A.E. Brouwer

Optimal packings of K_4's into a K_n -

The case $n \equiv 5 \pmod{6}$
Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-profit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O.), by the Municipality of Amsterdam, by the University of Amsterdam, by the Free University at Amsterdam, and by industries.

AMS(MOS) subject classification scheme (1970): 05B30, 05B40
Optimal packings of K_4's into a K_n - The case $n \equiv 5 \pmod{6}$

by

A.E. Brouwer

ABSTRACT

In this paper we construct a pairwise group divisible design $GD(4,1,\{2,5\};n)$ (i.e. a design with blocks of size 4, groups of size 2 or 5 and exactly one group of size 5, on n points with $\lambda = 1$) for each $n \equiv 5 \pmod{6}$ except $n = 11$ or 17 (in which cases such a design does not exist). From these designs optimal packings of K_4's into a K_n are derived for $n \equiv 5 \pmod{6}$. This was the last remaining case, the cases $n \equiv 2 \pmod{6}$ and $n \not\equiv 2 \pmod{3}$ being treated in two earlier papers.

KEY WORDS & PHRASES: group divisible design, sparse design, packing, constant weight code
1. INTRODUCTION

Let I_n be a finite set of n elements. For $n \geq k \geq t$ let $D(n,k,t)$ be the largest integer b such that there exist b subsets B_1, \ldots, B_b of I_n, each of k elements, such that every t-element subset of I_n is contained in at most one of them. Our object is to determine $D(n, 4, 2)$.

This is accomplished for $n \equiv 2 \pmod{6}$ in Brouwer & Schrijver [4], for $n \not\equiv 2 \pmod{3}$ and $n \not\equiv 19 \pmod{20}$ in Brouwer [3], for $n = 17$ in Brouwer [2] and for $n \equiv 5 \pmod{6}$, $n \not\equiv 17$ in the present paper. Therefore only the value $D(19,4,2)$ remains unknown.

If we define

$$J(n,4,2) = \begin{cases} \frac{n \cdot (n-1)}{4 \cdot 3} & \text{for } n \equiv 7 \text{ or } 10 \pmod{12} \\ \frac{n \cdot (n-1)}{4 \cdot 3} & \text{otherwise,} \end{cases}$$

then we have the following theorem:

Theorem. (i) $D(n,4,2) = J(n,4,2)$ iff $n \not\in \{8,9,10,11,17,19\}$

(ii) $D(n,4,2) = J(n,4,2) - 2$ for $n \in \{8,11\}$

(iii) $D(n,4,2) = J(n,4,2) - 1$ for $n \in \{9,10,17\}$

(iv) $J(19,4,2) = 27$, $D(19,4,2) \in \{25,26\}$.

2. OPTIMAL PACKINGS

Taking $n \equiv 5 \pmod{6}$ we find $J(n,4,2) = \frac{n \cdot (n-1)}{4 \cdot 3} = \frac{1}{12}(n(n-2)-3)$. Since we always have $D(n,4,2) \leq J(n,4,2)$ [this is the Johnson bound, see e.g. Johnson [6]], an optimal packing of K_4's into a K_n must leave at least

$$\binom{n}{2} - 6 \cdot J(n,4,2) = \frac{n+3}{2}$$

edges uncovered. In the graph formed by the uncovered edges each vertex has valency $\equiv 1 \pmod{3}$, hence in the case that $D(n,4,2) = J(n,4,2)$ this graph must look like

```
  I   I   ...   I   X
```
(i.e. (n-5)/2 disjoint edges and a star on 5 vertices).

For \(n = 11 \) this is impossible, and it is easily checked that essentially
the only way to pack 6 fourtuples into \(K_{11} \) is given by the incidence matrix

\[
\begin{align*}
11110000_00 \\
1000110000 \\
1000001110 \\
0100100100 \\
0010010010 \\
00010010011.
\end{align*}
\]

For \(n = 17 \) this is impossible too, but it requires much work to prove
this (see [1]). For all other \(n \) (with \(n \equiv 5 \pmod{6} \)) we can construct a
\(GD(4,1,\{2,5^*\};11) \), that is, a group divisible design on \(n \) points with blocks
of size 4 and one group of size 5, all other groups being of size 2. But
this means that the blocks form a packing such that the uncovered edges form
\((n-5)/2 \) \(K_2 \)'s and one \(K_5 \); removing one \(K_4 \) from the \(K_5 \) leaves the star on 5
vertices just as desired.

