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Bounded discrepancy sets*)

by

R. Tijdeman & M. Voorhoeve

ABSTRACT

Let w = {Ej}§=1 be a sequence in [0,1). We define the discrepancy
function Dn by Dn(w,a) = Zn(w,a) - no, where Zn(w,a) is the number of ele-
ments in [0,a) among the first n terms of w. It is known that sup Dn(w,u)= ©
for every sequence w. In this paper sets S are characterized fgénwhich an w
exists such that sup_ Dn(w,a) < o for every o € S. Furthermore we investi-
gate sets S such that sup D (w,0) < « for some w. In particular, we

0eS,neW 1
show in Corollary 1 of Theorem 5 that such sets S have relatively large
gaps. Theorems 1-4 are based on Lemma !, which provides a construction for
sequences with small discrepancy at specific points. Theorems 5 and 6 are

applications of Lemma 3 which is proved by a method of W.H. Schmidt.

KEY WORDS & PHRASES: Discrepancy, irregularities of distribution, uniform

distribution.

*) This report will be submitted for publication elsewhere.






1. INTRODUCTION

Let U be the unit interval consisting of numbers § with 0 < & < |, and
let w = {gl,gz,..;} be a sequence of numbers in this interval. Given an o in
U and a positive integer n, we write Zn(w,a) for the number of integers i
with 1 £i £ nand 0 < Ei < o and we put Dn(w,a) = Zn(w,a) - na. For conven-
ience we define Dn(w,l) = 0 and Do(m,u) = 0 for all o, n and w. Put D(w,a)
sup an(w,a)l-

In answering a question of J.G. van der CORPUT [2], Mrs. T. van AARDENNE-
EHRENFEST [1] showed that there is no sequence w in U for which SUP_ _y D(w,q)
is bounded. P. ERDOS [3] wondered whether for every sequence w there exist
numbers o such that D(w,a) = ». This was answered by W.M. SCHMIDT [4] in the
affirmative. Later SCHMIDT [7, p.40] proved that for every sequence w even

w,o 1

lim sup éggfiégl%-> 2000

n —> o
for almost all o. SCHMIDT [5] also investigated sets at which D can remain
bounded. He demonstrated that the set S(«):= {a: D(w,a) < =} is countable
for every sequence w. Theorem 1 gives the opposite result that for
every countable subset S of U there exists a sequence w such that D(w,a) <
for every a in S. In the special case S = @ Theorem 3 gives a quantitative
result which is in a sense the best possible. We remark that SCHMIDT [6] V
generalized his result on the countability of S(«) in a very remarkable man-
ner. See also L. SHAPIRO [8].

‘ We call S a k-discrepancy set if there exists a sequence w such that
D(w,a) < k for every o in S. A bounded discrepancy set (BDS) is a set which
is a k-discrepancy set for some K. Theorem 2 states that every finite set
is a BDS. Recall that a number vy is a limit point of a set S if there is a
sequence of distinct elements of S which converges to y. The derivative S(l)

of S consists of all the limit points of S. The higher derivatives are de-
(d) S(d—l) (1)

fined inductively by S = ) (d = 2,3,...). SCHMIDT [5] proved
that S(d) is empty if s is a k-discrepancy set and if d > 4k. Furthermore
he showed that S(d) need not be empty if-S is a d-discrepancy set. This

. . -1
provides a necessary condition for being a BDS. The fact that S = {n }°°

(2)

n=2

is not a BDS while S = ¢ shows that the condition is not sufficient. The



corollary of Theorem 5 gives a property of a BDS which this set does not
fulfill: if S is a BDS then there is an € > 0 such that every interval of
length £ contains a subinterval J of length ef with J n S = (. It seems a
difficult problem to characterize BDS' in a simple way, if possible at all.
In Section 4 we argue that the essential problem already occurs for a mono-
tonic decreasing sequence with limit 0. Theorem 4 gives a sufficient condi-
tion for being a BDS and in Theorem 6 we show that in a certain case the

necessary and suffcient conditions coincide.

