_i , for all $i \in I$.

2. EQUIVALENCE OF DT, $DT_{2,3}$ AND FA.

In this section we prove the equivalence of FA, FA', DT and all $DT_{m,n}$, in case $m \ge 2$, $n \ge 2$ and not m = n = 2. Since, clearly, (i) FA implies FA', (ii) DT implies each $DT_{m,n}$, and (iii) $DT_{m,n}$ implies $DT_{2,3}$ in case $m \ge 2$,

 $n \ge 2$ and not m = n = 2, it is enough to prove (iv) FA' implies DT and (v) $DT_{2.3}$ implies FA.

PROPOSITION 2.1. FA' implies DT.

<u>PROOF</u>. Let X be a set and let U and V be subsets of $P_{\text{finite}}(X)$, such that $\text{dt}(U_0,V_0)$ for all finite $U_0 \subset U$ and $V_0 \subset V$. Let $\mathcal{B} = (B,\wedge,\vee,0,1)$ be the Boolean algebra freely generated by X. Let $G \subset B$ be the collection:

$$G = \{ \bigvee_{\mathbf{x} \in U} \mathbf{x} \mid \mathbf{U} \in \mathbf{U} \} \cup \{ \bigvee_{\mathbf{x} \in V} \mathbf{x} \mid \mathbf{V} \in \mathbf{V} \}.$$

We prove that if g_1 , ..., $g_m \in G$ then $g_1 \land \ldots \land g_m \neq 0$. For this let $U_0 \subset U$ and $V_0 \subset V$ be finite. We have to prove:

$$a = (\bigvee_{U \in U_0} \bigvee_{x \in U} x) \wedge (\bigvee_{V \in V_0} \bigvee_{x \in V} \overline{x}) \neq 0.$$

Since $dt(U_0, V_0)$ holds, there are finite subsets X_1 and X_2 of X such that:

$$X_1 \cap X_2 = \emptyset$$
, $X_1 \cap U \neq \emptyset$ for each $U \in U_0$, and $X_2 \cap V \neq \emptyset$ for each $V \in V_0$.

Now let $z = (\bigwedge_{x \in X_1} x) \land (\bigwedge_{x \in X_2} \bar{x})$. Since X_1 and X_2 are disjoint and X is a set of free generators for \mathcal{B} , we have $z \neq 0$. We prove that $z \leq a$.

First let $U \in U_0$. Then $U \cap X_1 \neq \emptyset$; take $x_1 \in U \cap X_1$. Then:

$$Z \le x_1 \le \bigvee_{x \in U} x$$
.

Second, let $V \in V_0$. Then $V \cap X_2 \neq \emptyset$; take $x_2 \in V \cap X_2$. Then:

$$z \le \bar{x}_2 \le \bigvee_{x \in V} \bar{x}$$
.

Hence:

$$0 < \mathbf{z} \le (\bigwedge_{\mathbf{U} \in U_0} \bigvee_{\mathbf{x} \in \mathbf{U}} \mathbf{x}) \wedge (\bigvee_{\mathbf{v} \in V_0} \bigvee_{\mathbf{x} \in \mathbf{v}} \overline{\mathbf{x}}) = \mathbf{a}.$$

So G generates a filter, and this filter is contained in an ultrafilter F (by FA'). Now let:

$$x_1 = \{x \in X \mid x \in F\} \text{ and } X_2 = \{x \in X \mid \overline{x} \in F\}.$$

Then, clearly, X_1 and X_2 are disjoint. Furthermore X_1 is a \mathcal{U} -transversal. For let $\mathcal{U} \in \mathcal{U}$. Then $\bigvee_{x \in \mathcal{U}} x \in \mathcal{G} \subset \mathcal{F}$. Hence, since \mathcal{F} is an ultrafilter, there is an $x \in \mathcal{U}$ such that $x \in \mathcal{F}$, i.e. such that $x \in X_1$. This means $\mathcal{U} \cap X_1 \neq \emptyset$. In the same way one proves that X_2 is a \mathcal{V} -transversal. Therefore $\mathrm{dt}(\mathcal{U},\mathcal{V})$. \square

PREPOSITION 2.2. DT 2,3 implies FA.