Therefore in order to obtain an optimal packing it is sufficient to
prove:

Theorem. A \(GD(4,1,\{2,5^*\};n) \) exists iff \(n \equiv 5 \pmod{6} \), \(n \neq 11,17 \).

Proof. Considering the partition into groups we see that \(n \equiv 5 \pmod{2} \), and
considering the valency of a fixed point that \(r - 1 \equiv 1 \pmod{3} \). This to-
gether with the remarks above proves the 'only if' part. The next section
is devoted to the 'if' part.

3. THE CLASS \(GD(4,1,\{2,5^*\}) \).

Let \(GD(4,1,\{2,5^*\}) \) be the class of all \(n \) for which an \(GD(4,1,\{2,5^*\};n) \)
exists, and likewise for other designs. Let \(V = \{m \mid 6m + 5 \in GD(4,1,\{2,5^*\}) \} \).
Undefined notations, especially for various types of designs, can be found
in HANANI [5] or WILSON [8].
(i) The truncated transversal design.

Lemma 1. [Truncated Transversal] If \(h \in V \), \(h < t \) and \(2t \in T(5,1) \) then \(4t + h \in V \).

Proof. Removing \(2t - (2h+1) \) points from a group of a \(T(5,1;2t) \) transversal design, we obtain a \(GD\{4,5\},1,\{2t,(2h+1)^*\}\); \(8t+2h+1 \) on some set \(X \). Now construct a \(GD\{4,1,\{2,5^*\};24t+6h+5\} \) on \((X \times I_3) \cup I_2 \) as follows:

- construct a \(GD\{4,1,3;3|B|\} \) on the set \(B \times I_3 \) for each block \(B \) of the original design, taking care that it has groups \(\{b\} \times I_3 \) \((b \in B)\), and take its blocks.

- construct a \(GD\{4,1,2;6t+2\} \) on the set \(\{G \times I_3\} \cup I_2 \) for each group \(G \) of the original design with \(|G| = 2t \), taking care that \(I_2 \) is one of its groups, and take all of its blocks and groups except \(I_2 \).

[Note that \(6t + 2 \in GD\{4,1,2\} \iff t \neq 1 \) (see [4]).]

- finally construct a \(GD\{4,1,\{2,5^*\}\} \) on the set \((H \times I_3) \cup I_2 \), where \(H \) is the group of size \(2h + 1 \), and take all of its blocks and groups. \(\square \)

Since \(2t \in T(5,1) \) for \(t \geq 22 \) (see HANANI [5]) and \(\{0,3,4,5,6\} \subset V \) as we shall see below, this shows that it suffices to prove \(m \in V \) for \(m \leq 90 \), \(m \neq 1,2 \).

But also \(2t \in T(5,1) \) for \(t \) even; hence we can do more:

<table>
<thead>
<tr>
<th>(h)</th>
<th>(t)</th>
<th>(4t+h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2+2s</td>
<td>8+8s</td>
</tr>
<tr>
<td>3</td>
<td>4+2s</td>
<td>19+8s</td>
</tr>
<tr>
<td>4</td>
<td>6+2s</td>
<td>28+8s</td>
</tr>
<tr>
<td>5</td>
<td>6+2s</td>
<td>29+8s</td>
</tr>
<tr>
<td>6</td>
<td>8+2s</td>
<td>38+8s</td>
</tr>
<tr>
<td>7</td>
<td>8+2s</td>
<td>39+8s</td>
</tr>
<tr>
<td>9</td>
<td>10+2s</td>
<td>49+8s</td>
</tr>
<tr>
<td>10</td>
<td>12+2s</td>
<td>58+8s</td>
</tr>
</tbody>
</table>

In particular from \(\{0,3,4,5,6,7,9,10\} \subset V \) it follows that \(m \in V \) for \(m > 50 \).
(ii) The case \(n \equiv 5 \pmod{24} \).

Lemma 2. Let \(t \neq 1 \). Then \(24t + 5 \in GD(4, 1, (2, 5^*)) \).

Proof. Let \(X = (I_{6t+1} \times I_4) \cup \{\infty\} \). Construct a transversal design \(T(4, 1; 6t+1) \) on the set \(X \setminus \{\infty\} \) with groups \(I_{6t+1} \times \{i\}, i \in I_4^*, \) and among the blocks \(\{a\} \times I_4 \) for some \(a \in I_{6t+1} \). Construct for each \(i \in I_4 \) a group divisible design \(GD(4, 1, 2; 6t+2) \) on the set \(I_{6t+1} \times \{i\} \cup \{\infty\} \) such that \(\{(a, i), \infty\} \) is one of its groups. Finally replace the groups \(\{(a, i), \infty\} \) and the block \(\{a\} \times I_4 \) by the group \(\{(a)\times I_4 \cup \{\infty\} \). This yields the required design. \(\Box \)

Lemma 3. \(29 \in GD(4, 1, (2, 5^*)) \).

