A.E. Brouwer

Optimal packings of K_4's into K_n - the case $n \not\equiv 2 \pmod{3}$
Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11th of February 1946, is a non-profit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O), by the Municipality of Amsterdam, by the University of Amsterdam, by the Free University at Amsterdam, and by industries.
Optimal packings of K_4's into a K_n - The case $n \not\equiv 2 \pmod{3}$.

by

A.E. Brouwer

ABSTRACT

In this paper we construct a pairwise balanced design $B((4,7^*),1;n)$ (i.e., a design with blocks of size 4 or 7 and exactly one block of size 7, on n points with $\lambda = 1$) for each $n \equiv 7$ or 10 (mod 12) except $n = 10$ or 19 (in which cases such a design cannot exist). From these designs optimal packings of K_4's into a K_n are derived for $n \not\equiv 2 \pmod{3}$, $n \not\in \{9,13,18,19\}$, while the case $n \in \{9,10,18\}$ is treated by ad hoc methods. It is not known whether the known packing of 25 K_4's in K_{19} is optimal.

KEY WORDS & PHRASES: pairwise balanced design, scarce design, packing, constant weight code
1. INTRODUCTION

Let \(I_n \) be a finite set of \(n \) elements. For \(n \geq k \geq t \) let \(D(n,k,t) \) be the largest integer \(b \) such that there exist \(b \) subsets \(B_1, \ldots, B_b \) of \(I_n \) each of \(k \) elements, such that every \(t \)-element subset of \(I_n \) is contained in at most one of them.

In a previous paper ([1]) the present author and A. Schrijver determined \(D(n,4,2) \) for \(n \equiv 2 \pmod{6} \). Here we treat \(n \equiv 0 \) or \(1 \pmod{3} \) (except \(n = 19 \)), and in a future paper we will discuss the remaining case \(n \equiv 5 \pmod{6} \). The overall result is the following:

Define

\[
J(n,4,2) = \begin{cases}
\left\lfloor \frac{n}{4} \right\rfloor \left\lfloor \frac{n-1}{3} \right\rfloor - 1 & \text{for } n \equiv 7 \text{ or } 10 \pmod{12} \\
\left\lfloor \frac{n}{4} \right\rfloor \left\lfloor \frac{n-1}{3} \right\rfloor & \text{otherwise.}
\end{cases}
\]

Then

(i) for each \(n \) \(D(n,4,2) \leq J(n,4,2) \)

(this is the so-called Johnson bound, see e.g. JOHNSON [4])

(ii) for almost all \(n \) \(D(n,4,2) = J(n,4,2) \).

Cases in which \(D(n,4,2) \neq J(n,4,2) \) is known:

<table>
<thead>
<tr>
<th>(n)</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>17</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J(n,4,2))</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>21</td>
<td>27</td>
</tr>
<tr>
<td>(D(n,4,2))</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>20</td>
<td>25 or 26</td>
</tr>
</tbody>
</table>

I conjecture that for all other \(n \) equality holds. (In any case all further exceptions must have \(n \equiv 11 \pmod{12} \)).

REMARK. The undefined notations, especially for various types of designs, are taken from HANANI ([3]) or WILSON ([10]).
2. OPTIMAL PACKINGS

A. The case \(n \equiv 0,1,3 \) or 4 (mod 12)

For \(n \equiv 1 \) or 4 (mod 12) HANANI [12] has constructed a Steiner system S(2,4,n). Therefore \(D(n,4,2) = J(n,4,2) = \frac{1}{12} n(n-1) \) for these \(n \).

Throwing away a fixed point and all blocks containing it produces a system of \(\frac{1}{12} n(n-1) - \frac{1}{3}(n-1) = \frac{1}{12}(n-1)(n-4) \) four-tuples on \(n-1 \) points, i.e. \(D(n,4,2) = J(n,4,2) = \frac{1}{12} n(n-3) \) for \(n \equiv 0 \) or 3 (mod 12).

