
stichting

mathematisch

centrum

AFDELING ZUIVERE WISKUNDE
(DEPARTMENT OF PURE MATHEMATICS)

T.M.V. JANSSEN & P. VAN EMDE BOAS

zw 98/78

THE EXPRESSIVE POWER OF INTENSIONAL LOGIC IN
THE SEMANTICS OF PROGRAMMING LANGUAGES

~
MC

OKTOBER

2e boerhaavestraat 49 amsterdam

PJu..n.:ted a;t :the Ma:thema.:ti.c.a-e. CentJr.e, 49, 2e BoeAha.a.vu.tJt.a.a;t, Am6;teJT.dam.

The Mathema.:ti.c.a,f. CentJr.e, 6ou.nded :the 11-;th o 6 F-ebJc.u.all.y 1946, -l6 a. non­
p1c.o 6U .ln6.tltutio n ai.mlng at :the pJc.omo:Uo n o 6 pu!l.e ma:thema.:ti.c.6 a.nd U:.6
a.pp.Uc.a.:ti.on6. I;t -l6 .6pon6oJc.ed by :the Ne:the/Lf.a.nd6 GoveJT.nmen.:t :thJc.ou.gh :the
NethVli.a.nd6 011.ga.n.lza.:ti.on 6oJc. :the Adva.nc.emen.:t 06 PUite RueaJr.c.h (Z.W.0).

AMS (MOS) subject classification scheme (1970): 68A05, 02Cl O, 68A30

first printing 1977

second edition 1978

The expressive power of intensional logic in the semantics of programming
*) languages

by

**) T.M.V. Janssen & P. van Emde Boas

ABSTRACT

A Hoare-like semantics is presented for the assignment to various types,

including array elements and pointers. The semantics is based upon inter­

pretation in a model of intensional logic. Furthermore, we obtain a general

relation between forward and backward predicate transforme!s. By means of

this relation is shown that our proposed semantics yields weakest precondi­

tions.

KEY WORDS & PHRASES: program correctness, assignment statement, Montague

grammar, intensional logic, Hoare's assignment aziom,

predicate transformers, weakest precondition, strongest

postcondition, ALGOL 68, suhscripted variables, pointers.

**)

This report has appeared in Mathematical Foundations of Comp. Sci., proc.
6th Syrrrp., (Tatranska Lomnica 1977), J. Gruska (ed.), pp.303-311, Lecture
Notes in Comp. Sci. 53, Springer Verlag, Berlin

Inst. Appl. Math./VPW., Univ. of Amsterdam

ERRATA

page, line old text new text

2, +15

4

5, -7

7, -17

8, +5

8, +14

8, +15

(6) , (7) or (8) (7) or (8)

Insert after definition (20):
This definition is a generalisation of the definition given
in PTR, where for o only variables are allowed •

x+l > 1 ..,·x+l > 1

let ij, let n

IV (IV)

III (III)

8 REFERENCES

Replace both references to Gries by:

Gries, D. (1976), Assignment to subscripted va:l'iabZes, Report TR 77-305, ·

Dept. of Comp. Sci., Cornell Univ., Ithaca.

Add to reference Janssen, T.M.V. (1976):

(also appeared._ as Mathematical Centre Report ZW 99/77).

Replace reference to Janssen & v. Emde Boas by:

Janssen, T .M. V. & P. van Emde Boas (I 977) ,· On the p:r>oper t:r>eatment

of :r>efe:r>enaing, de:r>efe:r>enaing and assignment, in: Automata,

Languages and P:r>og:r>coroning, 4th CoZZ. (Turku 1977), A. Salomaa &

M. Steinby (eds.), pp. 282-300, Lecture Notes in Computer Science 52,

Springer-Verlag, Berlin.