Proof. Let \(X = (Z_3 \times Z_8) \cup \{\infty_1, \infty_2, \infty_3, \infty_4, \infty_5\} \).

Take the groups \(\{(0, 0), (0, 4)\} \mod(3, 8)/2 \) and \(\{\infty_1, \infty_2, \infty_3, \infty_4, \infty_5\} \),

and the blocks

\[
\begin{align*}
&\{(0,1), (0,3), (0,4), (1,0)\} \\
&\{(1,1), (1,3), (1,4), (2,7)\} \\
&\{(0,0), (2,0), (2,2), (2,7)\} \\
&\{\infty_1, (0,0), (1,0), (2,1)\} \\
&\{\infty_2, (0,0), (1,1), (2,6)\} \\
&\{\infty_3, (0,0), (1,2), (2,4)\} \\
&\{\infty_4, (0,0), (1,3), (2,3)\} \\
&\{\infty_5, (0,0), (1,6), (2,5)\}, \text{ all mod } (-, 8).
\end{align*}
\]

[Here \(\{(0,0), (0,4)\} \mod(3, 8)/2 \) means that adding all elements of \(\mathbb{Z}_3 \times \mathbb{Z}_8 \) to the set \(\{(0,0), (0,4)\} \) yields the set of groups twice; it is equivalent with \(\{(i, j), (i, j+4)\}, i \in \mathbb{Z}_3, j = 0, 1, 2, 3. \) We shall need this notation below.] \(\Box \)

This settles the case \(n \equiv 5 \pmod{24} \). In other words: \(\forall m: 4m \in V. \)

(iii) Nearly Kirkman Triple systems.

BAKER & WILSON [1] proved that for \(n \notin \{1, 2, 14, 17, 29\} \) there exists a NKTS \((6n)\) in the notation of KOTZIG & ROSA [7], that is, a resolvable group divisible design \(RGD(3, 1, 2; 6n) \) in our notation. Completing this design (i.e. adding a point at infinity for each parallel class of
blocks, and the line at infinity as a group) we get a
\(\text{GD}(4,1,(2,(3n-1)^\ast);9n-1) \). Now it follows that if \(3n - 1 \in \text{GD}(4,1,(2,5^\ast)) \)
then \(9n - 1 \in \text{GD}(4,1,(2,5^\ast)) \), provided \(n \notin \{1,2,14,17,29\} \).

Assuming (say by inductive hypothesis) that all smaller designs
have been constructed this yields \(18m - 1 \in \text{GD}(4,1,(2,5^\ast)) \) for \(m \geq 4, m \neq 7 \). But \(18 \cdot 7 - 1 = 5.24 + 5 \) has been treated in (ii).

Hence:

Lemma 4. Let \(m \geq 4 \). Then \(3m - 1 \in \Gamma \). □

(iv) Multiplying by 5.

Lemma 5. \(t \in \Gamma \setminus \{1,3\} \Rightarrow 5t \in \Gamma \).

Proof. Let \(X = (I_2t \times I_{15}) \cup I_5 \) using a \(\text{GD}(4,1,3;15) \) on \(I_{15} \), take for
each of its blocks \(B \) the blocks of a \(T(4,1;2t) \) on \(I_{2t} \times B \) and for each
of its groups \(G \) the blocks and groups of a \(\text{GD}(4,1,(2,5^\ast);6t+5) \) on
\((I_2t \times G) \cup I_5 \) which has \(I_5 \) as one of its groups. □

(v) Multiplying by 7.

Lemma 6. \(t \in \Gamma \setminus \{2\} \Rightarrow 7t \in \Gamma \).

Proof. Let \(X = (I_3t \times I_{14}) \cup I_5 \) using a \(\text{GD}(4,1,2;14) \) on \(I_{14} \), take for
each of its groups \(G \) the blocks of a \(\text{GD}(4,1,(2,5^\ast);6t+5) \) on
\((I_3t \times G) \cup I_5 \) which has \(I_5 \) as one of its groups. □

(vi) Another way of multiplying by 7.

Lemma 7. \(t \in \Gamma \Rightarrow 7t + 5 \in \Gamma \).