2. The basic tool for construction BDS' is the following lemma.

LEMMA 1. Let o, B, Y be real numbers with O < a < B <y < 1. Let V ¢ U.
Assume there is a sequence w = {En}:=1 in V such that D(w,a) <A and D(w,y) <C.

Then there exists a sequence w' = {EA}:=1 in v u {a} u {B} such that
(i) Eé = En if En e [0,a) u [y,1),

(i) g e {a,8} if £ € [a,v),

(iii) D(w',x) = D(w,x) for x € [0,0] u [vy,1),

Y-8, B 1

Y-a Y-o 2°

IA

(iv) D(w',B)

PROOF. We may assume without loss of generality that En = o if gn e La,y),
since D(w,x) for x € (a,y) is of no importance for the lemma. We shall prove

by induction on m that we can define &' € {o,B} in such a way that
m,

1 1
(1) -5 < Am <3
where
_ : _ Y-8 _ B-a
(2) A =D (w',B) - Dm(w,u). - D, (wsy).

It is obvious that AO = 0 and that (1) holds for m = 0. Suppose that m is
some non-negative integer for which the induction hypothesis holds. If

£ e [0,0) v [y,1), then we put £$+1 = £ . It follows that

m+1 m+1
_ g - Y2B iy - B2y -
Biyg = By * (1=B) - =2 (1-0) = =0 (oY) = A



if gm+1 e [0,0) and that

= - B+ ITL a4+ ——1y =
Am+1 Am 8 Y=0. @ -0 Y Am

i . . = ' =
if £m+1 € [y,1). Hence (1) holds in this case. If Em+1 o then put £m+1 o

s l 1 — . [ —
if Am < (B~a)/(y-a) - and Em+1 = B otherwise. If Em+1 = a, then

2
Y-8 B-a B-a
= + (1- + — a - — (1- = + 1 - —
Am+1 Am (1-8) Y=o ¢ Y=o (1-v) Am Y-o
and hence, by (1), -= < A < lu If &' = B, then
! ) m+1 2 m+1 !
A = A _Eg'_
m+1 m Y-ao
1 1 . . , .
and hence, by (1), —§~S Am+1 < > Thus (1) is valid with m+1 in place of m.
By the above construction a sequence w' = {EA}:—l is defined which sat-

isfies (i) and (ii). Further (iii) is an immediate consequence of (i) and
(ii). Finally it follows from (1) and (2) that
Y-8 B

=0 1
! < - —_— —_
Ip (W', B) | < = Ip_(w,0) | + — ID_(w, )] +

form =1,2,... . This implies (iv).

REMARK. Note that the discrepancy of w' is bounded in both o and B and Y.
Hence w' assumes both values in [a,B) and in [B,Y). By (i) and (ii) this

implies that both o ard B occur as terms of w'.

3. SCHMIDT [5] proved that every $(») set is countable. The following

theorem shows that every countable set is a S(x)-set.

]

THEOREM 1. For every countable set S {ul,az...} in U there exists a se-

quence w such that D(w,aj) < ofor j=1,2,... .

PROOF. Without loss of generality we may assume that O,al,az,... are dis-
tinct numbers. We shall prove by induction on m that there exists a sequence
w = {gmll,gm’z,...} in {O,al,...,um} such that



(1) D(wm,aj) = D(wm_l,aj) for 3 =1,2,...,m-1,

(ii) D(wm,aj) <o for j =1,2,...,m,

with £ = aqa,,

. s < >
(11‘1) If 1 <3j <mandg m-1,n J

is the first element of wm

m-1,n -1

then £ = da..
m,n 3
For m = 1 we apply Lemma ! with a =0, B=a,, Y=1,A=C=0, V= {o}.

