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On a sum associated with the Farey series. 

by 

C.L. Stewart 

ABSTRACT 

The purpose of this note is to estimate 

N 
S(N) = _L 

l.= I 
q. 

l. 

where q. denotes the smallest denominator possessed by a rational fraction 
i. • I • 

which lies in the interval ( 1;, ~]. We prove that the estimates 

1.20 N)/Z < S(N) < 2.33 N)/Z 

are valid for N sufficiently large. 

KEY WORDS & PHRASES: Farey series. 



I . INTRO DUCT ION . 

The Farey sen.es FN of order N is the sequence of fractions h/k with 

(h,k) = I and I::; h::; k::; N arranged in increasing order between O and I. 

There are cp(k) fractions with denominator kin FN and thus the number of 

terms in FN is 

(I) R(N) = cp(I) + cp(2) + ••• + cp(N) = _l_ N2 + O(NlogN) 
2 

TT 

(see Theorem 330 of [2]). The purpose of this note is to estimate 

N 
S(N) = l 

i= I 
q. 

i 

where q. denotes the smallest denominator possessed by a fraction from FN 
. ~ . . i-1. i 

which lies 1.n the interval (N, NJ. 
We first observe that 

(2) S:(N) ;::: 3
2~ N312 + O(NlogN) 

for there can be at most cp(k) q. 's of size kin S(N) and thus 
i 

(3) 
t 

S(N) ;::: l k cp(k) 
k=l 

2TT 
for all t such that cp(l) + cp(2) + ••• + cp(t) ::; N. (Note that 313 is about 

I. 21 . ) On choosing t maximally we have by (I), 

(4) 

Furthermore 

TT ! 
t = - N2 + 0 (log N). 

13 

t t 
l k cp(k) = t l 

k= I k= 1 

t-1 
cj) (k) - ( l 

k=l 

t-2 
cp (k) + l cp (k) + • • • + cp ( I)) 

k=I 
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and thus, again by (I) , this 

(5) = ~ t 3 + O(t2log t). 
7T 

And (2) now follows on combining (3), (4) and (5). A.E. Brouwer and J. van 

de Lune checked by means of a computer the value of S(N)/N312 for a number 

of integers in the range 1,000 to 2500 and they found in all cases that 

S(N)/N312 was less than 1.64 and larger than 1.58. 

We shall prove 

THEOREM. For• N sufficiently large 

S(N) < 2.33 N312 . 

We remark that we would expect the theorem to hold for all positive 

integers N. We in fact establish a result of the form 

S(N) ~ 2.328 N312 + O(N71\og N) 

where the constant implicit in the O term is computable and thus the valid­

ity of the theorem for all integers N can be determined, in principle, by 

a finite amount of computation. We also observe that with some additional 

work our argument would doubtless yield a somewhat more precise estimate 

for the constant which precedes the main term in our estimate. Our proof 

of the above theorem depends upon two results of R.R. Hall concerning the 

distribution and the second moments of gaps in the Farey series. 

The problem of obtaining appropriate estimates for the size of S(N) 

arose in connection with a problem of D. Kruyswijk and C. Schaap in com­

binatorial group theory. Independently of the author, D. Kruyswijk and 

H.G. Meijer have obtained a result of the form S(N) = O(N312) and their 

argument, which is apparently entirely different from that given here, will 

be submitted for publication shortly. Lastly I would like to acknowledge 

the several useful observations concerning this work, made by Jan van de 

Lune, who first brought the above problem to my attention, and also by 

Jaap van der Woude. 
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2. PRELIMINARIES 

We shall record here the two results of Hall which we require. We shall 

denote the difference between the r-th and r-1-st terms in the N-th Farey 

series by tr with the convention that t 1 = 1/N. Hall proves, theorem I of 

[ I J, that 

LEMMA I. For some positive constant c0 , and for N 2:: 2, 

Further he denotes by oN(t), the number of tr from FN for which tr> t/N2, 

and sets oN(t) = oN(t)/R(N). Hall proves that oN(t) is a distribution 

function. More precisely he proves 

LEMMA 2. If 4 ~ t ~ N and w = w(t) is the smaZZer root of the equation w2 = 

t(w-1), then 

(6) 

where a satisfies 

l T(n) - xlogx - x(2y-I) a 
= O(x ), 

n~x 

T(n) denotes the number of divisors of n and y is EuZers' constant. 