<u>PROOF.</u> Let $\mathcal{B} = (B, \land, \lor, \neg, 0, 1)$ be a Boolean algebra. We prove that \mathcal{B} has an ultrafilter. For this let:

$$U = \{\{a, \overline{a}\} \mid a \in B\},\$$

and:

$$V = \{\{a,b,c\} \mid a,b,c \in B \text{ and } a \land b \land c = 0\}.$$

Now $\mathrm{dt}(U_0,V_0)$ for each finite $U_0\subset U$ and $V_0\subset V$, since the elements of B occurring in U_0 and V_0 generate a finite subalgebra B_0 of B. This B_0 has an ultrafilter. This ultrafilter is an U_0 -transversal and the complement of this ultrafilter in B is a V_0 -transversal.

Hence, by $DT_{2,3}$, we have that dt(U,V). Let $F \subset B$ be such that F is a U-transversal and $B \setminus F$ is a V-transversal. We prove that F is an ultrafilter. F is a filter, for suppose $a,b \in F$ and $c \ge a \land b$. Then $\{a,b,\overline{c}\} \in V$, hence $(B\setminus F) \cap \{a,b,\overline{c}\} \neq \emptyset$. This implies $\overline{c} \notin F$, hence $c \in F$, since $\{c,\overline{c}\} \cap F \neq \emptyset$. F is also an ultrafilter, since for all $a \in B$ we have $\{a,\overline{a}\} \cap F \neq \emptyset$. \square

THEOREM 2.3. DT and $DT_{2,3}$ are equivalent to the Boolean prime ideal theorem.

PROOF. Recall that FA and FA' both are equivalent to the Boolean prime ideal theorem (cf. JECH [1]).

3. EQUIVALENCE AND DEPENDENCE OF DT_{2,2}, LA AND LA'.

In this section we prove that $DT_{2,2}$, LA and LA' are equivalent axioms. Furthermore we prove that these axioms follow from OEP; hence the Boolean prime ideal theorem is independent from LA, since it is independent from OEP. Furthermore we show the independence of LA from the ZF-axioms, by proving that LA implies C_2 (cf. JECH [1]). Since, clearly, LA' \rightarrow LA, it is enough to prove:

OEP
$$\rightarrow$$
 LA \rightarrow DT_{2,2} \rightarrow LA' and DT_{2,2} \rightarrow C₂.

We remark that for a linked system L in a Boolean algebra $\mathcal{B} = (B, \land, \lor, \neg, 0, 1)$ to be a maximal linked system, it is necessary and sufficient that for all $a \in B$: $a \in L$ or $\bar{a} \in L$. Also, if L is a maximal linked system, then for all $a, b \in B$ with the property $a \lor b = 1$ we have that $a \in L$ or $b \in L$. PROPOSITION 3.1. OEP *implies* LA.

<u>PROOF.</u> Let $B = (B, \land, \lor, \neg, 0, 1)$ be a Boolean algebra. We prove that B has a maximal linked system. Let \le be the usual partial order on B, i.e. let:

$$x \le y$$
 if and only if $x \wedge y = 0$.

Using OEP, there exists a total order \leq on B, such that $x \leq y$ implies $x \leq y$. Now let $M = \{x \mid \overline{x} \leq x\}$. We prove that M is a maximal linked system.

M is a linked system, for suppose a,b \in M and a \land b = 0, i.e. a \leq \overline{b} and b \leq \overline{a} . Therefore also a \leqslant \overline{b} and b \leqslant \overline{a} . Since a,b \in M, we also have: \overline{a} \leqslant a and \overline{b} \leqslant b. Thus a \leqslant \overline{b} \leqslant b \leqslant \overline{a} \leqslant a, hence a = \overline{a} , which cannot be the case.

