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On a sum associated with the Farey series.

by

C.L. Stewart

ABSTRACT

The purpose of this note is to estimate

=z

S(N) = z a;
1=1

where q; denotes the smallest denomlnator possessed by a rational fraction

which lles in the interval ( Nl, N] We prove that the estimates

3/2 3/2

1.20 N < S(N) < 2.33 N

are valid for N sufficiently large.
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1. INTRODUCTION.

The Farey series FN of order N is the sequence of fractions h/k with
(h,k) =1 and 1 < h £ k < N arranged in increasing order between O and 1.

There are ¢(k) fractions with denominator k in F and thus the number of

N

terms in FN is

2

(1) RON) = 6(1) + 6(2) + ... + 6(N) = i% N° + 0(NlogN)
™

(see Theorem 330 of [2]). The purpose of this note is to estimate

S(N) = q

Il o~2

where q; denotes the smallest denominator possessed by a fraction from F

which lies in the interval (iﬁl,-ﬁj.

N
We first observe that

3/

2m 2
(2) S(N) = 57? N + 0(NlogN)

for there can be at most ¢(k) qi's of size k in S(N) and thus

t
(3) S(N) 2 ) k ¢(k)
k=1

27
for all t such that ¢(1) + ¢(2) + ... + ¢(t) < N. (Note that §7§ is about
1.21.) On choosing t maximally we have by (1),

Nl

(4) t

Sl=

N? + 0 (log N).

Furthermore

1 t-2

Yoo(k) + ) (k) + ... + $(1))
k=1 k=1

t t t
Yok ek =t ) ¢(k) - (
k=1 k=1



and thus, again by (1), this

3

(5) =-3% t” + O(tzlog t).
™

And (2) now follows on combining (3), (4) and (5). A.E. Brouwer and J. van

3/2 for a number

de Lune checked by means of a computer the value of S(N)/N
of integers in the range 1,000 to 2500 and they found in all cases that

We shall prove

was less than 1.64 and larger than 1.58.

THEOREM. For N sufficiently large
s < 2.33 N°/2,

We remark that we would expect the theorem to hold for all positive

integers N. We in fact establish a result of the form

3/2 /5

sv) = 2.328 /% 4+ o’ P1og M)
where the constant implicit in the O term is computable and thus the valid-
ity of the theorem for all integers N can be determined, in principié, by
a finite amount of computation. We also observe that with some additional
work our argument would doubtless yield a somewhat more precise estimate
for the constant which precedes the main term in our estimate. Our proof
of the above theorem depends upon two results of R.R. Hall concerniné the
distribution and the second moments of gaps in the Farey series.

The problem of obtaining appropriate estimates for the size of S(N)
arose in connection with a problem of D. Kruyswijk and C. Schaap in com-
binatorial group theory. Independently of the author, D. Kruyswijk and

H.G. Meijer have obtained a result of the form S(N) = O(NB/2

) and their
argument, which is apparently entirely different from that given here, will
be submitted for publication shortly. Lastly I would like to acknowledge
the several useful observations concerning this work, made by Jan van de
Lune, who first brought the above problem to my attention, and also by

Jaap van der Woude.



2. PRELIMINARIES

We shall record here the two results of Hall which we require. We shall
denote the difference between the r—th and r—1-st terms in the N-th Farey
‘series by L. with the convention that %, = 1/N. Hall proves, theorem 1 of

1
[1], that

LEMMA 1. For some positive constant Cy» and for N = 2,

RO 2

z L7 < C log N.
=] T 0

Further he denotes by GN(t), the number of lr from FN for which Zr > t/Nz,
and sets SN(t) = oN(t)/R(N). Hall proves that GN(t) is a distribution

function. More precisely he proves

LEMMA 2. If 4 <t < Nand w = w(t) is the smaller root of the equation w2 =
t(w-1), then

(6) GN(t) = Zt—l(l—w+210gw) + 0 (t_lN_llogN + Na—Z)’

where o satisfies

z t(n) - xlogx - x(2y-1) = O(XQ),
n<x

t(n) denotes the number of divisors of n and y is Eulers' constant.