Proof. Let \(X = I_7 \times I_{6t+5} \). Using a \(\text{GD}(4,1,(2,5^\ast);6t+5) \) on \(I_{6t+5} \), take
for each of its blocks \(B \) the blocks of a \(T(4,1;7) \) on \(I_7 \times B \), for each
of its groups \(G \) with \(|G| = 2 \) the blocks and groups of a \(\text{GD}(4,1,2;14) \)
on \(I_7 \times G \), and for the group \(H \) with \(|H| = 5 \) the blocks and groups of
a \(\text{GD}(4,1,(2,5^\ast);35) \) on \(I_7 \times H \). The existence of the latter design
(i.e. \(5 \in \Gamma \)) is seen by the following construction:

Let \(X = (I_6 \times Z_5) \cup \{\infty,2,3,\infty,4,\infty\} \).
Take the groups \{(0,0),(1,0)\} mod (-,5)
\{(2,0),(3,0)\} mod (-,5)
\{(4,0),(5,0)\} mod (-,5)
and \{\infty_1^1, \infty_2^2, \infty_3^3, \infty_4^4, \infty_5^5\}.

Take the blocks
\{(0,0),(0,1),(2,0),(2,2)\},
\{(0,0),(0,2),(3,0),(3,4)\},
\{(1,0),(1,2),(2,1),(2,2)\},
\{(1,0),(1,1),(3,0),(4,0)\},
\{(1,4),(3,0),(3,2),(4,1)\},
\{(0,0),(3,0),(5,0),(5,2)\},
\{(1,0),(2,3),(5,2),(5,3)\},
\{(0,0),(4,3),(4,4),(5,1)\},
\{(2,0),(4,0),(4,2),(5,1)\},
\{\infty_1, (0,0),(2,3),(4,1)\},
\{\infty_1, (1,3),(3,0),(5,3)\},
\{\infty_2, (0,0),(1,1),(4,2)\},
\{\infty_2, (2,0),(3,1),(5,2)\},
\{\infty_3, (0,0),(1,2),(4,0)\},
\{\infty_3, (2,0),(3,4),(5,3)\},
\{\infty_4, (0,0),(1,3),(5,4)\},
\{\infty_4, (2,0),(3,3),(4,1)\},
\{\infty_5, (0,0),(1,4),(5,3)\},
\{\infty_5, (2,0),(3,2),(4,4)\},
all mod (-,5).

This yields the required design. □

(vii) Using a GD(4,1;\{2,8^*\}).

Lemma 8. If 6t + 8 \in GD(4,1;\{2,8^*\}) and there exists a transversal design T(4,1;6t+5) with subdesign T(4,1;5) then 6(4t+3) + 5 \in GD(4,1;\{2,5^*\}), i.e. 4t + 3 \in V. In particular 15 \in V.

Proof. Let X = (I_4 \times I_{6t+5}) \cup I_3. Take the blocks of a transversal design T(4,1;6t+5) on I_4 \times I_{6t+5} except those of the subdesign say on I_4 \times A, where |A| = 5. For each i \in I_4 take the groups of size 2 and all the blocks of a GD(4,1;\{2,8^*\};6t+8) on \{i\} \times I_{6t+5} \cup I_3 which has
\((i) \times A \cup I_3 \) as its group of size 8.

Finally construct a \(GD(4,1\{2,5^*\};23) \) on \((I_4 \times A) \cup I_3 \).

[The existence of this design was shown in [4] (v.i.).]

Concerning the 'in particular': let \(t = 3 \), then
\[
6t + 8 = 26 \in GD(4,1\{2,8^*\})
\]
as we saw under (iii). The required transversal design was constructed in [4] (v.ii).

(viii) The case \(n \equiv 17 \pmod{24} \)

(a) \(GD(4,1,2;20) \) with four pairwise disjoint blocks.

I do not know of any \(GD(4,1,2;20) \) with a parallel class, i.e.
five pairwise disjoint blocks, but the one constructed in [4] (i)
has the four disjoint blocks \(\{00,01,12,14\}, \{02,04,20,21\}, \{03,13,34,32\}, \{10,11,23,33\} \) (where \(ij \) is written instead of \((i,j) \)).

(b) A certain transversal design.

