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The excess of a Hadamard matrix

by

' M.R. Best

ABSTRACT

Let g(n) be the greatest possible sum of the entries of a Hadamard

matrix of order n. We derive

n2 2_n/f1‘ < o(n) < nvn,
\in |
which implies

n/n/2 < o(n) < nvn.

Besides, o(n) is evaluated for n < 20 and several other values of n.
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1. INTRODUCTION

In [3], K.W. SCHMIDT asked for an estimate on the maximal number of
ones in a Hadamard matrix of order n. At the international colloquium on
 combinatorial problems and gréph theory held at Orsay, July 9-13, 1976,
E.T.H. WANG repeated the question and presented some results obtained by
Mr. Schmidt and himself. |

In this note we givé sharper upper and lower bounds on the maximal
number of ones, which enable us to calculate the maximum explicitly for

n < 20 and several other values of n.

2. DEFINITIONS AND OBSERVATIONS

A Hadamard matrixz of order n is an nxn — (1,-1)-matrix whose rows are
mutually orthogonal. The set of all Hadamara matrices of order n is denoted
by Qn.

The famous conjecture on the existence of Hadamard matrices states
that Hadamard matrices of order n exist if and only if n =1, n = 2 or
n = 0 (mod 4). The necessity of the condition is certain; the sufficiency
has only been proved for n < 264, The set of all integers n for which
Qn # @ is denoted by N.

The weight w(H) of a Hadamard matrix H is defined as the number of its
positive entries. It turns out however that it is more natural to study the
excess o(H) of H, defined as the sum of all its entries. Obviously w(H) =
= %(n2+c(H)), where n denotes the order of H.

For each n € N we define

w(n) = max{w(H) | H <@},

o(n) = max{o(H) | H ¢ Qn}.
Now w(n) = %(n2+c(n)) for each n ¢ N.

Obviously 6(1) = 1 and ¢(2) = 2, so w(l) = 1 and w(2) = 3, Throughout
this paper we will assume that n € N and n = 0 (mod 4).

For each H ¢ Qn we denote the entry in the i-th row and the k-th



column by Hik’ and the k-th column sumv22=l by s

H. R
ik k
0 (mod 2) and it follows from the orthogonality of the col-

= 0 (mod 4), and so

Then s

k

umns that s, = s, (mod 4). Therefore o(H) = 22=] s

o(n) = 0 (mod 4).

Since the Kromecker product of two Hadamard matrices is again a

k

Hadamard matrix, and since it is easily checked that c(Hl®H2) = U(HI)G(HZ),
it follows that o(mm) > o(n) o(m). '’

3. THE UPPER BOUND

Evaluating the sum of the inner products of all ordered pairs of rows

in a Hadamard matrix H of order n in two ways, we obtain:

9 n n,n 2 noo,
no= E Hyp By = ) (.Z Hik) = 1 s

)
i,j=1 k=1 k=1‘i=1 =1

By the Cauchy-Schwarz inequality, we have

n n i
o(H) Z Sk < (n 2 si) = n/n.

This proves

IA

n/n and w(n) < in(n+vn).

Theorem 1. o(n)

Remark. ‘
Often the bound can slightly be improved by taking into account that
the numbers s, are even integers, all in the same residue class modulo 4.

k
This idea will be illustrated in the evaluation of ¢(12) (cf. section 6).

4, REGULAR HADAMARD MATRICES

The upper bound established in Theorem | can only be achieved if n is

D This observation is due to SCHMIDT & WANG [ 4], who formulated it in

terms of the weights.



a square and all column sums are equal. In this case the Hadamard matrix
is called regular, and it yields a symmetric block design SBIBD(n, (n-vn),
7(n=2/m)) (cf. WALLIS et al. [5], p.280).

Theorem 2.

o(n) = n/n <f and only if there exists a regular Hadamard matrix of
order n.

Proof. Follows at once from the proof of Theorem 1.

Regular Hadamard matrices are known to exist for many square orders
n = sz, e.g. 1f s is the order of a Hadamard matrix. if s+l and s-1 are
both prime powers, if BIBD(SZ—I, is(s-1), s+1, is, 1) existé, or if n is
the product of orders of regular Hadamard matrices (cf. WALLIS et al. [51,
appendix E). Hence the existence of regular Hadamard matrices of orders O,
1,4,16,36,64,100,144,196 (BIBD(195,91,15,7,1) exists from HANANI [2], table
5.20 and Lemma 2.10), 256, 324, 400 and many others is settled.