Suppose that m is a non-negative integer for which the induction hypothesis
holds. Let o be the largest element of the set {0,1,u1,...,um} which is

smaller than am and let y be the smallest element of this set which is

+1

+1° Apply Lemma 1 with this o and Yy and with B = O This

,am+1} satisfying (i) and (ii). Let n be

larger than a
m

gives a sequence m& in {0,a

+1 1"

i i = ' = = ' -
the smallest integer with gm,n a. If €m+1,n o, then put wm+1 wm+1
If &'

ntl oo = B, then we form w by interchanging the first o and the first
14

m+1
B in w$+1. This change does only affect the discrepancy in (a,B], in fact

by at most 1 in absolute value. Since w is derived from W, by merely re-

+1

placing some a's by B's, the other aj's in W remain unaltered. Thus ©oq

satisfies (i) - (iii) and the induction step is complete.

[o0]

By (iii) the sequence {Em4n}m=1 is constant from some mo = mo(n) on.
Put § = gm n This induces a sequence w = {51,52,...}. By the construction
n 0
< a, if &, < o, and 2 o, if &, > o,, for all j and n. Hence
gn Ot:l * g]:n J gn J Ejln J

D(w,aj) = D(wj,aj) < owfor j=1,2,... .

The following theorem shows that every finite set is a BDS and gives
an upper bound which can only be improved by a constant factor in view of

Corollary 2.

THEOREM 2. For every finite set S = {al,az,...,am} in U there exists a se-

quence w such that

log (2m)

m for 3 =1,2,...,m.

D(w,a.) <
J
PROOF. We prove by induction on t that for every finite set {al,az,...,azt_l}
in U there exists a sequence wt such that D(wt,aj) < t/2 for j = 1,2,...,2t—1.
For t = 1 we apply Lemma 1 with o = 0, B = Ay Y = 1, A =C = 0. Suppose
the induction hypothesis is true for t. Let {u1'a2""'“2t+1_1} c U. We

may assume without loss of generality that 0 < a4y < e, < ... < a2t+1 . Put



ao = 0. There exists a sequence wé in {ao,az,a4,...,a2t+1_2} such that

D(w ) £ t/2 for i = 0,1,...,28-1. On applying Lemma 1 with a = Lo

%4
=C=1t/2 for i = O,1,...,2t—1 and combining the

B = ®oi+1’ ¥ T %2540 A

resulting sequences in an obvious way, we obtain a sequence Wy such that
t+1

D (w ,ui) < (t+1)/2 for i =0,1,...,2 -1. This proves the induction hypo-

t+1
thesis for all values of t.

Let a set S = {al,a ..,am} be given. Let t be the integer with

2"
21:_1 <m < 2t. We have shown that there exists a sequence w = wt with
1 1 log m .
< = < -1+ = - M.
D(w,aj) 5 t 2(1 log 2) for j 1,2, ,m

The following result gives a quantitative form of Theorem 1 in the

special case S = @ which is best possible in a similar way as Theorem 2 is.

THEOREM 3. There exists a sequence w such that
By <
D(w,q) < 1+4 log g

for every p/q with p,gq € Z and 0 < p < (.

foe]

PROOF. We prove by induction on t that there exists a sequence w, = {Et n}n—l
oA , =

3t . . .
in a finite set Vt of at most 2 rational numbers with the following pro-

perties:

1 >
(i) Vt—l c Vt for t =z 2,

(ii) Vt contains all numbers p2_2t with pe Z and 0 < p < 22t,

(iidi) Vt contains all numbers pq—l with p,g e Z and 0 < p < g < 2t,

(iv) if o € Vt—l and gt—l,n is the first element of W g with gt—l,n =,
then gt,n =.G,

(v) D(w, ,a) < E-t - é-for eve o in Vv

M L) 2 Ty £

For t = 1 we take V1 = {O,%T%f%} and by a double application of Lemma 1

there exists a sequence Wy in V1 such that D(ml,u) <1 for a € Vl' Suppose

t is a positive integer for which the induction hypothesis is true. We con-

t v in three steps:
struc 41 n thre 3}



k 2t+1

1 = .
Vt Vt U {22t+1' ke Z, 0<k <2 1,
k 2t+2
"o v .
vi=viu {22t+2. ke Z, 0<k<2 },
S P. t+1
Vit vtu{q.p,qez,0<p<qsz }.