If we take a resolvable design \(RB(4,1;12r+4) \), add one point at
infinity to some parallel class and remove some other point, we
get a \(GD(\{4,5\},1\{(3,4^*)\};12r+4) \) such that each block of size 5
intersects the group of size 4. By the usual construction (using
a RT(4,1;|B|) on \(B \times I_4 \) for each block \(B \), and a T(4,1;|G|) on
\(G \times I_4 \) for each group \(G \), see e.g. HANANI [5] thm 3.2) we get a
T(4,1;12r+4). This transversal design has the following properties:

(a) If \(H \) was the unique group of size 4 of the group divisible
design, then this transversal design contains the block \(\{h\} \times I_4 \) iff \(h \in H \).

(b) If \(A \) is some fixed group of size 5 of the group divisible
design, and \(A \cap H = \{a\} \) then the blocks of the
transversal design entirely contained within \(A \times I_4 \) form
together with the four blocks \(\{b\} \times I_4, b \in A \setminus H \), a
T(4,1;5).

(c) The construction.

Let \(X = (I_{12r+4} \times I_4) \cup \{\infty\} \). We construct a \(GD(4,1\{2,5^*\};48r+17) \) on
\(X \) as follows:

Take the blocks of the transversal design on \(I_{12r+4} \times I_4 \) con-
structured above except those contained in $A \times I_4$ and the block
$(c) \times I_4$, where c is some fixed point in $H \setminus A$. Take the blocks and
groups of a $GD(4,1,2;20)$ on $A \times I_4$ constructed in such a way that
it has $(b) \times I_4$, $b \in A \setminus \{a\}$, among its blocks, except for the four
blocks mentioned. Take for each $i \in I_4$ the blocks and groups of a
$GD(4,1,\{2,5^*\};12r+5)$ on $\mathbb{I}_{12r+4} \setminus \{i\} \cup \{\infty\}$ constructed in such a
way that it has $A \times \{i\}$ and $(\{c,i\}, \infty)$ among its groups, except
for the two groups mentioned. Finally add $(c) \times I_4 \cup \{\infty\}$ as a
group. This proves that if $2r \in V$ and $r \neq 0$ then $8r + 2 \in V$. The
construction under c works as well if we change $12r + 5$ into
$6r + 5$, so all we have to do is constructing a suitable transversal design $T(4,1;12r+10)$. But (partially) completing a
$RB(4,1;12r+4)$ with 7 points at infinity (which is possible as
soon as $4r+1 \geq 7$, i.e. $r \geq 2$) and removing some other point, we
get a $GD(\{4,5,7^*\}, 1, \{3,4\}; 12r+10)$. The $T(4,1;12r+10)$ based on this group divisible design has the
properties:

(a) it contains the block $(b) \times I_4$ iff $b \in G$ for some group $G
$ of size 4.

(b) If A is some fixed group of size 5, then the blocks of the
transversal design contained entirely within $A \times I_4$ form
together with at most four blocks of the type $(a) \times I_4$ a
$T(4,1;5)$ on $A \times I_4$.

This time, while carrying out the construction, we have to dis-
card at most four disjoint blocks from the $GD(4,1,2;20)$. Hence

Lemma 9. $t \in V \setminus \{0,1,3\} \Rightarrow 4t + 2 \in V$. □

Assuming that all smaller designs have been constructed already, this
yields all $n \equiv 17 \pmod{24}$ except 17, 41, 65, 89. The design on 17
points does not exist, 89 follows from (iii), and 41 and 65 are given
below.

Lemma 10. $41 \in GD(4,1,\{2,5^*\})$.

Proof. Let $X = (I_3 \times \mathbb{Z}_{12}) \cup \{\infty, 1, 2, 3, 4, 5\}$.

Take the groups $\{(i,0),(i,6)\} \mod (-12)/2$ ($i \in I_3$) and
$\{\infty, 1, 2, 3, 4, 5\}$.

Take the blocks
\[
\{(0,0),(0,1),(1,0),(1,2)\},
\{(1,0),(1,1),(2,0),(2,2)\},
\{(0,0),(0,4),(0,7),(1,10)\},
\{(1,0),(1,3),(1,7),(2,10)\},
\{(0,0),(0,2),(2,0),(2,5)\},
\{(0,0),(2,4),(2,7),(2,8)\},
\{\infty_1,(0,0),(1,4),(2,9)\},
\{\infty_2,(0,0),(1,5),(2,1)\},
\{\infty_3,(0,0),(1,7),(2,11)\},
\{\infty_4,(0,0),(1,8),(2,2)\},
\{\infty_5,(0,0),(1,9),(2,6)\}
\]
all mod \((-12)\).

Lemma 11. \(65 \in \text{GD}(4,1,[2,5^*])\).