The work of a number of authors, Voronoi, Van der Corput, and more
recently Chih and Kolesnik has resulted in a reduction of the exponent in
the error term for Dirichlet's divisor problem from the elementary result
o = 4, see Theorem 320 of Hardy and Wright [2], to a = %%-+ e for any € > 0.
To preserve tke elementary character of our work we shall take a = § in
Lemma 2 even though this results in a proof of our theorem which is slightly
more complicated than that required when o is assumed to be < }.

We shall not apply Lemma 2 directly but shall instead use it to prove



LEMMA 3. For 4 < t £ N we have

2 - 1
o (t) <22 (21og2-1)<—1\1\ + 0(t” 'NlogN + N2).
N ) t/

PROOF. For t = 4 the w occurring in (6) has the form
1
w = (t-t(1-4/t)?)/2

where the positive value of the square root is taken. We shall first show

that
g(t) = t(2logw-(w-1))

is a decreasing function of t for t 2 4, This is equivalent to showing that

the derivative g'(t) is < 0 for. t 2 4. We have

g'(t) = 2 logw —(w-1) + (éﬂ_]\(téz\

J\ dt/

2 logw =(w-1) + 2-w + (w—2)/(w(l—%-%)

2 logw —2w + 2

and on observing that log(l+x) < x for x 2 0, and putting x = w-1 we con-

clude that

g'(t) < 2(w-1) = 2w+ 2=0
whenever w > 1. But
C
w=1+ %-+ J% oot — L
t "

where the Cn are positive numbers and thus w is certainly > 1 for t 2 4.

Therefore g(t) is a decreasing function of t for t = 4 and so



(1-w+2logw) < 4(210g2-—l)t—l

whence, by Lemma 2 with a = }, we have

3/2

(7) 8 (t) < 8(210g2—l)t—2 + O(t_]N_llogN + N 7%

for 4 < t < N. The lemma now follows from (1) and (7) since
ON(t) = R(N) GN(t).
3. PROOF OF THEOREM

We shall split the sum S(N) into three parts which we shall estimate
in turn: S1 the sum of those qi's < VN, S3 the sum of the t largest qi's,
where t will be specified later, and S2 the sum of the remaining qi's.

We first establish an uppef bound for Sl' Put V = [V/N]. We observe

|

that if %-and-%T are two terms in the Farey series FV then

Iz - %] > (k)72 N

and thus no two fractions from FV are in the same interval (iélgﬁ] for any 1i.

Thus to each fraction h/k in FV there corresponds an interval <1§l;§] in

which it is the fraction from FN with smallest denominator and thus for
which q; = k. Now by the definition of the Farey series all the qi's of

size < VN must correspond to denominators of fractions from FV' We therefore

have

\Y
S, = L _aq;= ] k¢
<VN k=1

and by (5) this

3/2

(8) = _%2_ N + 0(NlogN).
m

a
i
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Furthermore, it follows from (1) that S] is the sum over the

v 3

) ] ) = 2N+ oartiogm
k=1 i

smallest qi's in the sum S(N).
We shall estimate 83, the sum of the t largest qi's, next. Let 0(M)
denote the number of qi's in the sum S(N) which are larger than M. It is

readily verified that

S3 <Mt + O(M) + O(M+1) + ... + O(N)

where M is the value of the smallest q; in S,. Furthermore O(M+k) + ... + O(N)

3

is certainly less than S4 where

Sy = zk 9
M+ ‘S qi
so that
S, <Mt +6O6M) t ... + O(M+k) + S

4
Now 0 (M) is a decreasing function of M hence

S3 < (M+r)t + O(M+r) + ... + O(M+k) + S4

for any positive integer r and thus

M+k

(10) S3 < (M+r)t + JM+r-

1 o(M) aM + 54.
The parameters t, M + r and M + k which we shall employ in (10) in order to
minimize our estimate for S(N) depend on the estimate from above which we
shall now obtain for 0 (M).

In order to bound © (M) from above it suffices to determine estimates

from above for the number of gaps in FM of size larger than j/N for



-+ - .
j=1,...,k where %-S %-< Eﬁl; note that there can be no gaps of size
> M_l in F,.. The number of gaps in F,, of size larger than j/N is precisely

M M
OM(t) when t/M2 = j/N, in other words when t = jMz/N. Further we observe

that
0 2, 2 2
™M) < GM(M /N) + OM(ZM /N) + ... + oM(kM /N) .