Observe that at each step any two "new" points are separated by an "old"

point. Hence we can apply Lemma 1 as we did in the proof of Theorem 2 and

. 1 n mn 3 3 1) "
ge obta1n5seque?ces wis wt, W with discrepancy at Vt' Vt’ Vt+1 at most
E-t -1, E-t - o E't respectively. Clearly (i) - (iii) are fulfilled with

t+1 in place of t. For every a € Vt with the property that gt+1 n # o where

14

n is the smallest integer with & = o we make an interchange like in the

t,n

proof of Theorem 1. In such a case § is a number B € Vt+1\Vt which is

t+1,n

smaller than the smallest element of Vt which is larger than a. By inter-

changing the first a and the first B in wg' the discrepancy function re-

mains unchanged outside the interval (o,R] and changes by at most 1 in (a,B]
in absolute value. Since these intervals (a,B] are disjoint, the sequence
wt+1 which results after all interchanges have been made, satisfies (iv)

with t+1 in place of t and moreover D(wt+1,a) < é-t+1 for every a € V

2 t+1°

This completes the induction step.

By (iv) the sequence {Et,n}n=1 is constant from some t, = to(n) on.

Put En =g . This induces a sequences w = {El,ﬁz,...}. By the construc-

to,n

tion gn < a if gt n < o and En 2 o if & n 2 o for every o, n and t with
N ’ 4
o € V. Let p/q € Z with 0 < p < g < 2t. Let t be the integer with

2t_1 < q < 2t. Then p/q € Vt' Hence

D(w,‘g‘) = D(wtyg) S%t - ><1+51logg/2log2 < 1 + 4logq.

N|w

4. Suppose we want to decide whether a set S is a BDS. If it is, there

exists a sequence w and an integer d such that

(3) D(w,a) < d for every o € S.



It follows from a result of SCHMIDT [5] that S has to be countable and
4a+1
s( a+1) = . Note that Dn(w,a) = limH\o Dn(w,a+€) for every o and n. Hence

if ey is the limit of an increasing sequence in S and S satisfies (3) then

D(w,uo) < d. If a4 > 0 is a limit point of S but not the limit of an in-

in w by o, -¢ for a

0
sufficiently small € > 0 without changing D( ,a) for o € S U Sql)\{ao}. For

creasing sequence in S, then we can replace every o

this new sequence w' we have D(w',qa) = lim€+O D(w,a+e) < d. Since we can do
1 . .
so for all such aq € S( )\S simultaneously, we conclude that S is a BDS if
1
and only if S U S ) is a BDS. We may therefore assume without loss of gen-

erality that S is closed. It further follows that S(J) (3 =1,2,...) as a

subsequence of S is also a BDS. So it is sufficient to be able to decide

1
whether a set S is a BDS if it is known that S( ) is a BDS, for then one

(4a+1) | ((4Q) | (1) ¢

.. .

can apply the argument to make the transitions S
1
Let S be a set such that S( ) is a BDS. For a € S let ¢(a) denote an
1
(1 (1 and let al,az... be

all elements of S with ¢(aj) = B and aj > B ordered in such a way that

element in S with |a- ¢(a)| minimal. Let B € S

> > D i i .o
al uz a3 It is obvious that ul,a2,

al—B,az—B,... is a BDS. For the points o € S with ¢(a) = B and o < B a simi-

is a BDS if and only if

lar argument applies. So the essential difficulty is to decide whether a

monotonic sequence Oy s in U with limit O is a k-discrepancy set or

oree-
1
not. If S( ) is a BDS and there exists a constant k such that for every

B € S(l) both the points a € S with ¢$(a) = B, o < B and the points o € S
with ¢(a) = B, o > B are k-discrepancy sets, then S is a BDS itself.