The work of a number of authors, Voronoi, Van der Corput, and more 

recently Chih and Kolesnik has resulted in a reduction of the exponent in 

the error term for Dirichlet's divisor problem from the elementary result 

a=½, see Theorem 320 of Hardy and Wright [2], to a=;;+£ for any£> 0. 

To preserve tte elementary character of our work we shall take a=½ in 

Lemma 2 even though this results in a proof of our theorem which is slightly 

more complicated than that required when a is assumed to be< ½. 
We shall not apply Lemma 2 directly but shall instead use it to prove 
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LEMMA 3. For 4 ~ t ~ N we have 

PROOF. Fort~ 4 thew occurring in (6) has the form 

! 
w = (t-t(l-4/t) 2 )/2 

where the positive value of the square root is taken. We shall first show 

that 

g(t) = t(2logw-(w-l)) 

is a decreasing function oft fort~ 4. This is equivalent to showing that 

the derivative g'(t) is~ 0 for. t ~ 4. We have 

g' (t) = 2 logw -(w-1) + (I-1 '){ tdw) 
w / \ dt; 

= 2 logw -(w-1) + 2-w + (w-2)/(w(l-~)½) 
t 

= 2 logw -2w + 2 

and on observing that log(l+x) ~ x for x ~ O, and putting x = w-1 we con­

clude that 

g'(t) ~ 2(w-l) - 2w + 2 = 0 

whenever w > 1. But 

1 2 w= 1 +-+-+ 
t t2 

where the C are positive numbers and thus w is certainly~ 1 fort~ 4. 
n 

Therefore g(t) is a decreasing function oft fort~ 4 and so 



(1-w+2logw) 
-1 

s; 4(2log2-l)t 

whence, by Lennna 2 with a=!, we have 

(7) 

for 4 s; ts; N. The lennna now follows from (1) and (7) since 

3. PROOF OF THEOREM 

We shall split the sum S(N) into three parts which we shall estimate 

in turn: s1 the sum of those qi's s; IN, s3 the sum of the t largest qi's, 

where twill be specified later, and s2 the sum of the remaining qi's. 

We first establish an upper bound for s1• Put V =[/NJ.We observe 
. h h' 

that if k and k' are two terms in the Farey series FV then 

N-1 
~ 

5 

/i-1 i7 and thus no two fractions from FV are in the same interval \N'Nj for any i. 

Thus to each fraction h/k in FV there corresponds an interval (i;t ,½] in 

which it is the fraction from FN with smallest denominator and thus for 

which q. = k. Now by the definition of the Farey series all the q.'s of 
i i 

sizes; IN must correspond to denominators of fractions from FV. We therefore 

have 

V 
I q. = I 
< r.;N. i k=l q,-l'fll 

i 

k cf>(k) 

and by (5) this 

(8) = ~ N)/Z + O(NlogN). 
7T 
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Furthermore, it follows from (I) that SI is the sum over the 

(9) 
V 
L ~(k) = ~ N + O(N½logN) 

k=I TI 

smallest q.'s in the sum S(N). 
1 

We shall estimate s3., the sum of the t largest qi's, next. Let 0(M) 

denote the number of q.'s in the sum S(N) which are larger than M. It is 
1 

readily verified that 

s3 ~Mt+ 0(M) + 0(M+I) + ••• + 0(N) 

6 

where Mis the value of the smallest qi in s3 • Furthermore 0(M+k) + ••• + 0(N) 

is certainly less than s4 where 

so that 

I 
M+k ~ q. 

1 

q. 
1 

s3 ~Mt+ 0(M) t ••• + 0(M+k) + s4. 

Now 0(M) is a decreasing function of M hence 

s3 ~ (M+r)t + 0(M+r) + ••• + 0(M+k) + s4 

for any positive integer rand thus 

(IO) s3 ~ (M+r)t + J::~-I 0(M) dM + s4. 

The parameters t, M +rand M + k which we shall employ in (IO) in order to 

minimize our estimate for S(N) depend on the estimate from above which we 

shall now obtain for 0(M). 

In order to bound 0(M) from above it suffices to determine estimates 

from above for the number of gaps in FM of size larger than j/N for 
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k l k+l 
J = l, •.. ,k where N ~ M < N; note that there can be no gaps of size 

-1 
> M in FM. The number of gaps in FM of size larger than j/N is precisely 

oM( t) when t/M2 = j /N, in other words when t = jM2 /N. Further we observe 

that 

But now by Lermna 3 we have, for M ~ 2 IN. 