5. THE LOWER BOUND

Let H ¢ Qn. Suppose that we were able to find a row x in {1,—1}n such
that the inner products of x with all rows of H were all about equal to
+v/n. Then we would multiply (entrywise) all rows of H with this row x,
negate all rows with negative row sums,; and obtain a Hadamard matrix with
each row sum about equal to./E, thus proving that the upper bound is almost
sharp.

Unfortunately, we do not know how to prove the existence of such a
nice row x, but it turns out that just a random row does not work too badly
on average. This idea leads to the following lower bound.

Theorem 3. o(n) = n2 Z_n(fl\ and w(n) = %n2(1+2—n(11\) .
— : in/ jn)
Remark.

This lower bound for o(n) is asymptotically equivalent to n/qéizfor

n > o, and is not less that n/n/2 for all n. Hence it is of the same order

of magnitude as the upper bound nvn, but still considerably smaller.



Proof.

Let H € Qn, and let x be some row in {l,—l}n. We construct the matrix
HX € Qn by multiplying each row of H by x (entrywise), and then negating
all rows with negative row sums. Now

o) = ) l<x,z>].
X
zeH

[Here z ¢ H means: z is a row of H, and <x,z> denotes the inner product of

X and z.]

Obviously, there must be a choice X, for x such that

o _)=2" J o(H.).
%0 xe{1,-1}" X

Hence

o(n) = 2‘1:1 2 n X |<x,z>| =
xe{1,-1}" zeH

n

N
zeH i=0 xe{1,-1}
d(x,z)=1i

2 % n igo |n-2i| (‘1’) - n? 2'“(;;) .

[Here d(x,z) denotes the Hamming distance between x and z.] [

6. 0(12) AND o (20)

If we apply Theorem | and 3 to the case n = 12, we obtain 33<0¢(12) <41,
Since 0(12) = 0 (mod 4), either 0(12) = 36 or o(12) = 40.

But we can improve the upper bound. From the proof of Theorem 1, there

must exist even numbers Sysc+28] 95 all in the same residue class modulo 4,
12 2 _ 12 ~
such that zk=1 Sy = 144 and Zk=1 S, = o(12).
12

If = 0 (mod 4) for all k, then Z attains its maximum - subject

Sk k=1%k



to the condition 2;31 si = 144 - if S = 0 for three values of k, and sk==4

for the other nine values. Hence 2;31 s < 36.

If s, = 2 (mod 4) for all k, then Z;zl s, attains its maximum %f sk==2

k ~ k
_ for nine values of k, and Sy = 6 for the other three values. Hence again
712 s < 36,
k=1 "k

This proves
Theorem 4. 0(12) = 36 and w(12) = 90.

In the case n = 20, a similar argument only yields o¢(20) ¢ {72,76,80,84}.
However, the Hadamard matrices of order 20 are explicitly known: they occur
in only three non-isomorphic variants (cf. HALL [1]). Exhaustive search by
computer learns that no Hadamard matrix of order 20 and excess 84 exists,

but that excess 80 does occur, e.g.

—————— R R E R
+—t——d——— bt —tt+t——+
—tt—d ettt bbb ——— =+
td-——t—t——— ==ttt +—
+t+-—t ===t —t+++
tott——— === —+++
ot =ttt —h ==+
R e e Rk Tk 2
—d ittt —— bbbt~ +
——ttttttr————— ++++—+-—
—t-dtt—tt—tt——F+++—+
ettt — b — -
+-t—t—tt+t—ttt—dtt————
tt—t—dtttttr—Ft—tt———
tHd—d—— b —— b — bt ——
bttt t—t——tt—t+—
+++tt——t—t—tt——++—++
el R it i i bt o ek
e it b ik Rt o
tt——tt——t——— bt t——t+

80.

Q
]

(The matrix has been derived from the quadratic residues modulo 19.)

This proves

Theorem 5. 0(20) = 80 and w(20) = 240.

BIBLIOTHEEK MATHEMATISCH CENTWUL,
e AASTERDAM




7. NUMERICAL DATA AND A PRELIMINARY CONJECTURE

For n < 20, the value of o(n) is known by now:

c(0)= 0
o( 1) = 1
o( 2) = 2
o( 4) = 8
o( 8) = 20
o(12) = 36
o(16) = 64
g(20) = 80.

The above data suggest that o(n) is divisible by jn. A formula that

satisfies this property might be

{4nl2/n] if n = 0 (mod 8)
g(n) =

n[vn] otherwise.
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