I • INTRODUCTION

The purpose of the theory of semantics of progrannning languages is to describe in

a computer independent way those aspects of the processes taking place during execution

of a program which are considered as mathematically,relevant. Depending on whether the

computations themselves or the results of the computations are the subject of the des­

cription one obtains operational or denotational semantics. In the latter case the

result is often expressed using predicate transformers, which tell how a description of

the state of the computer before execution of the program is transformed into a descrip­

tion of the state afterwards (forward semantics) or conversely, given a "goal"-state the

transformer yields a description of a state from which the goal-state is obtained by

execution of the program (backward semantics). In this approach one always aims at the

forward transformation yielding as much information as possible (a strongest postcondi­

tion) or the backwards transformer yielding the least restrictive description (a weakest

precondition) •

For several elementary progrannning constructs forward and backward transformers

have been described. We will consider in particular those for the assignment statement:

the forward one of Floyd (1967) and the backward one of Hoare (1969). These rules are

given below; with [z/x]~ is denoted the expression obtained from~ by replacing all

occurrences of x by z.

(I)

(2)

(3)

{~} x:=t {3z[[z/x]~ Ax

{[t/x]w} x:=t {w}

[z/x]t]} (Floyd),

(Hoare).

Gries (1976) consideres for Hoare's rule the case

{l=a[j]} a[i]:=I {a[i]=a[j]}.

The weakest precondition in fact should be I= a[j] v i=j.

De Bakker (1976) considers for Floyd's rule the case

(4) {a[l]=2 A a[2]=2} a[a[2]]:=I

{3z[[z/a[a[2]]](a[l]=2 A a[2]=2) A a[a[I]]= [z/a[a[2]]]1]}.

The postcondition reduces to a[l]=2 A a[2]=2 A a[a[2]]=1 which is a contradiction. In

fact afterwards a[a[2]]#1. He also considers Hoare's rule for this assignment

(5) {[l/a[a[2]]](a[a[2]]=1)} a[a[2]]:=I {a[a[2]]=1}.

2

The precondition reduces to 1=1 and this is not restrictive enough as we conclude from

(4). Clearly the same problems arise if we consider arrays of higher dimension, e.g.

(6) q[q[2][2]][2] :=1.

Another source for problems is the use of pointers. Consider for Hoare's rule the pro­

gram p:=x; x:=x+1 (in this pis a pointer):

(7) {x=x+1} p:=x; {p=x+1} x:=x+1 {p=x}.

It is impossible to satisfy the weakest precondition; while we only required that final­

ly the value of p should be x. Floyd's rule alsd causes problems with pointers

(8) {x=Li.} p :=x; {x=4 A p=x} x:=3 {3z[z=4 A p=z] A x=3}.

In the final state, however, the integer value related with pis 3 and not 4! The in­

teger value related with pis modified by x:=3 although this is hardly visible from the

program text!

De Bakker (1976) gives a solution to the problems illustrated in (3), (4) and (5).

Gries (1976) does so for the backward transformation only. Another solution is implic­

itely present in Pratt (1976). No one of them treats (6), (7) or (8).

The approach in this paper is based on work of the logician R. Montague, treating

the semantics of English. A motivation for doing so was the observation concerning the

role of identifiers in assignment statements.

Assume that both x and y have the value 7. Then in the assignment x := y+1 we can

replace y by x or by 7 without changing the result; after execution x has the value 8.

If we replace however x by y the effect is modified. So sometimes an identifier may be

replaced by an expression with the same value, and sometimes not. It is striking that

the same phenomenon can be observed in English. Assume that Ghica and John are married.

Then "John's wife has blue eyes" is true just in case "Ghica has blue eyes". So in this

context we may replace "John's wife" by "Ghica". Next consider (*) "Peter believes

that Ghica has blue eyes". In this sentence we cannot freely replace "Ghica" by "John's

wife", since it: is not clear that Peter knows that John and Ghica are married; it is

possible that Peter affirms (*) and at the same time denies "John's wife has blue eyes"

since he thinks: John to be married to the black-eyed Selma.

Problems concerning such expressions constitute an intriguing part of language philo­

sophy. Many linguists, philosophers and logicians worked on attempts to deal with them.

The investigations culminated in the work of R. Montague. In The proper treatment of

quantification in ordinary English (1973) he presents the syntax and semantics of a

fragment of English in which such problems are treated. References to the earlier works

in this direction can be found in the introductory article of Partee (1975). We will

refer in the sequel to Montague's article by "PTQ".