M is also a maximal linked system, since for all a ϵ B: $\bar{a} \ll a$ or $a \ll \bar{a}$, hence a ϵ M or $\bar{a} \in M$. \square

PROPOSITION 3.2. LA implies DT_{2,2}.

<u>PROOF</u>. Let X be a set and let U and V be subsets of $P_2(X)$, such that $dt(U_0, V_0)$ for all finite $U_0 \subset U$ and $V_0 \subset V$. As in the proof of proposition 2.1 let $B = (B, \land, \lor, \neg, 0, 1)$ be the Boolean algebra freely generated by X and let:

$$G = \{ \bigvee_{\mathbf{x} \in U} \mathbf{x} \mid U \in U \} \cup \{ \bigvee_{\mathbf{x} \in V} \mathbf{x} \mid V \in V \}.$$

Again, G generates a filter, say F. Now let $\mathcal{B}_1 = (\mathcal{B}_1, \wedge, \vee, \neg, 0, 1)$ be the quotient algebra of \mathcal{B} modulo the filter F. Let [b] be the image of $b \in \mathcal{B}$ in the quotient algebra. By LA, this quotient algebra has a maximal linked system, say M. Let X_1 be the set of all $x \in X$ such that [x] is in M. Let X_2 be the set of all $x \in X$ such that [x] is in M. Then $X_1 \cap X_2 = \emptyset$. Also X_1 is a \mathcal{U} -transversal. For let $\mathcal{U} \in \mathcal{U}$. Then $\bigvee_{x \in \mathcal{U}} x \in \mathcal{G} \subset \mathcal{F}$, hence:

$$[1] = \begin{bmatrix} V & X \end{bmatrix} = V & [X].$$

Therefore $[x] \in M$ for some $x \in U$, hence $U \cap X_1 \neq \emptyset$. X_2 is a V-transversal. For let $V \in V$. Then $\bigvee_{x \in V} \overline{x} \in G \subset F$, hence:

$$[1] = \begin{bmatrix} V & \overline{x} \end{bmatrix} = V & [\overline{x}].$$

Therefore $[\bar{x}] \in M$ for some $x \in V$, hence $V \cap X_2 \neq \emptyset$. The conclusion is: dt(U,V). \square

PROPOSITION 3.3. DT2,2 implies LA'.

<u>PROOF</u>. Let $\mathcal{B} = (B, \land, \lor, \neg, 0, 1)$ be a Boolean algebra and let $L \subset B$ be a linked system. We have to prove the existence of a maximal linked system containing L. Define:

$$U = \{\{x, \bar{x}\} \mid x \in B\} \cup \{\{x\} \mid x \in L\},\$$

and let V be the set

$$V = \{\{x,y\} \mid x,y \in B \text{ and } x \land y = 0\}.$$

Take finite subsets U_0 of U and V_0 of V. The elements of B occurring in U_0 and V_0 generate a finite sub-Boolean algebra $B_0 = (B_0, \land, \lor, \lnot, 0, 1)$ of B. Let $L_0 = L \cap B_0$; since B_0 is finite there exists a maximal linked system M_0 in B_0 , containing L_0 .

Now let $X_1 = M_0$ and $X_2 = B_0 \setminus M_0$. Then $X_1 \cap X_2 = \emptyset$, X_1 is a U_0 -transversal and X_2 is a V_0 -transversal.

So for each finite subsets U_0 of U and V_0 of V we have $\mathrm{dt}(U_0,V_0)$; by $\mathrm{DT}_{2,2}$ it follows that $\mathrm{dt}(U,V)$, that is there are disjoint subsets X_1 and X_2 of B such that X_1 is a U-transversal and X_2 is a V-transversal.

Let $M = X_1$; then M is a maximal linked system containing L. M is a linked system, for suppose $x,y \in M$ and $x \wedge y = 0$; then $\{x,y\} \in V$, hence $x \in X_2$ or $y \in X_2$. Since $X_1 \cap X_2 = \emptyset$, we have $x \notin X_1 = M$ or $y \notin X_1 = M$, contradicting our assumption. Also $L \subset M$, since for all x in L we have $\{x\} \cap M = \{x\} \cap X_1 \neq \emptyset$. Finally M is maximal, since for all $x \in B$: $\{x,x\} \cap X_1 \neq \emptyset$, i.e. $x \in M$ or $x \in M$. \square

PROPOSITION 3.4. DT_{2,2} implies C₂.

