stichting mathematisch

AFDELING ZUIVERE WISKUNDE (DEPARTMENT OF PURE MATHEMATICS)

ZW 103/77

OKTOBER

A.E. BROUWER

ON THE PACKING OF QUADRUPLES WITHOUT COMMON TRIPLES

Preprint

2e boerhaavestraat 49 amsterdam 5777.803

BIBLIOTHEEK MATHEMATISCH CENTRON ___ AMSTERDAM ----

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-profit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O).

On	the	pa	acki	ng	of (quad	rup	les '	with	out c	ommo	on tr	ip1e	es *)					
Ъу																			
A.I	Е. В	Brou	ıweı	•															
ABS	STRA	СТ																	
			obse	erve	tha	at t	he 1	pack	ing 1	numbe	r d((3,4,	6m)	can	be 1	eadi	.1y :	infer	red
fro										eratu		. ,	ŕ				•		
KEY	. WO	RDS	5 &	PHR	ASES	5: p	ackı	ing,	qua	drup	le s	ysten	n						

^{*)} This report will be submitted for publication elsewhere

INTRODUCTION

Let d(t,k,v) denote the maximum cardinality of a family of k-subsets of a v-set such that no two of these k-sets have a t-set in common. JOHNSON [7] showed that $d(t,k,v) \leq \left[\frac{v}{k}d(t-1,k-1,v-1)\right]$ and $d(t,k,v) \leq \left[\frac{v-k}{k}d(t,k,v-1)\right]$. The first inequality is well known (and usually ascribed to SCHÖNHEIM [10]) but the second one is often reproved for special cases by some ad hoc arguments. Usually d(t,k,v) equals the upper bound obtained by repeatedly applying these inequalities; I conjecture that given t and k there are only finitely many values of v for which d(t,k,v) does not equal the Johnson bound. SCHÖNHEIM [10] determined d(2,3,v) showing that it always equals the Johnson bound:

$$d(2,3,v) = \begin{cases} \left[\frac{v}{3}\left[\frac{v-1}{2}\right]\right] & \text{if } v \not\equiv 5 \pmod{6} \\ \left[\frac{v}{3}\left[\frac{v-1}{2}\right]\right] - 1 & \text{if } v \equiv 5 \pmod{6} \end{cases}$$

In BROUWER [3] it is shown that d(2,4,v) equals the Johnson bound iff $v \neq 8,9,10,11,17,19$.

Concerning d(3,4,v) the following is known:

- (i) for $v \equiv 2$ or $4 \pmod{6}$ HANANI [5] constructed a Steiner system S(3,4,v) proving that d(3,4,v) = v(v-1)(v-2)/24.
- (ii) from this and the results of SCHÖNHEIM [10] it readily follows that for $v \equiv 1$ or $3 \pmod{6}$ we have d(3,4,v) = v(v-1)(v-3)/24.
- (iii) for $v = 0 \pmod{6}$ I announced in [2] that $d(3,4,v) = \left[\frac{v}{4} \cdot d(2,3,v-1)\right] = v(v^2 3v-6)/24$. [The case where $v = 6 \cdot 2^n$ was treated in KALBFLEISCH & STANTON [8].] The main purpose of this note is to show that this equality is a trivial consequence of results already available in the literature.
- (iv) for $v \equiv 5 \pmod{6}$ almost nothing is known. Of course d(3,4,5) = 1, and BEST ([1], see also [2]) showed that d(3,4,11) = 35. Finally there is some information on the structure of a system meeting the Johnson bound.

(Note that in all known cases d(3.4.v) equals the Johnson bound.)

THE CASE v = 6m

Let $X = I_6 \times Y$ where $I_6 = \{0,1,2,3,4,5\}$ and |Y| = m.

MILLS [9] defines a G(m,6,4,3) system to be a collection $\mathcal B$ of 4-subsets of X such that every triple in X that is not contained in $I_6 \times \{y\}$ for some $y \in Y$ is contained in exactly one 4-set $B \in \mathcal B$. He proceeds to show ([9], theorem 1) that such a system exists for all m.

[This can be reformulated by saying that for each m there exists a triplewise balanced design TBD({4,6},1;6m) such that the blocks of size 6 form a parallelclass.]

Now

$$|G(m,6,4,3)| = \frac{{\binom{6m}{3}} - m{\binom{6}{3}}}{{\binom{4}{3}}} = \frac{v(v-1)(v-2)}{24} - 5m.$$

Adding to a system G(m,6,4,3) the 3m quadruples

$$\{0,1,2,3\} \times \{y\}, \{0,1,4,5\} \times \{y\}, \{2,3,4,5\} \times \{y\} \quad (y \in Y)$$

yields a packing D(3,4,v) containing $\frac{v(v-1)(v-2)}{24} - 2m = v(v^2-3v-6)/24$ quadruples. Since this is the Johnson bound for this case it follows that

$$d(3,4,v) = v(v^2-3v-6)/24$$

for $v \equiv 0 \pmod{6}$.

REMARK

KALBFLEISCH & STANTON [8] showed conversely that for any system D(3,4,v) with $v(v^2-3v-6)/24$ quadruples (where v=6m) it is possible to partition the underlying set X into m sets of six elements such that each of the 8m non-covered triples is contained in one of these 6-sets, and each 6-set contains 8 non-covered triples. But this is the same as saying that each optimal D(3,4,v) system (with v=6m) can be obtained from a G(m,6,4,3) system in the way described above.

REFERENCES

- [1] BEST, M.R., A (11,4,4) = 35 or some new optimal constant weight codes, report ZN 71/77, Math. Centr. Amsterdam.
- [2] BEST, M.R., A.E. BROUWER, F.J. MACWILLIAMS, A.M. ODLYZKO & N.J.A. SLOANE, Bounds on codes of word length < 25, IEEE, to appear.
- [3] BROUWER, A.E., Packings of K_4 's into a K_n , JCT (A), to appear.
- [4] BROUWER, A.E., Some triplewise balanced designs, report ZW 77, Math. Centr. Amsterdam, to appear.
- [5] HANANI, H., On quadruple systems, Canad. J. Math. 12 (1960), 145-157.
- [6] HANANI, H., J. SLATER, R.K. GUY, A packing of 1005 quadruples in 30 points, written communication dated Jan. 17, 1974.
- [7] JOHNSON, S.M., A new upper bound for error correcting codes, IRE Trans. Inf. Theory IT-8 (1962), 203-207.
- [8] KALBFLEISCH, J.G. & R.G. STANTON, Maximal and minimal coverings of (k-1)-tuples by k-tuples, Pacif. J. Math. 26 (1968), 131-140.
- [9] MILLS, W.H., On the covering of triples by quadruples, in: Proc. of the 5th Southeastern conference on Combin., Graph Th. and Comp., Boca Raton, 1974, pp.563-581.
- [10] SCHÖNHEIM, J., On maximal systems of k-tuples, Studia Scientiarum Math. Hungarica 1 (1966), 363-368.

Tel Aviv, 771020