In the sequel of this paper we shall illustrate how Montague's framework can be

used to obtain satisfactory and correct forward and backward transformers for all

assignment types mentioned above. The solutions involve higher order modal logic. By

using the concept of intension the problems with pointers are solved, whereas the prob­

lems with array identifiers are dealt by treating them as functions. Finally using the

necessity operator from modal logic we obtained a relation between forward and backward

3

predicate transformers enabling us to transform the two in each other. The present paper

is a sequel to Janssen & Van Emde Boas (1977) On the proper treatment of referenaing,

dereferenaing and assignment (fromnow on "PTR"). In that paper forward predicate trans­

formers are considered, while in this we' focus on the backward one and the relation

between both.

2. MONTAGUE' s APPROACH

The basic idea in Montague's treatment of ~emantics is the distinction extension/

intension. The extension of an expression is, its value in the current world; the inten­

sion is the function yielding this value in any possible world. Consider the sentence
',

"John walks". Its extension is a truth-value; in order to ,decide which one, we have to

investigate the current world and find out whether John is walking or not. Its intension

is the boolean function which tells us for each possible world whether John is walking or not.

The same concepts can be applied in the semantics of programming languages. The

extension of an integer identifier xis the integer value of x in the present situation.

Its intension is the function which for any possible world (situation) yields the corres­

ponding integer value. In the context of programs and computers, these possible worlds

may of course be considered as possible states of a computer.

The idea to distinguish between two values related to an identifier is not a new

one. In denotational semantics one connects with an integer identifier an L-value

(playing the role of a computer address) and an R-value (being the content of such an

address). So extension corresponds with R-value, and intension has some correspondence

with L-value. We wish, however, to point out that the concepts intension and extension

are more general since they are defined in a model without appeal to some "address­

content" structure. Therefore, intension and extension are defined (in contrast with L­

and R-value) for all kinds of expressions: pointers, array identifiers as well as boolean

expressions.

The mathematical language used by Montague to describe the semantics of natural

language is called intensional logic (IL). This is a kind of modal logic which provides

the tools for working with intensions and extensions. In PTR we have presented a formal

definition of syntax and model-theory for an extension of IL which we use for describing

the semantics of the assignment statement. We shall not repeat this complete definition,

but present instead an informal model-theoretic expose, illustrating the features which

will be used in the sequel.

For each expression o in the programming language we will have a corresponding ex­

pression o'; this is called the translation of o. For each identifier used in the pro­

grams we introduce a corresponding logical constant in IL; e.g. identifier x corresponds

with constant x, so x' =x (notice the different type face used). These constants will

be interpreted as intensions of the corresponding type. The set of possible computer

states is denoted S. For each expression~ in IL we denote its valuation (interpreta­

tion) in states ES by V(~).
s

(9) PROPERTY. If xis an simple integer identifier then V(x) E N8 • This property ex­
s

presses that intensions of integers are functions from states to integers. Similar

properties hold for pointers and arrays.

(IO) PROPERTY. If p is a pointer then V(p) E: (JNS)S.
s

(II) PROPERTY. If a is an array identifier then V(a)
s

4

It is a crucial aspect of a variable that its identity remains the same while its value

is changed. This is expressed by the requirement

(12) PROPERTY. If xis some identifier, then for all states sand t: V(x')
s

The ex tens ion corresponding with x is deno te,d as v :r: , so

(13) DEFINITION. V('<j>) = (V(<j>))(s).
s

~<x').

Consequently the assertion that (the value of) x equals 7 is denoted by v (x)=?. So

(14) EXAMPLE • V(' (x)=?) E: {T,F}.
s

The intension corresponding with an IL expression <I> is denoted as A<j>. So

(15) DEFINITION.

(16) EXAMPLE.

(17) LEMMA.

PROOF.

(18) REMARK. In

Janssen (I 976).

(19) DEFINITION.

V(A<I>) = At[V(<j>)].
s t
V(A(V x=?J) € {T,F}s
s
~(' A<I>) = ~(<I>) o

V(' A<I>) = V(A<j>)(s) = At[V(<j>)](s) = V(<j>).
s s t s

general it is not true that V(Av<I>) = V(<j>). For a counterexample see s . s

The translation of a[n] in IL is A((v(a)) (n)).