Proof. \([\text{PDP11}]\) Let \(X = \mathbb{Z}_3 \times \mathbb{Z}_2 \cup \{\infty_1,\infty_2,\infty_3,\infty_4,\infty_5\}\).

Take the groups \(\{(0,0),(0,10)\}\) mod \((3,20)/2\)

and \(\{\infty_1,\infty_2,\infty_3,\infty_4,\infty_5\}\).

Take the blocks \(\{(0,0),(0,1),(0,6),(0,9)\}\),
\(\{(0,12),(0,8),(1,5),(2,0)\}\),
\(\{(0,14),(0,7),(1,10),(2,0)\}\),
\(\{(0,4),(0,6),(1,15),(2,0)\}\) all mod \((3,20)\),

and
\(\{(\infty_1,(0,0),(1,0),(2,16)\}\),
\(\{(\infty_2,(0,0),(1,19),(2,19)\}\),
\(\{(\infty_3,(0,0),(1,18),(2,0)\}\),
\(\{(\infty_4,(0,0),(1,1),(2,2)\}\),
\(\{(\infty_5,(0,0),(1,2),(2,1)\}\), all mod \((-20)\).

Note that this method is generally applicable in the case \(n \equiv 5 \pmod{12}\): \(X = \mathbb{Z}_3 \times \mathbb{Z}_{4t}\) \(\cup I_5\) and the blocks not intersecting \(I_5\) are invariant under \(\mathbb{Z}_3 \times \mathbb{Z}_{4t}\) while the others, though invariant only under \(\mathbb{Z}_{4t}\), cover a collection of edges which is invariant under \(\mathbb{Z}_3 \times \mathbb{Z}_{4t}\).

[In fact, using a similar solution for \(n = 89\) (also found by PDP11), the case \(n \equiv 5 \pmod{12}\) can be solved completely without recourse to nearly Kirkman Triple systems.]
(ix) The remaining four cases.

In (ii) and (viii) we proved \(t \in V \) for \(t \equiv 0 \pmod{2} \), \(t \neq 2 \).

If \(t \equiv 1 \pmod{8} \) then in (i), using \(h = 9 \), we saw \(t \in V \) for \(t \geq 49 \);

\(t = 9 \) has to be done explicitly,

\(t = 17 \) follows from (iii).

\(t = 25 \) follows from (iv),

\(t = 33 \) follows from (vi),

and \(t = 41 \) follows from (iii).

If \(t \equiv 3 \pmod{8} \) then in (i), using \(h = 3 \), we saw \(t \in V \) for \(t \geq 19 \);

\(t = 3 \) has been done in [4],

and \(t = 11 \) follows from (iii).

If \(t \equiv 5 \pmod{8} \) then in (i), using \(h = 5 \), we saw \(t \in V \) for \(t \geq 29 \);

\(t = 5 \) has been done in (vi),

\(t = 13 \) has to be done explicitly,

and \(t = 21 \) follows from (v).

If \(t \equiv 7 \pmod{8} \) then in (i), using \(h = 7 \), we saw \(t \in V \) for \(t \geq 39 \);

\(t = 7 \) has to be done explicitly,

\(t = 15 \) follows from (vii),

\(t = 23 \) follows from (iii),

and \(t = 31 \) has to be done explicitly.

This leaves \(t \in \{7, 9, 13, 31\} \), i.e. \(6t + 5 \in \{47, 59, 83, 191\} \).

Lemma 12. \(47 \in GD(4, 1, \{2, 5^*\}) \).

Proof. Let \(X = I_6 \times Z_7 \) and construct a GD(\{3, 4\}, 1, 2; 42) on \(X \) such that the triples form 5 \(\Delta \)-factors (parallel classes). Completion of this design will then yield the required design on 47 points.

Take the groups \(\{(i,0),(i+3,0)\} \mod (-7), i = 0, 1, 2 \), the \(\Delta \)-factors

1. \(\{(0,0),(1,5),(5,3)\}, \{(2,0),(3,2),(4,6)\} \mod (-7) \)
2. \(\{(0,0),(2,4),(4,2)\}, \{(1,0),(3,5),(5,1)\} \mod (-7) \)
3. \(\{(0,0),(3,4),(5,1)\}, \{(1,0),(2,1),(4,4)\} \mod (-7) \)
4. \(\{(0,0),(4,1),(5,5)\}, \{(1,0),(2,2),(3,1)\} \mod (-7) \)
5. \(\{(0,0),(4,4),(5,4)\}, \{(1,0),(2,3),(3,6)\} \mod (-7) \)

and the quadruples

\(\{(0,0),(0,1),(1,0),(1,2)\}, \{(0,0),(0,2),(2,0),(2,1)\}, \)