But now by Lemma 3 we have, for M = 2 VN.

2

N el Ly, Mlogo 1o 1
6(M)<CO 2(]+,‘+9+ + 2)+( i (1+2+3+...+k)+kM)

M k
24

where C0 =-—§(21og2—1). Thus

m

n? N NlogM logk i
B(M) < C, — — + 0(—=—"-2— + kM?)

0 6 M2 M

and since, by defintion, k < N/M,

2
N
N(l;gN) + 3
M%

H

N2
(11) (M) < 4(2log2-1) — + 0(
M

for all M = 2V/NW. Therefore, for some constant Cl’ e(z/ﬁ) < (2log2-1)N +
3
+ C N*,
1
We now set

3
(12) t = (2log2-1)N + CIN4

so that in (10), M, the value of the smallest q; in S,, is < 2/N. On putting
M+ r=[2/N] + 1 and choosing k so that M + k < N4/5

from (10) that

3
<M+ k+ 1 we find

N4/5

(13) S, < ([2/N1+1) t + J 6(M) aM + S,

[2V/N]



where S4 is the sum over those qi's > N4/5.

Now by (11), the integral in (13) is

4/5

N 2
< j 4(2log2-1) X+ 0(§11§§§l— :
2

[2V/N]

which, upon evaluation, is found to be
(14) < 2(210g2-1)8/% + o' /3.
Thus from (12), (13) and (14) we see that

(15) < 4(210g2-1) N2 + ow’/?) + s

S3 4

To complete our estimation of 83 we must determine an upper bound for S
= 7/5

4= o(N

number of terms q; in S4 then there must be T sections of length N_l in the
[N4/5

4
Accordingly, we shall now prove that S logN). If T is the
unit interval which contain no fractions from FM for M = 1. Therefore

there must exist differences Rr ,...,zr in FM for which we can find positive
integers k]""’ks with lr > k;/N, i =Sl,...,s, and such that k1 + ...+ kS

> T. Thus we certainly havé
(16)

On the other hand, by Lemma 1,

R(M)
2 -2
lr < CO M~ log M
r=1
which is
(17) < C N"S/5 log N



for a positive constant C2. A comparison of (16) and (17) reveals that

T < C2 N2/5 log N.
Now S4 is plainly < N<T and thus 0(N7/510gN). It follows from (15), there-
fore, that
(18) 5, < 4(210g2-)N % + 08" />10gN) .

We are left now with SZ’ the sum of those qi's which are not in either

S, or S,. It follows from (9) and (12) that there are at most C,N + 0(N3/4)

1 3

..
q; s 1in 82 where

3

(19) Cy = 1 - {(2log2-1) + i%-}.

Further, by construction, all of these qi's lie between VN and 2VN. A trivial
3

upper bound for S2 is plainly Z/ﬁ(C3N+0(N‘)). We shall give an estimate for

this sum which is only marginally less crude. Put x = [2V/N]. We have

X
(20) S, < Yk ¢(k)
k=u

for some integer u satisfying

X 3
(21) L ¢(k) = C,N + 0(N%).
k=u
Now
X X u-1
Look) = Y ek) - ) ¢(k)
k=u k=1 k=1

which is, by (1),

= i%(xz-uz) + 0(xlogx).
™



Therefore, it follows from (21) that

2
U

1 1
2 2 4
3 C3) N? + 0(N*%).

(22) u= (4~

Furthermore we have by (5)

% .
Z k ¢(k) = :%(X3—u3) + 0(x210gx)
=u m

and thus we may deduce from (20) and (22) that

2

16 _ 2, m 3 /4
-5 ?(4 3C3)

2
i

S < { 12y 312 4 o

9 )

and by (19) this is

/2 /4

(23) < .5783 /% + oow’%).,

Finally we have

S(N) = S] + 52 + s3

which by (8), (18) and (23) is

/2 /5

g(i% + 4(2log2-1) + .5783)N3 + O(N7 logN)

m

3/2 /5

< 2.328 N + O(N7 logN).

The theorem now follows directly.
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computed values of S(N) for N up to 5,000,000 and his

‘Remark: M.R. Best has
3/2 exists and is equal to 1.62 ..., a value

data suggest that %ig S(N) /N

suspiciously close to (4/w)2.
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