The naive approach to states as demonstrated above does not yet provide a workable

framework for treating semantics of progranmting languages since computer states have

certain properties which have to be reflected in the model. Clearly a states E: S

determines the values of all identifiers but is not guaranteed that two states where

all identifiers have equal values are equal. More important the crucial effect of an

assignment is that it modifies the value of a single identifier, and in order to model

this assignment we have to require that the resulting state always exists. These prob­

lems have been dealt with extensively in PTR.

(20) DEFINITION. <x+Vo>s denotes the (unique) state in which all constants except x
s

have the same value as in states, and in which the value of x equals the value of the

expression o in states.

The essential extension to IL introduced for describing assignment is the state

switcher {of' x} whose meaning is described semantically by

(21) DEFINITION. V({of'x}<I>) = V II(") (<j>).
s <x+ s u >s

The needed properties of this substitution operator are expressed by

(22) SUBSTITUTION THEOREM. The syntactic behaviour of the semantical defined operator

{o/vx} is described as follows:

1. {of' x}[<I>" ipJ = {01 xH " {of' x}ip and also for the other connectives.

2. {o 1 x}3v[cp] = 3v[{01 x}cf>] provided that v does not occur in o (otheruise we take an
alphabetical variant). Analoguously for 3z, Vz, AZ.

3. {of'x}cf>(ip) = {01x}<1>({01x}ip).

4. {o/x}Acp = Acp.

5

6. {of' x}c = c for any constant c, including c = X•

7. {of' x}" x = o; {of' xV c = ... c for any constant c t x.
Note that in other cases {of' xY <I> cioes not reduce any further~

(23) CONSEQUENCE. The state switcher has'almost the same properties as the ordinary

substitution operator.

It must be mentioned that in IL the rule of A""'conversion is no longer valid in all

circumstances. Instead one has the following weaker rule:

(24) THEOREM. Let [a./z]</> d.enote the expression obtained from <I> by substituting a for

each free occurrence of z. If (I) no free occurrence of a variable in a becomes bound

by substitution of a for z in <I> and (II) for all states s ~nd t: ~(a) = ~(a) then we

have for each states: V>..z[4>](a) = V[a/z]</>. s s
As a consequence we see that >..-conversion is allowed for arguments which are in-

tensions like the constants corresponding to program identifiers, or state predicates

(i.e., elements from {T,F}s). For arguments not satisfying (II) wrong results may be ob­

tained.

3. ASSIGNMENT STATEMENTS

The semantics of assignment statements is dealt with by translating them into predi­

cate transformers. State predicates being intensions of truth values, i.e., elements of
s {T,F} are denoted in the format A<I> where <I> is a truth value expression. Then predicate

transformers become functions from {T,F}S to {T,F}s, and they will be denoted in the

format >..PA</>. As seen in (24) above >..-conversion for Pis allowed.

The backward predicate transformer corresponding to a simple assignment is easy

to describe. Since the assignment changes the value of a single identifier the resulting

state is described using a state switcher., For instance if the assignment is x:=10 the

corresponding state switcher is {10/'x}. If in the resulting state w has to hold then

in the starting state {lO('x}w has to hold. Therefore, we introduce the following

(25) DEFINITION. Let x be an identifier and o some expression with translations x' and

o' respectively. Then the backJ,;ard predicate transformer corresponding to the assignment

x: =o is defined by >..PA[{ o' f' x' }" P].

Note that except for the use of extension and intension this rule is a functional

variant of Hoare's original rule. Rule (25), however, can be used for pointers and arrays

as well.

(26) EXAMPLE. x : = x+ I. The corresponding backward predicate transformer reads

>..PA[{(x+I)'/' (x)'}"P]. Taking for P the assertion A(" (x)>l) we obtain

A[{(x+l)'/'(x)'}"A("(x}>l)] = A({"x+l('x}("x>l)) = A(x+l>l) = A("x>O).

Programs consisting of more than one assignment are dealt with by

(27) DEFINITION. Let n 1 and n2 be (sequences of) assignment statements translated by

backward predicate transformers ni, n2 respectively. Then the backward predicate trans­

former corresponding to the program n 1;n2 is defined as >..P[ni(n2(P))J.