\(\{(0,0),(0,3),(3,1),(3,2)\}, \{(0,0),(1,3),(1,4),(2,2)\}, \)

\(\{(1,0),(1,3),(2,0),(4,1)\}, \{(2,0),(2,2),(3,0),(5,1)\}, \)
\{(2,0),(2,3),(4,0),(5,5)\}, \{(1,0),(3,0),(5,0)\},
\{(2,0),(3,1),(3,4),(4,2)\}, \{(0,0),(3,3),(4,5)\},
\{(0,0),(4,6),(5,2)\}, \{(1,0),(3,3),(4,2)\},
\{(0,0),(2,3),(5,6)\}, \{(1,0),(3,4),(5,6)\}
\{(1,0),(4,3),(5,2),(5,4)\}
all mod (-,7).

Lemma 13. 59 \(\in\) GD(4,1,\{2,5^*\}).

Proof. Let \(X = Z_2 \times (Z_3)^3\) and construct a GD(\{3,4\},1,2;54) on X such that the triples form 5 \(\Delta\)-factors.

Take the groups \((0,0,0,0),(1,0,0,0)\) mod (-,3,3,3) and the \(\Delta\)-factors
1. \{(1,0,0,0),(1,2,1,0),(1,2,0)\} mod (-,3,3,3)/3
 \{(0,1,2,0),(0,0,0,1),(0,2,1,2)\} mod (-,3,3,3)/3
2. \{(0,0,0,0),(0,1,1,1),(0,2,2,2)\} mod (2,3,3,3)/3
3-5.\{(0,0,0,0),(1,0,1,0),(0,1,2,1)\} mod (2,3,-3) mod (-,-3,-)
and the quadruples
 \{(0,0,0,0),(2,1,0),(1,0,0,1),(1,2,1,2)\} mod (-,3,3,3)
and
\{(0,1,0,0),(1,2,1,0),(0,0,0,2),(0,2,0,2)\},
\{(0,0,0,0),(1,2,1,0),(0,0,1,2),(0,0,2,2)\},
\{(0,1,1,0),(1,2,1,0),(0,1,1,2),(0,2,2,2)\}, all mod (2,3,3,3).

Lemma 14. 83 \(\in\) GD(4,1,\{2,5^*\}).

Proof. We shall construct a GD(\{3,4\},1,2;60) where the triples form 23 \(\Delta\)-factors.

(a) Four partitions of \(Z_{20}\) each consisting of 5 triples and 5 singletons, such that the triples form the twenty shifts of \{0,3,12\}, and each point occurs once as a singleton:
1. \{0,3,12\}, \{1,4,13\}, \{2,5,14\}, \{6,9,18\}, \{7,10,19\}, \{8\}, \{11\}, \{15\}, \{16\}, \{17\}.
2. \{3,6,15\}, \{4,7,16\}, \{5,8,17\}, \{18,1,10\}, \{19,2,11\}, \{0\}, \{9\}, \{12\}, \{13\}, \{14\}.
3. \{8,11,0\}, \{9,12,1\}, \{13,16,5\}, \{14,17,6\}, \{15,18,7\}, \{2\}, \{3\}, \{4\}, \{10\}, \{19\}.
4. \{10,13,2\}, \{11,14,3\}, \{12,15,4\}, \{16,19,8\}, \{17,0,9\}, \{1\}, \{5\}, \{6\}, \{7\}, \{18\}.

(b) The construction.
Let \(X = I_3 \times Z_{20}\). Take the blocks of a RT(3,1;20) and furthermore on each set \(\{i\} \times Z_{20}\) the blocks \{0,3,12\} and \{0,1,5,7\} (mod 20)
and the groups \(\{0,10\} \mod 20\)/2. This yields a \(\text{GD}(\{3,4\},1,2;60) \). We may suppose that one of the parallel classes of the resolvable transversal design was \(\{I_3 \times \{j\} \mid j \in \mathbb{Z}^*_{20}\} \), and by (a) we may partition the union of this parallel class and all 'horizontal' triples into 4 parallel classes. Together with the remaining 19 parallel classes of the transversal design this shows that all triples can be partitioned into 23 \(\Delta \)-factors. \(\Box \)

Lemma 15. \(191 \in \text{GD}(4,1;\{2,5^*\}) \).