B. The case \(n \equiv 6,7,9 \) or 10 (mod 12)

For \(n \equiv 7 \) or 10 (mod 12), \(n \neq 10,19 \), we will construct in the next section a pairwise balanced design on \(n \) points with \(\lambda = 1 \) and blocks of size 4 or 7, using exactly one block of size 7 (notation: \(B([4,7^8],1;n) \)).

If we replace the block \(\{x_0, \ldots, x_6\} \) of size 7 of such a design by the two four-tuples \(\{x_0, x_1, x_2, x_3\} \) and \(\{x_0, x_4, x_5, x_6\} \) we have a collection of \(\frac{1}{6}(\binom{n}{2} - \binom{7}{2}) + 2 = \frac{1}{12}(n(n-1)-18) = J(n,4,2) \) four-tuples without a common pair.

Hence \(D(n,4,2) = J(n,4,2) = \frac{1}{12}(n(n-1)-18) \) for \(n \equiv 7 \) or 10 (mod 12), \(n \neq 10,19 \).

Throwing away one point (from the set \(\{x_1, \ldots, x_6\} \)) yields:

\[D(n,4,2) = J(n,4,2) = \frac{1}{12}(n(n-3)-6) \] for \(n \equiv 6 \) or 9 (mod 12), \(n \neq 9,18 \).

For the exceptional cases we have

\[D(9,4,2) = 3 \]

and

\[D(10,4,2) = 5 \]

as can be immediately verified. Next

\[D(18,4,2) = 22 \]

as follows from packings constructed by S. Lin and H.R. Phinney.
We give here the packing of H.R. Phinney since it has the largest automorphism group (sc. \mathbb{Z}_2, generated by $\pi := (0\ 10)(1\ 9)(2\ 13)(3\ 4)(5\ 6\ 15)$ $(7\ 14)(8\ 17)(11)(12)(16))$.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>1</th>
<th>10</th>
<th>14</th>
<th>17</th>
<th>3</th>
<th>9</th>
<th>12</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>15</td>
<td>17</td>
<td>4</td>
<td>9</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>0</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>2</td>
<td>5</td>
<td>11</td>
<td>13</td>
<td>5</td>
<td>7</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>10</td>
<td>6</td>
<td>9</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>0</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>2</td>
<td>8</td>
<td>14</td>
<td>16</td>
<td>6</td>
<td>12</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>3</td>
<td>4</td>
<td>11</td>
<td>16</td>
<td>7</td>
<td>13</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>9</td>
<td>16</td>
<td>3</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>7</td>
<td>13</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>11</td>
<td>15</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>13</td>
<td>7</td>
<td>13</td>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>

The value of $D(19,4,2)$ is not yet known; as a lower bound we have $D(19,4,2) \geq 25$ as follows from a packing constructed by H.R. Phinney (which is given below) while on the other hand $D(19,4,2) \leq 26$ as we shall prove below.

First the design:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>1</th>
<th>7</th>
<th>15</th>
<th>17</th>
<th>3</th>
<th>8</th>
<th>11</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>10</td>
<td>14</td>
<td>18</td>
<td>4</td>
<td>9</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>0</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>2</td>
<td>4</td>
<td>13</td>
<td>17</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>2</td>
<td>5</td>
<td>15</td>
<td>18</td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>0</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>10</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>0</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>2</td>
<td>9</td>
<td>12</td>
<td>14</td>
<td>6</td>
<td>12</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>16</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>9</td>
<td>16</td>
<td>3</td>
<td>5</td>
<td>12</td>
<td>17</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>11</td>
<td>13</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>18</td>
<td>7</td>
<td>12</td>
<td>13</td>
<td>18</td>
</tr>
</tbody>
</table>

PROPOSITION. If $D(n,4,2) = J(n,4,2)$ for some $n \equiv 7$ or $10 \pmod{12}$ then the edges not covered by a maximal packing of K_4's into K_n form a regular graph on 6 points with valency 3.