The following result gives a sufficient condition for a monotonic de-
creasing sequence with limit O to be a BDS. Necessary conditions for such

sequences are given in Theorems 5 and 6.

THEOREM 4. Let {un}:=1 be a monotonic decreasing sequence in U with o >0
as n + o, If there exist a positive integer h and a constant ¢ with c < 1

such that an+h <'c0Ln for n=1,2,..., then there exists a sequence w such

that

1 + log 2h
2-2c 2 log 2

D(w,an) < forn=1,2,... .

PROOF. We prove by induction on t that there exists a sequence



={g,_ ¥, in {0 } such that
wt = gt,n n=1 in ’ath'ath-l""'al suc a
(4) D(w, ,0. ) < L for j =1,2,...,t
t’"jh 2-2c Tt
and
1 log 2h .
< + = e .
(5) D(wt,aj) 7-2c T 21092 for j 1,2, ,th

For t = 0 the assertion is true. Suppose t is a non-negative integer for
which the induction hypothesis holds. First apply Lemma 1 with o = O,

B =a ;Y = O (y=14ift=0), A=¢C= (2—2c)_1. Hence, there exists

(t+1)h th
.
a sequence w{ in {O'a(t+1)h’ath'ath—1'ath—2'""al} such that
c 1 1
' < —_— _= 1 =
D(wt,ajh) <ot 3 570 for j 1,2,...,t+1
and
1 log 2h .
! < + = .o .
D(wt'mj) 2-2c¢  21log 2 for 3 1.2, +th

Next we apply the argument used in the proof of Theorem 2 to the points

ee 0 . The only difference is that everywhere A and C have

% t+1)h-1"" th+l

to be increased by (2—2c)_1. So we obtain a sequence Wiy in

{O'a(t+1)h'a(t+1)h—1'""al} which satisfies (4) and (5) with t+1 instead

of t.
Every sequence {Et,n}t=1 is constant from some t, = to(n) on. Let

gn = lim 3 0 This defines the sequence w = {En}:=1. As before we have

1 + log 2h
2-2c 21og 2

D(wlu'_-') = D(mj,aj) < for j =1,2,... .

5. To derive further properties of a BDS we use a technique due to
SCHMIDT [5]. Since we shall work from now on with one sequence w only, we
shall suppress the variable w and write.Dn(a), etc. Let I and J be real in-

tervals. We shall use the following notations.



h_(a) = max D (o) - min D (o),
I n
nel nel

D (a,B) =D (B) - D (a) = Z(n,B) - Z(n,a) - n(B-a),
n n n

and

hI’J(u,B) =
= max(min D (a,B) - max D (a,B), min D (o,B) - max D (a,B)).
nel n ned n nel nel

The follbwing lemma involves Schmidt's basic idea.

LEMMA 2. Suppose a,B € U and suppose that J, K are subintervals of an

interval I. Then

1
hI(u)‘FhI(B) pe hJ’K(a,B)-*E%hJ(a)4-hJ(B)4-hK(a)4-hK(B))-

PROOF. [5, Lemma 5].

We use Lemma 2 to show that the average value of hI(a) in a sequence

of well-spaced points o cannot be very small.

LEMMA 3. Let )\ be a real number with O < A < %u Let c and t be positive

, t , ,
integers with 3Ac < 4. Put m = (4c) . Let I be a real interval [x,y) with

x 2 0 of length at least m/\. Let Ogrlyreees0 4 be real numbers satisfying
O‘<0L.-OL, < A¢/m for j = 1,2,...,m-1 and o, -0, = A for
3 -1 / J j+m/2 J
j = 0,1,...,5 m-1. Then, for any sequence w in U,
m—-1

1 t

- h > .
(6) — jzo 1%5) > B4

PROOF. Let J = [v,w) be any interval of length m/(4c)) with v 2 0. Take

integers a and b such that v < a < v+l and w-1 < b < w. Suppose

(7) Z, (o ) - Z (a

. m
-— K
b m-1 a m—l) z (aO) * Za(“o) - ‘

b 8c

Then, for j = 0,1,..



