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The excess of a Hadamard matrix 

by 

M.R. Best 

ABSTRACT 

Let cr(n) be the greatest possible sum of the entries of a Hadamard 

matrix of order n. We derive 

2 -n{ n) , n 2 \!n s cr(n) s nvn, 

which implies 

nlii/2 s cr(n) s m'n. 

Besides, cr(n) is evaluated for n s 20 and several other values of n. 

KEY WORDS & PHRASES: sum of the entr•ies of a Hadamard matrix. 



1. INTRODUCTION 

In [3], K.W. SCHMIDT asked for an estimate on the maximal number of 

ones in a Hadamard matrix of order n. At the international colloquium on 

combinatorial problems and graph theory held at Orsay, July 9-13, 1976, 

E.T.H. WANG repeated the question and presented some results obtained by 

Mr. Schmidt and himself. 

In this note we give sharper upper and lower bounds on the maximal 

number of ones, which enable us to calculate the maximum explicitly for 

n ~ 20 and several other values of n. 

2. DEFINITIONS AND OBSERVATIONS 

A Hadama:rid matrix of order n is an nxn - (1,-1)-matrix whose rows are 

mutually orthogonal. The set of all Hadamard matrices of order n is denoted 

by n. n 
The famous conjecture on the existence of Hadamard matrices states 

that Hadamard matrices of order n exist if and only if n = 1, n = 2 or 

n = 0 (mod 4). The necessity of the condition is certain; the sufficiency 

has only been proved for n ~ 264. The set of all integers n for which 

n # 0 is denoted by N. n 
The weight w(H) of a Hadamard matrix His defined as the number of its 

positive entries. It turns out however that it is more natural to study the 

exeess cr(H) of H, defined as the sum of all its entries. Obviously w(H) = 

= !(n2+cr(H)), where n denotes the order of H. 

For each n EN we define 

w(n) = max{w(H) 

cr(n) = max{cr(H) 

H ~ n }, n 

H ~ n }. n 

Now w(n) = }(n2+cr(n)) for each n EN. 

Obviously cr(l) = 1 and cr(2) = 2, so w(l) = 1 and w(2) = 3. Throughout 

this paper we will assume that n EN and n = 0 (mod 4). 

For each HE n we denote the entry in the i-th row and the k-th n 
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column by Hik' and the k-th column sum l~=l Hik by sk. 

Then sk _ 0 (mod 2) and it follows from the orthogonality of the col-

umns that sk - s£ (mod 4). Therefore cr(H) = l~=l sk = 0 (mod 4), and so 

cr(n) = 0 (mod 4). 

Since the Kronecker product of two Hadamard matrices is again a 

Hadamard matrix, and since it is easily checked that cr(H1®H2 ) = cr(H 1)o-(H2), 

it follows that cr (nm) 2': cr (n) cr (m) • 1) 

3. THE UPPER BOUND 

Evaluating the sum of the inner products of all ordered pairs of rows 

in a Hadamard matrix Hof order n in two ways, we obtain: 

2 n 
n n n ( n 
L L H.k H.k = I I 

i, j = I k= I 1 J k= 1 i = 1 

By the Cauchy-Schwarz inequality, we have 

l 
n ( n z\ 2 

cr(H) = I sk ~ n I sk) = 
k=l k=l 

min. 

This proves 

Theorem I • er (n) ~ n/n and w(n) ~ !n(n+/~). 

Remark. 

n 2 
L sk. 

k=l 

Often the bound can slightly be improved by taking into account that 

the numbers sk are even integers, all in the same residue class modulo 4. 

This idea will be illustrated in the evaluation of cr(l2) (cf. section 6). 

4. REGULAR HADAMARD MATRICES 

The upper bound established in Theorem I can only be achieved if n is 

l) This observation is due to SCHMIDT & WANG [41, who formulated it in 

terms of the weights. 
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a square and all column sums are equal. In this case the Hadamard matrix 

is called regular, and it yields a symmetric block design SBIBD(n, ½Cn-ln), 
1 
4 (n-2/n)) (cf. WALLIS et al. [SJ, p.280). 

Theorem 2. 

cr(n) = nln if and only if there exists a regular Hadamard matrix of 
order n. 

Proof. Follows at once from the proof of Theorem 1. 

Regular Hadamard matrices are known to exist for many square orders 

n = s 2 , e.g. ifs is the order of a Hadamard matrix. if s+l and s-1 are 

both prime powers, if BIBD(s 2-1, ½s(s-1), s+l, ½s, 1) exists, or if n is 

the product of orders of regular Hadamard matrices (cf. WALLIS et al. [SJ, 

appendix E). Hence the existence of regular Hadamard matrices of orders O, 

l,4,16,36,64,100,144,196 (BIBD(l95,91,15,7,l) exists from HANANI [2J, table 

5.20 and Lemma 2.10), 256, 324, 400 and many others is settled. 