<u>PROOF</u>. Let U be a collection of 2-sets. We have to prove the existence of a function, assigning to each set in U an element of that set. Without restrictions on the generality we may suppose that the sets in U are pairwise disjoint.

For each finite subset U_0 of U, there is a set X_0 such that $|X_0 \cap U| = 1$ for all U in U_0 . This implies $dt(U_0, U_0)$ for all finite subsets U_0 of U, and this implies $dt(U_0, U_0')$ for all finite $U_0, U_0' \subset U$.

By $DT_{2,2}$ it follows that dt(U,U), i.e. there are disjoint sets X_1 and X_2 with the property that $|X_1 \cap U| = |X_2 \cap U| = 1$, for all $U \in U$. Now assign to each set in U the unique element in $X_1 \cap U$. This clearly determines a wanted choice-function. \square

THEOREM 3.5. DT $_{2,2}$, LA and LA' are logically equivalent axioms; LA follows from OEP and LA itself implies $\rm C_2$.

<u>PROOF</u>. This follows straightforwardly from the foregoing propositions and the trivial observation LA' \rightarrow LA.

4. SOME COMBINATORIAL ASPECTS OF DT_{2,2}.

It is obvious that the axioms DT and DT_{n,m} have combinatorial aspects. In particular DT_{2,2} gives rise to a question in the theory of graphs. In this we define a graph as a pair (X,U), where U is a subset of $P_2(X)$ and $\emptyset \not\in U$. The elements of X are called *vertices* and the elements of U edges of the graph. Sometimes we shall speak shortly of the graph U instead of (X,U).

A graph (X,U) is said bicolourable or bipartite if we can "colour" the vertices with two colours (i.e. partition the set of vertices X into two classes) such that no edge U in U is mono-coloured (i.e. no edge U in U is contained in one of the classes of the partition). Hence the graph (X,U) is bicolourable if and only if dt(U,U). So by axiom $DT_{2,2}$ we have:

 P_2 : a graph (X,U) is bicolourable if and only if each finite subgraph U_0 is bicolourable.

This axiom P₂ is equivalent to C₂ (cf. JECH [1]).

Suppose we have now two graphs; if we have a characterization of pairs of finite graphs U_0 and V_0 with the property $\mathrm{dt}(U_0,V_0)$, using $\mathrm{DT}_{2,2}$ we can extend this characterization to pairs of arbitrary graphs U and V. We now give such a characterization for finite graphs. For this we define the notion of an alternating path. Let (X,U_1) be a graph for each $i\in I$ (I is some index set). Let $i\in I$ and $j\in I$. An alternating (i,j)-path from x to y is a sequence:

$$x = x_0$$
, $i = i_0$, x_1 , i_1 , x_2 , ..., x_{n-2} , i_{n-2} , x_{n-1} , $j = i_{n-1}$, $y = x_n$ $(n \ge 1)$,

such that: (i)
$$x_0, x_1, \ldots, x_n \in X$$
 and $i_0, i_1, \ldots, i_{n-1} \in I$;

(ii) $i_k \neq i_{k+1}$ for k = 0, ..., n-2;

(iii)
$$\{x_k, x_{k+1}\} \in U_{i_k}$$
, for $k = 0, ..., n-1$.

One may consider an alternating (i,j)-path from x to y as a path from x to y in the union of the graphs, in which path the first edge is an edge of \mathcal{U}_i and the last edge is an edge of \mathcal{U}_j and in which two succeeding edges belong to different graphs (in a sense made more precise above).

The characterization for finite graphs is as follows. (Here $I = \{0,1\}$.)