(28) EXAMPLE. p:=x; x := x+I. Taking for P the assertion A("p=x) as the argument of the

backward transformation corresponding with x := x+I we obtain: A({''x+l('x}["p=x]) = A(p=x)

6

(since yx does not occur in P). Applying the backward transformation corresponding to

p:=x we obtain A({x/'p}yA(yp=x)) = A({x/'p}CVp=x)) = A(x=x) =:= Atrue. We have thus ob­

tained, in contrast with Hoare's rule, the correct weakest 'precondition.

It turns out that the forward predicate transformer for the assignment {x:=o}

reads >.P[A3z[{z,x'}YPAyx'={z,x'}o'J]. Except for the use of intension and extension

this rule is a functional variant of Floyd's rule. For details see PTR.

In the case where the left-hand side of an assignment is a subscripted variable

the new state is obtained from the old one by changing the value of a single identifier,

provided we take for this identifier the corresponding array identifier. Since we treat

arrays as functions this means that a new function'• is assigned to the array. IL contains

the needed >.-expressions to denote this assignment by a state switcher.

(29) DEFINITION. The predicate transformers (forward as well as backward) corresponding

to the assignment a.[µ] :=o are the same as those corresponding to

a.:= >.n if n = µ then o else a.[n] fi.

(30) REMARKS. The idea of considering arrays as functions appears not to be new. Gries

(1976b) dues this remark to Hoare. They do not mention, however, the above reduction to

simple variable assignments. Repeated application of the above definition deals with

assignments to higher dimensional array elements.

(31) EXAMPLE. The predicate transformers corresponding to a[i]:=I and a:= >.n[if n=i

then I else a[n] fi] are equal. Consequently transforming the assertion A(y a(i)=v a(j))

backwards we obtain A(>.n[if_ n=i then 1 else y a(n) ti_]) (i) = 4 (>.n[i:1 n=i then 1 else

va(n).t.:f_](j),whichreduces to 4 (1=:!:f_j=i then 1 else ya(j) ti_)= A(j=i v ya(j)=l).

Thus we have treated Gries' problem correctly.

(32) EXAMPLE. The predicate transformers corresponding to a[a[z]] :=I and a:= >.n[if

n = a[z] then I else a[n] fi] are equal. If we transform the assertion A(y a CV a(2))=1)

backwards, we obtain after some calculations A[An[il n=v a(2) then 1 else v a(n) .tf_](i:i.

2=ya(2) then 1 else va(2) fiJ = 1], which reduces to A((2=ya(2) A va(lJ=l) v(2/ya(2))).

Thus we have treated de Bakker's problem correctly.

Examples concerning the forward predicate transformer can be found in PTR.

4. STRONGEST AND WEAKEST

Predicate transformers should be well behaved. We desire that the forward trans­

former yields the strongest possible postcondition, and that the backward one yields

the weakest possible precondition. In order to define these requirements formally, we

need a second kind of semantics: an operational·one.

(33) DEFINITION. An operational, semantics II is a mapping which for each program ,r yields

a function 1r 11 ; this function gives for each starting state the corresponding final state

(intuitively: the state obtained by executing the program).

(35) DEFINITION. s I= <j> means V(<j>) = T. I= <j>means that for alls: s I= <j>.
s

(36) DEFINITION. The state predicate sp(1r,<j>) is called the strongest postcondition with

respect to program 1r, predicate <j> and operational semantics II if the following two con­

ditions are satisfied: (I) ifs I= y<I> then 1r 11 (s) I= ysp(1r,<j>), (II) if for all sholds that

7

s I= "'cj, implies 1r 11 (s) I= "'n, then I= "'sp(1r,cj,) -+"'n.

(36) DEFINITION. The state predicate wp (,r, 1/1) is called the weakest p-r.>eaondi tion with

respect to program 1r, predicate cj, and operational semantics II if the following two

conditions are satisfied: (I) if s I= "'wp(1r,1/J) then 1r 11 (s) I= "'1/1, (II) if for all s holds

thats I= "'n implies 1r 11 (s) I= "'1/1, then I= "'n-+ "'wp(,r.,1/J).