10

Db(aj+l§m) - Da(ocj+l§m) - Db(ozj) + Da(otj)

< Zb(am_l)-Za(am_l)-zb(ao)4-Za(ao)-(b—a)(aj+%m-aj)
m m _ _m

SB_C—(Z(-;‘—)\_—2))‘_ 80+2>\.

Hence,

hJ(aj+%m) + hJ(aj)

max D (o, ) -min D (o,
n n

) +max D (a,) -min D (o,)
+ + :
ned J+m nedJ j+am ned noJ neJ nod
m m
D e - > — = .
~ 8c 2X 8c !

On summing over j we obtain that under the supposition (7)

1
St I3 16c 2

for any positive interval J of length m/(4c)).

We use induction on t. For t = 1 we have Dn(a) + no € Z. Let
j e {0,1,...,%5m-1}. By the conditions of the lemma we have

2
< < = .
Ac 3

1
<
_ajl dj >

11 A
i in(=,= > Z lo I > r |l I > I -
Since mln(6,2 A) 3, we have aj A/3 or aj+%m A/3, where lal ge

notes the distance from o to the nearest integer. We can therefore choose
integers ie{j,j+%m} and r,s € I such that Dr(ai) - Ds(ai) > 1/4. Hence

hI(ai) > 1/4 and therefore

LI,
2

g~
8|~

mil
h_(a.) =
j=0 T 3

This proves the lemma in case t = 1.
We now assume that the assertion of the lemma holds for t-1 and we

shall deduce it for t. Put



(i-1)m im .
= — + — =
I [x+ Te ' ¥ 4Ac)] for i 1,2,3,4.

Let zj be the number of pairs (u,gu) with x+m/ (4Ac) < u < x+2m/ (4Xc)

u

We distinguish two cases.

(a) Assume Z?;i zj < m/(8c). Then (7) is fulfilled for v =
w = x+m/ (2\c) . Hence, by (8),

m

e—— ——t
l6c

RIS :
2 l6c

L
= E h (aj) >

Since J, < I, this implies inequality (o).

1 3

(b) Assume Z?;; zj > m/(8c). For every r € J, and s € J., we have

)

D (a, ,,a.) = D (o, ,,0.) 2z, = (s-r)(a.-q,
s j-1"73 r j-1"73 j j 3-1

2z, - ;EE-'AC =2z, - %u

37 4xc m i

Hence, for j =0,1,...,m-1, in case zj > 1,

N
(]

h (o, IU«-) 2
Jyrdy 3 1773

By Lemma 2, or obviously if zj = 0,

1 1
> = il
hI(aj_1)4-hI(aj) 2 7 zj+2(hJ (o,

g 1 1
Since h_(a.) = max(h-, (a.) ,h+.(a.)) = l-h (a.) +-l
I J1 97 rd3 Yy 2 J1 2
m-1 mil 1 m-1
2 ) h_(a,) 2 (h. (@) +h_ (0.)) += ) =z,
j=o T 3 g0 T 3 I3 3 4y
1 1 1
+hple ) =50y (g -5 hy (o 2 g
1 1 3
m-1 m-1 m
> ) h_ (a)) + ) h_ (o)) + 55— .
5=0 J1 Jj =0 J3 Jj 32c

BIBLIOTHEEK MATHEMATISCH CENTRUM

x+m/ (4Xc) ,

J4hy (o) +hy (ay ) )+hg

hJ3(uj), we have

11

and

E -p € [aj_l,aj) for some integer p. Hence zj is a non-negative integer.