PROOF. $J(n,4,2) = \left\lceil \frac{n}{4} \right\rceil \left\lfloor \frac{n-1}{3} \right\rfloor - 1 = \frac{1}{12}(n(n-1)-18)$.
Each quadruple covers six edges, hence $J(n,4,2)$ quadruples cover all edges except nine. Let G be the graph (without isolated vertices) formed by these nine edges. In K_n^4, each point has valency $n-1 \equiv 0 \pmod{3}$, and each quadruple removes 0 or 3 edges incident with a given point, hence in G each point has valency $\equiv 0 \pmod{3}$. Clearly valency ≥ 9 is impossible. If some point p in G has valency 6, then its 6 neighbours need at least 6 other edges in order to reach valency 3 each; but there are only nine edges in all, so valency 6 does not occur and G is regular, and hence has 6 vertices. \Box.

Lemma. There are only two graphs on 6 points, regular with valency 3: $K_3,3$ and the prism:

PROPOSITION. $D(19,4,2) \neq J(19,4,2)$.

Proof. The edges of both graphs mentioned in the previous lemma can be covered with 3 K_4's. Therefore if $D(n,4,2) = J(n,4,2)$ then $C(n,4,2) \leq J(n,4,2) + 3$ (where $C(n,4,2)$ is the number of K_4's necessary to cover all edges of K_n^4). But $J(19,4,2) = 27$ and MILLS ([7]) proved that $C(19,4,2) = 31$ (by exhaustive computer search). Hence $D(19,4,2) \leq 26$. \Box.

3. THE CLASS $\mathcal{B}(4,7^\ast)$

Let $\mathcal{B}(4,7^\ast)$ be the set of integers n for which there exists a pairwise balanced design on n points with blocks of size 4 or 7 and exactly one block of size 7 (and $\lambda=1$). Then
THEOREM. $\mathcal{B}\{4,7^*\} = \{n \mid n \equiv 7 \text{ or } 10 \pmod{12}\}\setminus\{10,19\}$.

Since by Hanani $\mathcal{B}\{4\} = \{n \mid n \equiv 1 \text{ or } 4 \pmod{12}\}$ we have as an immediate corollary:

COROLLARY. [Wilson] $\mathcal{B}\{4,7,10,19\} = \{n \mid n \equiv 1 \pmod{3}\}$.

PROOF OF THE THEOREM. Suppose $n \in \mathcal{B}\{4,7^*\}$. By considering the valency of a point it follows that $n \equiv 1 \pmod{3}$. Next, since $\binom{4}{2} = 6$ is even and $\binom{7}{2} = 21$ is odd, it follows that $\binom{n}{2}$ must be odd, so that $n \equiv 7$ or $10 \pmod{12}$. Also we saw in the previous section that $n \notin \{10,19\}$. [Note: this argument used that $D(19,4,2) \neq J(19,4,2)$ which is difficult to verify; on the other hand it is easy to see that if $n \in \mathcal{B}(K)$, where K is minimal (each element of K is used as a block size), then $n \geq (\min K-1)\max K + 1$. In our case this means that $n \geq (4-1)7+1 = 22$. This proves the easy half of the theorem; the remainder of this section is devoted to the other half.

(i) The Truncated Transversal Design.

LEMMA 1. [Truncated Transversal] If $\{3t+7,3h+7\} \in \mathcal{B}\{4,7^*\}$ and $t \geq h$ then $12t + 3h + 7 \in \mathcal{B}\{4,7^*\}$.

PROOF. As usual: take a transversal design $T(5,1; t)$ (which exists since $t \equiv 0$ or $1 \pmod{4}$) and throw away $t-h$ points of one group. This leaves a design with blocks of size 4 or 5 and groups of size h or t on a set X with $|X| = 4t+h$. Next split each point into three points, constructing group-divisible designs $GD(4,1,3)$ on the sets of size $3 \times 4 = 12$ and $3 \times 5 = 15$, that is, make a design on the set XI^3_I by taking for each group G of the original design a new group $G \times I^3_I$, and for each block B the blocks of a $GD(4,1,3; 3|B|)$ constructed in such a way that it has groups $\{b\} \times I^3_I$. We now have a design with blocks of size 4 and groups of size $3h$ or $3t$. Adding a block Z of 7 points and the designs (on the sets $(G \times I^3_I)\cup Z$) $B(\{4,7^*\}, 1; 3h+7)$ and $B(\{4,7^*\}, 1; 3t+7)$ which exist by hypothesis, we obtain the required design $B(\{4,7^*\}, 1; 12t+3h+7)$.