5. THE LOWER BOUND 

n Let HE~ . Suppose that we were able to find a row x in {1,-1} such 
n 

that the inner products of x with all rows of H were all about equal to 

±In. Then we would multiply (entrywise) all rows of H with this row x, 

negate all rows with negative row sums, and obtain a Hadamard matrix with 

each row sum about equal to In, thus proving that the upper bound is almost 

sharp. 

Unfortunately, we do not know how to prove the existence of such a 

nice row x, but it turns out that just a random row does not work too badly 

on average .. This idea leads to the following lower bound. 

Remark. 

This lower bound for cr(n) is asymptotically equivalent ton~ for 
1T 

n + 00 , and is not less that nln/2 for all n. Hence it is of the same order 

of magnitude as the upper bound nln, but still considerably smaller. 
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Proof. 

Let HE Q, and let x be some row in {1,-l}n. We construct the matrix 
n 

H E Q by multiplying each row of H by x (entrywise), and then negating 
X n 

all rows with negative row sums. Now 

er (H ) = 
X I 

ZEH 
I <x, z> I . 

[Here z EH means: z is a row of H, and <x,z> denotes the inner product of 

x and z.J 

Obviously, there must be a choice x0 for x such that 

Hence 

cJ(n) 

= 2-n 

' o(H ). l n X xd 1 ,-1} 

~ 2-n , , 
l n l 

xE{l,-1} ZEH 
l<x,z>I = 

n 

I I 
ZEH i=O 

I n 
xd 1,-1} 
d(x,z)=i 

ln-2il = 

[Here d(x,z) denotes the Hannning distance between x and z.J D 

6. 0(12) AND 0(20) 

If we apply Theorem 1 and 3 to the case n = 12, we obtain 33 :5 o (12) :5 41. 

Since 0(12) = 0 (mod 4), either o(I2) = 36 or 0(12) = 40. 

But we can improve the upper bound. From the proof of Theorem I, there 

must exist even numbers 
,12 2 

such that lk=l sk = 144 

s 1, ... ,s 12 , all in the 
,12 

and lk=l sk = 0(12). 

,12 
If sk = 0 (mod 4) for all k, then lk=lsk 

same residue class modulo 4, 

attains its maximum - subject 
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to the condition I!:1 s~ = 144 - ii/k= 0 for 

for the other nine values. Hence Ik=l sk ~ 36. 

\12 

three values of k, and sk = 4 

If sk = 2 (mod 4) for all k, then lk=I sk attains its maximum if sk = 2 

for nine values of k, and sk = 6 for the other three values. Hence again 
\12 
lk=l sk ~ 36. 

This proves 

Theorem 4. cr(12) = 36 and w(l2) = 90. 

In the case n = 20, a similar argument only yields cr(20) E {72,76,80,84}. 

However, the Hadamard matrices of order 20 are explicitly known: they occur 

in only th:ree non-isomorphic variants (cf. HALL [I]). Exhaustive search by 

computer liearns that no Hadamard matrix of order 20 and excess 84 exists, 

but that excess 80 does occur, e.g. 

a 

------++++-+++++++++ 
+-+--+---+++-++++--+ 
-++-++++++++-+----++ 
++--+-+---++-+-++++­
+++--+++--+-+-+-++++ 
+-++---++-+--+-+-+++ 
+--++-+-+++---+-+-++ 
-+++----+-+++++-+-+-
-++++-+--++-++++-+-+ 
--++++++-----++++-+-
-+-+++-++-++--++++-+ 
--+-++--+++-+--++++-
+-+-+-+++-+++-++---­
++~+-++++++-++-++--­
+++-+--+++---++-++-­
++++-++-++-+--++-++­
+++++--+-+-++--++-++ 
+-+++++-+--+++--++-+ 
+--+++-+-++++++--++­
++--++--+---++++--++ 

= 80. 

(The matrix has been derived from the quadratic residues modulo 19.) 

Ihis proves 

Theorem 5. cr(20) = 80 and w(20) = 240. 

BIBUOTHEEK Mt\TH[M/,.TISCH CE:.;T, 
-AiVlSfl:HDAM--



7. NUMERICAL DATA AND A PRELIMINARY CONJECTURE 

For n ~ 20, the value of o(n) is known by now: 

o( O) = 0 

o( 1) = 

o( 2) = 2 

o( 4) = 8 

o( 8) = 20 

o(l 2) = 36 

0 ( 16) = 64 

0(20) = 80. 

'fhe above data suggest that o(n) is divisible by ½n. A formula that 

satisfies this property might be 
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