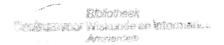
A	lower	bound	for	the	permanents	of	certain	(0,1)-matrices
bs	7							
ری	•							

ABSTRACT

M. Voorhoeve

We prove that the permanent of a n×n (0,1)-matrix with exactly three 1's in each row and column is at least $6(\frac{4}{3})^{n-3}$ for $n \ge 3$.

KEY WORDS & PHRASES: (0,1)-matrices, permanent.



1. Let $n \ge 3$ and let G_n be the class of $n \times n$ (0,1)-matrices with all row and column sums equal to 3. We define

(1)
$$g(n) = \min \{per(A); A \in G_n\}$$

VAN LINT [3, pp. 58-62] considers the problem of estimating g(n) and determining

$$g = \lim_{n \to \infty} (g(n))^{1/n}$$
.

The existence of the above limit is assured by the observation that $g(m+n) \ge g(m)g(n)$, for all $m,n \ge 3$ (cf. VAN LINT [3] p. 59). By evaluating the permanents of certain circulant matrices, Van Lint proved

$$g \leq \xi \approx 1,465...,$$

where ξ is the real zero of $x^3 - x^2 - 1$. The best lower bound for g(n) obtained thus far was

$$g(n) \ge 3(n-1),$$

proved by HARTFIEL and CROSBY [2], cf. HARTFIEL [1]. In this paper we shall prove

$$g(n) \geq 6\left(\frac{4}{3}\right)^{n-3}$$

which implies that $g \ge 4/3$. The proof is elementary and merely consists of evaluating permanents by expansion.

2. For $n \ge 1$, let \mathcal{U}_n be the class of $n \times n$ matrices with entries in $\mathbb{N} \cup \{0\}$ and with all row and column sums equal to 3. Let \mathcal{V}_n be the class of $n \times n$ matrices that are obtained by subtracting 1 from any non-zero entry of any matrix $A \in \mathcal{U}_n$. We define

$$u(n) = min \{per(A); A \in U_n\}$$

$$v(n) = \min \{ per(A); A \in V_n \}.$$

For $x \in \mathbb{R}$, let $\lceil x \rceil$ be the least integer $\geq x$.

$$\underline{\text{LEMMA 1}}. \ u(n) \geq \left[\frac{3}{2} \ v(n)\right].$$

<u>PROOF.</u> Choose A \in U_n such that per A = u(n) and let a be the first row vector of A. We may assume that a = $(\alpha_1, \alpha_2, \alpha_3, 0, \ldots, 0)$. Since $\alpha_1 + \alpha_2 + \alpha_3 = 3$, we find that

$$2a = \alpha_{1}(\alpha_{1}^{-1}, \alpha_{2}, \alpha_{3}, 0, \dots, 0) + \alpha_{2}(\alpha_{1}, \alpha_{2}^{-1}, \alpha_{3}, 0, \dots, 0) + \alpha_{3}(\alpha_{1}, \alpha_{2}, \alpha_{3}^{-1}, 0, \dots, 0).$$

So 2a is the sum of three vectors d_i (i = 1,2,3) with nonnegative entries and hence 2per A is the sum of the permanents of three matrices in the class V_n . This proves that

$$2u(n) = 2per A \ge 3v(n)$$
.

Since $u(n) \in \mathbb{N}$, this establishes our lemma.

$$\underline{\text{LEMMA 2}}. \ \ v(n) \geq \left\lceil \frac{4}{3} \ v(n-1) \right\rceil.$$

<u>PROOF.</u> Choose $A \in V_n$ such that per A = v(n). We may assume that the first row vector r is either $(1,1,0,0,\ldots,0)$ or $(2,0,0,\ldots,0)$. We distinguish these two cases.