(37) REMARK. There are of course several syntactic formulations of state predicates

satisfying the above definitions, but they all denote the same semantic function from

states to truth values. Therefore, we feel free 'to speak about the strongest postcondi­

tion (weakest precondition). We adopt here the convention to denote this semantic func­

tion in IL by the expression sp (,r., cj,) (respectively'•wp (,r ,c/>)). We assume II fixed.

If a program can be characterized by its forward as well as by its backward trans­

former, there must be some relation between these characterizations. This relation is

given in the next theorem. In themP and Qare variables over state predicates and D

is the necessity operator from modal logic.

(38) DEFINITION.

(39) THEOREM.

V(•cp) = T iff Vt V(cp) = T.
s t
(a.) I= wp(,r,cp) = A3Q["'Q" • ["'sp(,r,Q)-+ "'cp]],

(S) I= sp (,r ,c/>) = ~Q[• ["' cp -+ "'wp (,r ,Q) J -+ "'QJ.

PROOF. We show that the right-hand sides satisfy cond. I and II, of the corresponding

definitions (35) and (36).

(a.)(cond.I): supposes I= 3Q["'QA • ["'sp(,r,Q) -+"'cj,]J. Then for some 1/1 s 1="'1/1 and

s I= • ["'sp(1r,1/J)-+ "'cj,]. By definition (35) we conclude 1r 11 (s) I= "'sp(1r,1/J) and by defini­

tion of Done has 1r 11 (s) I= "'sp(1r,1/J)-+ "'cj,. Therefore, 1r 11 (s) I= "'cj,.

(a.)(cond. II): suppose for alls we haves I= "'n implies 1r 11 (s) I= "'cj,. Then by definition

(35) I= "'sp(1r,n)-+ "'cj, and consequently s I= D["'sp(1r,n)-+ "'cj,]. Taking Q = n we conclude

thats I= "'n-+ 3Q["'Q A • ["'sp(,r,Q)-+ "'cj,]]; since s was arbitrary, this proves (cond. II).

(S) (cond. I): suppose s I= "'cp and let 1/1 be some arbitrary predicate for which

1r 11 (s) I= D("'cj,-+Wp(1r,n)). Thens I= "'cj, implies s I= "'wp(1r,n) and by definition (36) this

implies 1r 11 (s) I= "'n. This shows ,r 11 (s) I= ~Q[• ["' cp-+"' wp (,r ,Q)]-+"' Q].

(S)(cond. II): suppose for alls s I= "'cj, implies 1r 11 (s) I= "'n. Then by definition (37)

I= "'cj,-+"'wp(1r,n). If t I= VQ[• ["'cj,-+"'wp(,r,Q)]-+"'Q] we derive by taking Q=n that t I= "'n.

Since twas arbitrary this proves (cond. II).

(40) COROLLARY. If fo-r.> a-r.>bit-r.>acy cp eithe-r.> wp(1r,cp) o-r.> sp(1r,cj,) can be syntaatiaally des­

a!'ibed by p-r.>ediaate t-r.>ansfoy,mez,s in IL, then so aan both.

Clearly it is unlikely that formulas with quantification over predicates are the

expressions for wp or sp one likes to handle. The importance of (39) is that it enables

to prove theoretically that some expression describes wp(1r,cj,), given a method to ob­

tain sp(1r,cj,) or conversely. For example in PTR we have shown for some particular opera­

tional semantics II that the strongest postcondition for the program x := o is obtained

by sp(x:=o,cp)="'3z[{z/"'x'}"'cp ""'x' ={z/"'x'lo'J.

(41) THEOREM. a.) I= sp(x:=o,cp) = A3z[{z/"'x'}"'cp ""'x'={z/"'x'}o'J is equivalent with

S) I= wp(x:=o,cp) = A{o'/"'x'Vcp.

PROOF. a.) => S). We have to show for arbitrary s and 1/1

(I) s I= {cS' rx'l"iJJ iff

(II) s I= 3Q[VQA •[3z[{zrx'}"Q A vx'={zrx'}cS']+VijJ]].