THEOREM 4.1. Let (X,U_0) and (X,U_1) be finite graphs (that is, U_0 and U_1 are finite). Then $dt(U_0,U_1)$ holds (i.e. there are two disjoint sets X_0 and X_1 such that $X_0 \cap U \neq \emptyset$ for each $U \in U_0$ and $X_1 \cap U \neq \emptyset$ for each $U \in U_1$) if and only if there is no $x \in X$ such that there is an alternating (0,0)-path from x to x and an alternating (1,1)- path from x to x.

<u>PROOF</u>. We first prove the "only if" part. Suppose $dt(U_0, U_1)$ holds, i.e. there are disjoint sets X_0 and X_1 such that $X_0 \cap U \neq \emptyset$ for all $U \in U_0$ and $X_1 \cap U \neq \emptyset$ for all $U \in U_1$. Suppose furthermore that for some $x \in X$ there is

an alternating (0,0)-path from x to x, say:

$$x = x_0, 0, x_1, 1, x_2, ..., 1, x_{n-1}, 0, x = x_n,$$

and an alternating (1,1)-path from x to x, say:

$$x = x_0^{\dagger}, 1, x_1^{\dagger}, 0, x_2^{\dagger}, \dots, 0, x_{m-1}^{\dagger}, 1, x = x_m^{\dagger}.$$

We prove that $x \in X_0 \cap X_1$, which is a contradiction since this set is empty. Suppose $x \notin X_0$. Since $\{x_0, x_1\} \in \mathcal{U}_0$ and hence $\{x_0, x_1\} \cap X_0 \neq \emptyset$, we have $x_1 \in X_0$. This implies $x_1 \notin X_1$. Now $\{x_1, x_2\} \in \mathcal{U}_1$, hence $\{x_1, x_2\} \cap X_1 \neq \emptyset$ and $x_2 \in X_1$. This implies $x_2 \notin X_0$. By repeating these arguments one finds $x_n \in X_0$, or $x \in X_0$. By a similar reasoning one finds $x \in X_1$. Hence $x \in X_0 \cap X_1$.

Second we prove the "if"-part. Suppose there is no $x \in X$ such that there is an alternating (0,0)-path from x to x and an an alternating (1,1)-path from x to x. We proceed by induction on |X|, which we may suppose to be finite. If $X = \emptyset$ the theorem clearly is valid. Suppose $X \neq \emptyset$ and for each pair of graphs (X', U'_0) and (X', U'_1) with |X'| < |X| we have proved the theorem. Choose $x \in X$ arbitrarily. Now there are two possibilities (which do not exclude each other).

(1) there is no alternating (1,1)-path from x to x. Let

$$A_0 = \{x\} \cup \{y \mid \text{there is an alternating (1,0)-path from } x \text{ to } y\},$$

and

$$A_1 = \{y \mid \text{there is an alternating (1,1)-path from } x \text{ to } y\}.$$

 A_0 and A_1 are disjoint, for suppose $y \in A_0 \cap A_1$. Then there is an alternating (1,0)-path from x to y and an alternating (1,1)-path from y to x, and hence an alternating (1,1)-path from x to x. This contradicts our assumption. Let $X' = X \setminus (A_0 \cup A_1)$, $U_0' = \{U \in U_0 \mid U \in X'\}$ and $U_1' = \{U \in U_1 \mid U \in X'\}$. Now again, for the pair of graphs (X', U_0') and (X', U_1') , there is no $x \in X'$ with an alternating (0,0)-path from x to x and an alternating (1,1)-path from x to x. Hence, by induction, since |X'| < |X| we know $dt(U_0', U_1')$, that