(a.)).
J



12

On applying the induction hypothesis to Ji and the point sets {u4c£+k 2=0

we obtain

mil 4c2—1 m/(llzc)—l
h_ (a,) = h_ (o )
.=O Ji J k=0 £=O Ji 4C/€+k
> 4CZ_1 e Z:hl: = 545 (1)
k=0

for j = 1 and j = 3. Hence,

m-1 1

1 t-1 ot
m jzo'hl(aj) 64c '« Gdc  64c

This proves Lemma 3.
6. As an application of Lemma 3 we derive the following theorem.

THEOREM 5. Let Y and 6 be real numbers with O <y < § £ 1. Let H be some

positive integer. Let y = Oy rlyrees Oy = § be real numbers satisfying

N

0 < ai+1— ai < (6-v)/H for i =1,2,...,N-1. Then for every sequence
(8) max D(w,a,) = ——L——lo B
%3’ = 2000 “°9 a8 -

i=1,2,...,N

PROOF. Put £ = § -y. Let t = [log(H/3)/log 16]. So H/48 < 16° < H/3. Split
[y,8) into 3.16t parts of equal lengths and choose in every third part a
point from {al,az,...,aN}. This is possible, since /@/3.16t > £/H. This gives
: t
= i i - < - >
m = 16 points 61,82,...,Bm with Bj Bj—l 4f/(3m) . Further Bj+%m Bj £/3.
£/3 and ¢ = 4. Hence

We apply Lemma 3 with A

m-1
t log (H/48) 1 H
I b8 > 555 > Toeieg 16~ 1000 19 78 -

8|~

3=0

It follows that for any sequence w

1 log —
2000 ~°9 8"

max D(w,B.) >
3=0,1,...,m-1 .

In particular (8) holds.

}m/(4c)—1

14
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COROLLARY 1. Let S be a BDS. Then there exists an € > 0 such that every sub-
interval of U of length L contains a subinterval J of length at least ef

with J n S = {.

PROOF. Let S be any BDS. Let w be a sequence and k a positive number such
that

D(w,d) < Kk for every o € S.

Let [vy,8) be any subinterval of U. Choose H so large that

__.1__10 _H_>
2000 ~°9 28 7 K-

-1
Put € = H ~. Then, by Theorem 5, max,
i=1,...,N

-uj < e(6-y) for j =1,2,...,N-1. Thus S

D(w,ui) > k for any set

{al,...,aN} in [v,8) with 0 < aj+1

does not contain such a subset. This proves the corollary.

The following result shows that Theorems 2 and 3 cannot be improved by
more than a constant factor. (The constant (4000)—1 can be improved consider-

ably.)
COROLLARY 2. Let n > 482. Then for every sequence w

3y s 1 n o, 1
4=0 S D(w,2) 2 5560 1°9 28 * 2000 1°9 ™

7. It follows from Corollary 1 that S = {%}:=2 is not a BDS. This result
is also a consequence of the following theorem which gives a necessary and

sufficient condition for sequences satisfying a certain regularity condition.

THEOREM 6. Let al,az,... be a strictly decreasing sequence with limit O.
Suppose there exists a constant c such that o

-a < cl(o -a ) for every
n m m

-1 -1

n and m with n 2 m. Then S = {al,a ...} is a BDS if and only if for some

2I
positive integer h

OLn+h
lim sup log 3

n > « n

< 0.
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. -1 )
PROOF. Suppose lim supn+m log an+h an < 0. Then there exists a constant

c < 1 such that an+h < can for n=1,2,... . It follows from Theorem 4 that

S is a BDS. (Here we did not use the regularity condition.)

Suppose S is a BDS. Then by Corollary 1 there exists a positive number

€ such that every interval [O,Gn) contains an interval J of length ea such

that S n J = @J. Let k be such that J c (an+k’an+k—1)' Then
max o -a c—l(a ) € -1
. n+j-1" “n+j n+k-1" %k’ © F%C
j=0,...,k
Hence,
a =2 o -0 = eko c—l.
n n n+k n

-1
Thus k < cs_1 is bounded, which implies that for h = [ce "]

lim sup log “n+h < log(i-e) < 0.

n-> ® o
n
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