Let $x \equiv 7$ or $10 \pmod{12}$. There are 8 cases mod 48:

For $x \equiv 7$ or 19 (mod 48) write $x = 12t + 7$ ($h=0$, $x=0$ or $1 \pmod{4}$).

If we assume that $3t + 7 \in \mathcal{B}\{4,7^*\}$ then $x \in \mathcal{B}\{4,7^*\}$ follows.

We may do this except for $t = 1$ or 4, hence we get x unless $x = 19$ or 55.

$19 \notin \mathcal{B}\{4,7^*\}$, and 55 will be done later.
For \(x \equiv 22 \) or \(34 \) (mod 48) write \(x = 12t + 3.5 + 7 \), (h=5, t=0,1 (mod 4)).
If we assume that \(3t + 7 \in B\{4,7^*\} \) and \(t \geq 5 \) then \(x \in B\{4,7^*\} \) follows.
We still have to do 22, 34 and 70.

For \(x \equiv 31 \) or \(43 \) (mod 48) write \(x = 12t + 3.8 + 7 \), (h=8, t=0,1 (mod 4)).
Again for \(t \geq 8 \) \(x \in B\{4,7^*\} \) follows provided that we can do 31, 43, 79 and 91.

For \(x \equiv 46 \) (mod 48) write \(x = 12t + 3.9 + 7 \), (h=9, t = 1 (mod 4)), this
yields \(x \geq 142 \). We still have to do 46 and 94.

For \(x \equiv 10 \) (mod 48) write \(x = 12t + 3.13 + 7 \), (h=13, t = 1 (mod 4)), this
yields \(x \geq 202 \). We still have to do 58, 106 and 154.

Therefore the theorem will be proved if we show that

\[
\{22,31,34,43,46,55,58,70,79,91,94,106,154\} \in B\{4,7^*\}.
\]

(ii) Kirkman Designs.

Lemma 2. For each \(t \): \(9t + 4 \in B\{4,(3t+1)^*\} \).

Proof. For \(n \equiv 3 \) (mod 6) a resolvable \(B\{(3),1;n\} \) exists; completing such a
design yields \(n + (n-1)/2 \in B\{(n-1)/2\} \).
Writing \(n = 6t + 3 \) gives the lemma. \(\Box \).

For \(t = 2 \) we get 22 \(\in B\{4,7^*\} \).

For \(t = 10 \) we get 94 \(\in B\{4,31^*\} \), and as soon as we know 31 \(\in B\{4,7^*\} \) it
follows that 94 \(\in B\{4,7^*\} \).

(iii) Two orthogonal Latin Squares with Three Points Outside.

Lemma 3. If \(x \equiv 7 \) or \(43 \) (mod 48) then \(x \in B\{4,7^*\} \).

Proof. Let \(x = 4t + 3 \), then \(t \equiv 1 \) or \(10 \) (mod 12) and hence \(t + 3 \in B\{4\} \).
Also \(t \not\equiv 2,6 \) so \(t \in T\{4,1\} \). Take a transversal design \(T\{4,1; t\} \) on a set \(X \)
and choose a fixed block \(\{a_1,a_2,a_3,a_4\} \). Adjoin three new points \(x_0,x_1,x_2 \)
to \(X \) and for each group \(G \) make a \(B\{(4,1);t+3\} \) on each of the sets
\(G \cup \{x_0,x_1,x_2\} \), taking care that the design on the group containing \(a_1 \) has
\(\{a_1,x_0,x_1,x_2\} \) as a block. Now remove the blocks \(\{a_1,a_2,a_3,a_4\} \) and
\(\{a_1,x_0,x_1,x_2\} \) (1\leq i\leq 4) and add the block \(\{a_1,a_2,a_3,a_4,x_0,x_1,x_2\} \). This yields
a \(B\{(4,7^*),1,x\} \). \(\Box \).
In particular we find 43, 55 and 91.
We still have to do 31, 34, 46, 58, 70, 79, 106 and 154.