(I)=> (II). Take Q =A{o'rx}vijJ, thens ~vQ. Remains to show that fort arbitrary

(*) t I= 3z[{zrx'Ho'rx'}vijJ A vx' = {zrx'}o'] implies t I= vijJ. If(*) holds for

z = z' then t I= {{z rx'}orx'l"<P A vx' = {.z rx'}cS' sot I= {vx'rx'l"iJJ and
0 0 0 '

hence t I= vijJ. Q.E.D.

(II)=> (I). Assume (II) holds for Q = 4>. Then SI= v<I> ands I= •[3z[{zrx'l"<I> A vx' =

8

= {zrx'}cS'J+vijJJ. Taking z = z such that for arbitrary t V(z) = VCVx')weinfer
0 t O S

<x'+V(o')>s I= {z rx'}v<P and also <x'+V(cS')>s I= vx = {z rx'}cS. So <x'+V(o')>s l=vi/J,
S O S O S

i.e., s I= {o'rx'}"ijJ. Q.E.D.

$) => a). We have to show that for arbitrary s and 1jJ

(ill) s I= VQ[•[v <I>+ { cS' r X' }" Q] + V Q] iff

(IV) s I= 3z[{zrx'l'<I> A vX' = {zrx'}o'].

(III) => (IV). Take for Qin (III) the assertion from IV. We prove now that the antecedens

of III holds; then (IV) follows innnediately. So suppose t I= v 4>. We have to prove that

t I= 3z[{cS' r x' Hzr x' }" <I> A {cS'r x' }[v x' = {zr x' }cS']] or, equivalently

t I= 3z[{zr x' }" <I> A cS' = {zr x' }cS' J. This becomes true if we choose z equal to v x'.

(IV)=> (III). Let n be some state predicate and suppose that the antecedens of (III)

holds, so (V): I= v<j>+{o'rx'}vn. We have to prove thats I= vn.

From (IV) follows that for some z holds <x' +-V(z)>s I= v <I>, so
0 S 0

<x'+V(z)>s I= {o'rx'l"n, consequently s I= {{z l"x'}o'rx'l"n.
S O .

Moreover, from (IV) follows s I= vx' = {z rx'}cS', consequently s I= vn. Q.E.D.
0

(42) COROLLARY. The weakest precondition for x:=cS is A{o'rx'}v<j>.

REFERENCES.

De Bakker, J.W. (1976), Correctness proofs for assignment statements, Report IW 55/76,

Mathematical Centre, Amsterdam.

Floyd, R.W. (1967), Assigning meanings to programs, in: Proc. Syrop. in Appl. Math •

.!2_ (J.T. Schwartz ed.), Math. aspects of computer sciences, AMS. pp.19-32.

Gries, D. (1976), The assignment statement, unpublished manuscript, Cornell University/

Technical University Munich.

Gries, D. (1976b), A note on multiple assignment to subscripted variables, unpublished

manuscript, Cornell University.

Hoare, C.A.R. (1969), An aziomatic base for computer programming, Connn. ACM, 12,

pp. 5 76-580.

Janssen, T.M.V. (1976), A computer program for Montague grarrunar: theoretical aspects

and proofs for the reduction rules, in: Amsterdam papers in formal grannnar .!.._,

(J. Groenendijk & M. Stokhof eds.), Proceedings of the Amsterdam colloquium

on Montague grarrunar and related topics, pp.154-176 Centrale Interfaculteit,

University of Amsterdam.

Janssen, T.M.V. & P. van Emde Boas (1977), On the proper treatment of referencing,

9

dereferencing and assignment, Proc. 4th ICALP Conf. (Turku), Lecture Notes

in Comp. Sci., Springer Verlag, Berlin, t~ appear •.

Montague, R. (1973), The proper treatment of quantification in ordinaey English,

in: Approaches to natuz,al language (J. Hintikka, J. Moravcsik & P. Suppes eds.);

reprinted in R.H. Thomason (1974), For.mal philosophy, selected papers of

Richard Montague, Yale University press,' New Haven and London, pp. 247-270.

Partee, B. (1975), Montague grammar and transformational grammar, Linguistic Inquiry§_,

pp.203-300.

Pratt, V.R. (1976), Semantical considerations on Floyd-Hoare logic, in: Proc. 17th IEEE

Symp. on Foundations of Computer Science, Houston, pp.109-122.

1