is there are disjoint subsets X_0' and X_1' of X' with the properties that $X_0' \cap U \neq \emptyset$ for all $U \in U_0'$ and $X_1' \cap U \neq \emptyset$ for all $U \in U_1'$. Let $X_0 = A_0 \cup X_0'$ and $X_1 = A_1 \cup X_1'$. Then clearly X_0 and X_1 are disjoint. We prove that $X_0 \cap U \neq \emptyset$ for all $U \in U_0$ and $X_1 \cap U \neq \emptyset$ for all $U \in U_1$. Suppose $U \in U_0$ and $X_0 \cap U = (A_0 \cup X_0') \cap U = \emptyset$. Then $U \notin X'$, since otherwise $U \in U_0'$ and $U \cap X_0' \neq \emptyset$. Hence $U \cap (A_0 \cup A_1) \neq \emptyset$. Since $U \cap A_0 = \emptyset$ we have $U \cap A_1 \neq \emptyset$. Suppose $u \in U \cap A_1$ and $U = \{u,v\}$ (possibly u = v). Since $u \in A_1$ there exists an alternating (1,1)-path from x to u. Now $\{u,v\} \in U_0$, hence there is an alternating (1,0)-path from x to v. But this means $v \in A_0$ and $\{u,v\} \cap A_0 \neq \emptyset$, which is a contradiction. Hence $U \cap X_0 \neq \emptyset$.

In the same manner one proves that \mathbf{X}_1 is a \mathbf{U}_1 -transversal.

(2) There is no alternating (0,0)-path from x to x. This case is treated similarly to case (1).

Since, by assumption, each x ϵ X is in at least one of both cases, we can always use our induction step. \Box

As a corollary we have:

THEOREM 4.2. Let (X,U_0) and (X,U_1) be graphs. Under the assumption of the axiom $DT_{2,2}$ we have: there are disjoint sets X_0 and X_1 such that $X_0 \cap U \neq \emptyset$ for all $U \in U_0$ and $X_1 \cap U \neq \emptyset$ for all $U \in U_1$, if and only if there is no $X_1 \cap U \neq \emptyset$ for all $X_2 \cap U \neq \emptyset$ for all $X_3 \cap U \neq \emptyset$ for all $X_4 \cap U \neq \emptyset$ for all $X_5 \cap U \neq \emptyset$ for all $X_6 \cap U \neq$

<u>PROOF.</u> Since the condition of the non-existence of the two paths holds for two graphs if and only if it holds for each pair of finite subgraphs of these graphs, the theorem follows easily from $DT_{2,2}$ and the foregoing theorem.

A second corollary generalizes theorem 4.2. to arbitrary collections of graphs.

THEOREM 4.3. Let (X,U_i) be a graph for each $i \in I$ (I is an index set). Under the assumption of the axiom $DT_{2,2}$ we have: there are pairwise disjoint subsets X_i of X ($i \in I$) such that each $i \in I$ has $X_i \cap U \neq \emptyset$ for all $U \in U_i$, if and only if there is no $x \in X$ and no two different i and j ($i \in I$ and $j \in I$), such that there is an alternating (i,i)-path from x to x and an alternating (j,j)-path from x to x.

PROOF. Let
$$\overline{X} = X \times \{i \mid i \in I\}$$
,
$$\overline{U_0} = \{\{(u,i),(v,i)\} \mid \{u,v\} \in U_i \text{ and } i \in I\},$$

$$\overline{U_1} = \{\{(x,i),(x,j)\} \mid x \in X, i \in I, j \in I, i \neq j\}.$$

Now we leave it to the reader to verify that:

- (i) there are disjoint subsets X_i of X (i ϵ I) such that for each i ϵ I we have $X_i \cap U \neq \emptyset$ for all $U \in U_i$ if and only if dt $(\overline{U_0}, \overline{U_1})$;
- (ii) there is an $\bar{x} \in \bar{X}$ such that in $(\bar{U_0}, \bar{U_1})$ there is an alternating (0,0)path from \bar{x} to \bar{x} and an alternating (1,1)-path from \bar{x} to \bar{x} , if and only
 if there are $x \in X$, i, $j \in I$, $i \neq j$ with an alternating (i,i)-path from x to x and an alternating (j,j)-path from x to x.
 By theorem 4.2 theorem 4.3 follows. \Box .

REFERENCES.

[1] T.J. JECH, The Axiom of Choice, North-Holland Publ. Co., Amsterdam-London, 1973.