(iv) The case \(x = 31 \) (found by A.E.B. and P.D.P. 11/45 in close cooperation).
A \(\Delta \)-factor of a graph is a 2-factor consisting of cycles of length 3. Or in design-theoretic terms: a \(\Delta \)-factor is a parallel class of triples.
Using this definition we clearly have:

LEMMA 4. \(n \in \mathbb{B} \{4,7^*\} \iff \) there exists a design \(B(\{3,4\},1; n-7) \) where the triples form 7 \(\Delta \)-factors. \(\Box \).

In the current case we take for the set of vertices \(X = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_6 \) (so that \(|X|=24=31-7 \)), and the following blocks:

18 quadruples:

\[
\begin{align*}
(0,0,0), (0,1,0), & (1,0,0), (1,1,0) \mod (-,-,-,6) \\
(0,0,0), (0,0,3), & (1,1,1), (1,1,4) \mod (2,2,-) \\
(0,0,0), (0,0,4), & (1,1,5), (0,1,2) \mod (2,2,-) \\
(0,0,1), (0,0,5), & (1,1,2), (0,1,3) \mod (2,2,-)
\end{align*}
\]

7 \(\Delta \)-factors:

1. \[
\begin{align*}
\{(0,0,0), (0,0,1), (0,0,2)\}, \{(0,0,3), (0,0,4), (0,0,5)\} \mod (2,2,-).
\end{align*}
\]

2, 3. \[
\begin{align*}
\{(0,0,0), (0,0,5), (0,1,1)\}, \{(0,0,2), (1,1,0), (0,1,3)\}, \\
\{(1,1,1), (1,1,3), (1,0,4)\}, \{(0,0,4), (1,1,2), (1,0,5)\} \mod (2,-,-).
\end{align*}
\]

4, 5. \[
\begin{align*}
\{(0,0,2), (0,0,3), (1,0,4)\}, \{(1,1,2), (1,1,5), (0,1,1)\}, \\
\{(0,0,0), (1,0,1), (0,1,4)\}, \{(1,1,0), (1,0,3), (0,1,5)\} \mod (2,-,-).
\end{align*}
\]

6, 7. \[
\begin{align*}
\{(0,0,0), (1,1,3), (0,1,5)\}, \{(0,0,2), (0,0,4), (1,0,0)\}, \\
\{(0,0,1), (1,1,5), (1,0,4)\}, \{(0,0,3), (1,1,2), (1,0,1)\} \mod (2,-,-).
\end{align*}
\]

Clearly it is a finite task to check the correctness of this design.

(v) The case \(x = 34 \).

Let \(X = (\mathbb{Z}_3 \times \mathbb{Z}_9) \cup (\mathbb{I}_2 \times \mathbb{Z}_3) \cup \{x\} \), where the elements of \(\mathbb{Z}_3 \times \mathbb{Z}_9 \) are written \((i,j)\) and those of \(\mathbb{I}_2 \times \mathbb{Z}_3 \) \([i,j]\).
Take the following blocks:

\{
(i,j), (i+1,j+2), (i+2,j+2), (i+2,j+3) \} : 27 blocks
\{(i,j), (i+1,j+3), (i+1,j+5), [0,j-i] \} : 27 blocks
\{(i,j), (i+1,j+4), (i+1,j+8), [1,j] \} : 27 blocks
\{(i,j), (i,j+3), (i,j+6), \times \} (j<3) : 9 blocks.

(vi) The Case $x = 46$.