Proof. We shall construct a \(\text{GD}(\{3,4\},1,2;132) \) where the triples form 59 \(\Delta \)-factors.

(a) A \(44 \times 44 \) latin square with 5 increasing diagonals.

A transversal of a latin square is called an increasing diagonal if it is parallel to the main diagonal, and each entry is one more than the one immediately left-above it (here rows, columns and entries are thought of as elements of the cyclic group \(\mathbb{Z}_n \)).

For instance 021 and 02413 are latin squares where all (3 resp.5) diagonals

\[
\begin{align*}
210 & \quad 41302 \\
102 & \quad 30241 \\
\quad & \quad 24130 \\
\quad & \quad 13024
\end{align*}
\]

are increasing. For even orders such latin squares do not exist. However, 0231 has one increasing diagonal.

3102

1320

2013

Forming the direct product with an \(11 \times 11 \) LS with 11 increasing diagonals yields a \(44 \times 44 \) LS with 11 increasing diagonals. (The symbols here are \((0,0),(0,1),(0,2),(0,3),(1,0),\ldots,(10,3) \) in this sequence.)

Even more is true: 0231 and 0213 are mutually orthogonal, showing that there

\[
\begin{align*}
3102 & \quad 2031 \\
1320 & \quad 1302 \\
2013 & \quad 3120
\end{align*}
\]

is a RT (3,1;4) with 1 cyclic parallel class, and by taking the direct product with an \(11 \times 11 \) LS with 11 increasing diagonals (i.e. a cyclic

RT(3,1;11)) we get a RT (3,1;44) with 11 cyclic parallel classes.
(b) The construction.

Let \(X = I_3 \times Z_{44} \). Take a resolvable transversal design RT \((3,1;44)\) with 5 cyclic parallel classes on \(X \). Use 39 of its 44 parallel classes as they are, leaving 5 cyclic sets \(\{(0, a_i), (1, b_i), (2, c_i)\} \mod 44 \) \((i = 1, 2, 3, 4, 5) \) whose triples will be distributed differently over the remaining 20 \(\Delta \)-factors we still have to form. Next cover each \(\{i\} \times Z_{44} \) \((i \in I_3) \) as follows:

(a) take the matching \(\{0, 22\} \mod 44/2 \),

(b) take the quadruples \(\{0, 4, 20, 25\} \mod 44 \),

(γ) take the triples \(\{0, 12, 27\}, \{0, 8, 10\}, \{0, 3, 9\}, \{0, 7, 18\}, \{0, 1, 14\} \),

all \(\mod 44 \).

Now all we have to do is to form the remaining 20 \(\Delta \)-factors. Each cyclic set of triples within \(\{i\} \times Z_{44} \) \((i \in I_3) \) together with a cyclic set from the RT \((3,1;44)\) will yield 4 \(\Delta \)-factors. As follows:

If we have the 'horizontal' triple \(\{0, p, q\} \) and the 'vertical' one \(\{(0, u_0), (1, u_1), (2, u_2)\} \) then form one \(\Delta \)-factor by taking on \(\{i\} \times Z_{44} \):

\[\{0, p, q\} + u_i + \lambda \] \((0 \leq j \leq 10) \) where \(\lambda \) is chosen such that the 33 numbers \(0 + \lambda j, p + \lambda j, q + \lambda j \) are all different (and in particular \((\lambda, 11) = 1 \)). This leaves 11 points on each \(\{i\} \times Z_{44} \), one in each congruence class \(\mod 11 \). Since they are shifted the right amount \(u_i \) they form 11 blocks from \(\{(0, u_0), (1, u_1), (2, u_2)\} \), thus completing the first \(\Delta \)-factor.

Shifting all blocks by 11, 22, or 33 gives three more.

Remains to show that \(\lambda \) can be chosen suitably.

For \(\{0, 12, 27\} \) choose \(\lambda = 1 \),

for \(\{0, 8, 10\} \) choose \(\lambda = 3 \),

and for the other three triples choose \(\lambda = 4 \). \(\square \)

This completes the proof of our theorem.

REFERENCES

[2] Brouwer, A.E., A(17,6,4) = 20 or the nonexistence of the scarce design SD(4,1;17,21), Math Centre report ZW62, dec 1975.

[4] BROUWER, A.E. & A. SCHRIJVER, A group divisible design GD(4,1,2;n) exists iff $n \equiv 2 \pmod{6}$, $n \neq 8$ (or: the packing of cocktailparty graphs with K_4's), Math. Centre report ZW64, Mar 1976.