2,4 
where c0 = - 2(2log2-l). Thus 

1f 

n 2 N2 O(NlogM logk + kM½) S(M) < CO 6 2 + M 
M 

and since, by defintion, k ~ N/M, 

(11) 

for all M 
3 

+ c1N4 • 

8(M) < 4(2log2-l) N2 + O(N(logN) 2 + J;_.), 
M2 M Mz 

2: 2/N. Therefore, for some constant c1, 8(2/N) < (2log2-l)N + 

We now set 

3 

(12) t = (2log2-l)N + c1N4 

so that in (10), M, the value of the smallest q. in s3 , is~ 2/N. On putting 
i 4/5 

M + r = [2v'NJ + l and choosing k so that M + k ~ N < M + k + 1 we find 

from (10) that 
N4/5 

(13) s3 ~ ([2/N]+l) t + J 8(M) dM + s4 

[ 2/NJ 



where s4 is the sum over those qi's ~ N415 • 

Now by (11), the integral in (13) is 

N4/5 
N2 2 

I 4(2log2-I) O(N(logN) :,; -+ 
M2 M 

[ 2v'N] 

which, upon evaluation, is found to be 

(14) ~ 2(21og2-I)N3/ 2 + O(N]/S). 

Thus from (12), (13) and (14) we see that 

8 

N + -,) dM 
M~ 

To complete our estimation of s3 we must determine an upper bound for s4 . 

Accordingly, we shall now prove that s4 = O(N7151ogN). If Tis the 

number of terms qi in s4 then there must be T sections of length N-l in the 
4/5 unit interval which contain no fractions from FM for M = [N ]. Therefore 

there must exist differences i , ••• ,i in FM for which we can find positive 
r r 

integers k 1, ••• ,k with i ~ k!/N, i =sl, ••• ,s, and such that k 1 + ••• + k s r. 1. s 
~ T. Thus we certainly havi 

s 
(16) I 

i=l 

On the other hand, by Lemma I, 

which is 

(17) 

R(M) 2 -2 2 i < c0 M log M 
r=I r 

-8/5 
< c2 N log N 
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for a positive constant c2• A comparison of (16) and (17) reveals that 

2/5 T < c2 N log N. 

Now s4 is plainly~ N•T and thus O(N7151ogN). It follows from (15), there­

fore, that 

(18) s3 ~ 4(2log2-l)N3/ 2 + O(N7/ 5logN). 

We are left now with s2, the sum of those q.'s which are not in either 
1 3/4 s1 or s3• It follows from (9) and (12) that there are at most c3N + O(N ) 

qi's in s2 where 

(19) c3 = I - {(2log2-1) + 32 }. 
1T 

Further, by construction, all of these q.'s lie between IN" and 2/N". A trivial 
13 

upper bound for s2 is plainly 2ffl(C3N+O(N4)). We shall give an estimate for 

this sum which is only marginally less crude. Put x = [2v'NJ. We have 

X 

(20) I k qi (k) 
k=u 

for some integer u satisfying 

X 1 
(21) I <P (k) = c3N + O(N 4 ). 

k=u 

Now 

X X u-1 
I <P(k) = I cp (k) - I cp (k) 

k=u k=I k=I 

which is, by (I) ' 

3 2 2 + O(xlogx). = -(x -u ) 2 
1T 



Therefore, it follows from (21) that 

Furthermore we have by (5) 

X r 2 3 3 2 L k ¢(k) = 2 (x -u ) + 0(x logx) 
k=u n 

and thus we may deduce from (20) and (22) that 

and by (19) this is 

(23) ~ •5783 N3/ 2 + 0(N5/ 4). 

Finally we have 

which by (8), (18) and (23) is 

~(~ + 4(2log2-1) + ,5783)N3/ 2 + 0(N7151ogN) 
1T 

~ 2.328 N3/ 2 + 0(N7151ogN). 

The theorem now follows directly. 
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l l 

Remark: M.R. Best has computed values of S(N) for N up to 5,000,000 and his 

d that 11·m S(N)/N3/ 2 . d . 1 1 62 1 ata suggest exists an 1s equa to • • •• , a va ue 
N-t00 2 

suspiciously close to (4/n) • 