Let $X = (Z_3 \times Z_{13}) \cup (I_2 \times Z_3) \cup \{x\}$, and take the following blocks:

\{
(i,j+1), (i,j+3), (i,j+9), (i+1,j) \} : 39 blocks
\{(i,j+2), (i,j+6), (i,j+5), (i+1,j) \} : 39 blocks
\{(i,j), (i+1,j+4), (i+2,j+4), [0,i] \} : 39 blocks
\{(i,j), (i+1,j+2), (i+2,j+7), [1,i] \} : 39 blocks
\{(0,j), (1,j), (2,j), \times \} : 13 blocks.

(vii) The Case $x = 58$.

Let $X = (Z_3 \times Z_{17}) \cup (I_2 \times Z_3) \cup \{x\}$, and take the following blocks:

\{
(i,j), (i,j+1), (i,j+4), (i+1,j+5) \}
\{(i,j), (i,j+2), (i,j+8), (i+1,j+11) \}
\{(i,j), (i,j+5), (i+1,j+2), (i+1,j+12) \}
\{(i,j), (i+1,j+8), (i+2,j+7), [0,i] \}
\{(i,j), (i+1,j+6), (i+2,j+4), [1,i] \}
\{(0,j), (1,j), (2,j), \times \}.

(viii) The Cases 70 and 79.

In [7] Mills showed that $70 \in \mathbb{B}\{4, 22^*\}$ and $79 \in \mathbb{B}\{4, 13^*, 22^*\}$. Since $13 \in \mathbb{B}\{4\}$ and $22 \in \mathbb{B}\{47^*\}$ it immediately follows that $\{70, 79\} \subset \mathbb{B}\{47^*\}$.

(ix) The Cases 106 and 154.

\textbf{Lemma 5.} If $t \in \mathbb{B}\{4, 5, 8, 9, 12, k^*\}$ and $3k+1 \in \mathbb{B}\{4, 7^*\}$ then $3t + 1 \in \mathbb{B}\{4, 7^*\}$. In particular this applies for $k = 7$ or 11.

\textbf{Proof.} Let \mathcal{B} be a design on a set I_t with all block sizes congruent 0 or 1 \textup{(mod 4)} but with one block of size 7 or 11. We can get a $\mathcal{B}\{(4, 7^*), 1; 3t+1\}$ on the set $I_t \times I_3 \cup \{x\}$ by taking for each block $B \in \mathcal{B}$ with $|B| \equiv 0$ or 1
(mod 4) a design \(B(\{4\}, 1; 3|B|+1) \) on the set \(B \times I_3 \cup \{x\} \), taking care that it contains the blocks \(\{b\} \times I_3 \cup \{x\} \) for each \(b \in B \); if \(B_0 \) is the block with \(|B_0| \neq 0 \) or 1 (mod 4) then throw away all blocks \(\{b\} \times I_3 \cup \{x\} \) for \(b \in B_0 \), and add the block \(B_0 \times I_3 \cup \{x\} \). We now have a \(B(\{4, (3|B_0|+1)*\}, 1; 3t+1) \).
Since \(\{22,34\} \subseteq B(\{4,7\}^*) \) this proves the lemma. \(\square \).

Now for \(x = 106 = 3.35 + 1 \) we take a resolvable \(B(\{4\}, 1; 28) \) and partially complete it with 7 points. (This is possible since it has \((28-1)/3 = 9 \) parallel classes.) This yields a \(B(\{4,5,7\}^*, 1; 35) \) and we may apply the lemma. Likewise for \(X = 154 = 3.51 + 1 \) we take a resolvable \(B(\{4\}, 1; 40) \) and partially complete it with 11 points which yields a \(B(\{4,5,11\}^*, 1; 51) \) and we are through.

This completes the proof of our theorem.

REFERENCES

[1] Brouwer, A.E. & A. Schrijver, A group-divisible design G\(D(4,1,2;n) \) exists iff \(n \equiv 2 \) (mod 6), \(n \neq 8 \) (or: the packing of cocktail party graphs with \(K_4 \)')s, Math. Centr. report ZW 64 (1976).