(i) r = (1,1,0,0,...,0). Let B₁ be the matrix obtained from A by deleting r. Then B₁ has the shape c₁c₂B, where c₁ and c₂ are the first two column vectors of B₁ and B is the remaining matrix. By expanding per A with respect to r we find

$$per(A) = per(c_1B) + per(c_2B) = per(c_3B),$$

where $c_3 = c_1 + c_2$. The sum of its entries is 3 or 4, since the sum of

the entries of the first two columns of A is 5 or 6. If s = 3, then $c_3^B \in \mathcal{U}_{n-1}$, so by Lemma 1

(2)
$$v(n) = per(A) \ge u(n-1) \ge \left[\frac{3}{2}v(n-1)\right].$$

If s = 4, then we write $3c_3$ as sum of the vectors d_i (i = 1,...,4) obtained by subtracting 1 from the non-zero entries of c_3 . (Compare the proof of Lemma 1). For i = 1,...,4 one has $d_iB \in V_{n-1}$, since it has one row sum 2 and one column sum 2 and all other row and column sums equal 3. So

(3)
$$v(n) = per(A) \ge \left[\frac{4}{3} v(n-1)\right].$$

(ii) $r = (2,0,0,\ldots,0)$. Let c be the first column vector of A. We may assume that either $c = (2,1,0,\ldots,0)$ or $c = (2,0,\ldots,0)$. Let B be the matrix obtained from A by deleting the first row and column. In the first case $B \in V_{n-1}$ and in the second case $B \in U_{n-1}$. Thus

(4)
$$v(n) = per A \ge 2 per B \ge 2 min\{u(n-1), v(n-1)\} = 2v(n-1),$$

by Lemma 1.

By considering (2), (3) and (4) we find

$$v(n) \geq \left[\frac{4}{3} v(n-1)\right],$$

proving the Lemma.

THEOREM. Let g(n) be defined by (1). Then

$$g(n) \geq 6 \cdot \left(\frac{4}{3}\right)^{n-3}.$$

<u>PROOF.</u> Since $G_n \subset U_n$, we have that $g(n) \ge u(n)$ for $n \ge 3$. Now v(1) = 2, so by Lemma 2 $v(2) \ge 3$, $v(3) \ge 4$ and

$$v(n) \geq 4 \cdot (\frac{4}{3})^{n-3}$$

for $n \ge 3$. Hence by Lemma 1

$$u(n) \geq 6 \cdot \left(\frac{4}{3}\right)^{n-3}$$

for $n \ge 3$, thus proving the theorem. \square

3. By estimating less roughly, we find the following lower bounds for u(n) and v(n) from Lemmas 1 and 2

n	low. bnd. v(n)	low. bnd. u(n)
1	2	3
2	3	5
3	4	6
4	6	9
5	8	12
6	11	17
7	15	23
8	20	30

For n=1 to 6 these bounds represent the exact values of u(n) and v(n). The matrix in U_n for which the permanent equals u(n) is -up to isomorphism - unique for n=1 to 6. For n=5,6 these matrices are

$$\begin{pmatrix}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{pmatrix};
\begin{pmatrix}
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 1
\end{pmatrix}$$

respectively. It is not too hard to show that v(7) = 15, v(8) = 21 and that u(7) = g(7) = 24, realized by the incidence matrix of the Fano plane.

The question whether or not g > 4/3 still remains open. It also seems hard to generalize the above ideas to matrices with higher row and column sums and obtain a better multiplicative constant than 4/3. Such a

generalization is important in connection to the so-called Van der Waerden conjecture that the permanent of a doubly stochastic $n \times n$ -matrix is at least n! n^{-n} .

REFERENCES

- [1] HARTFIEL, D.J., A canonical form for fully indecomposable (0,1)matrices, Canad. Math., Bull. 18, 223-227 (1975).
- [2] HARTFIEL, D.J. & J.W. CROSBY, On the permanent of a certain class of (0,1)-matrices, Canad. Math., Bull. 14, 507-511 (1971).
- [3] LINT, J.H. VAN, Combinatorial Theory Seminar, Eindhoven University of Technology, Lecture Notes in Mathematics 382, Springer-Verlag, Berlin, 1974.