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INTRODUCTION

We generalize part of the results of KOSTANT and RALLIS [7] on complex
symmetric spaces to real spaces. Our selection is primarily based on appli-
cations in analysis on symmetric spaces. We are therefore concerned with the
theory of Cartan subspaces and the orbit structure., The main reference for
our results is the above work, together with VARADARAJAN 'S notes [11] on or-
bits in real reductive Lie algebras under the action of the adjoint group.

The results on Cartan subspaces are also obtained by OSHIMA and MATSUKI
[9] by a different method, probably without being aware of the existence of
[7] . Our starting point was section 1.13 in DIXMIER'S book [1] .

Let us now list the main results of this paper. Let g be a real reductive

Lie algebra and o an involutive automorphism of g. Put g = h @ ¢ , the de-

composition of g in+ 1 and -1 eigenspaces of o. Let G be the connected ad-

joint group of g and H the connected Lie subgroup of G with Lie algebra adh.

Then ¢ is stable under the action of H., A subspace @ ¢ ¢ is called a Cartan

subspace of g with respect to o if

(i) a is a maximal abelian subspace in ¢

(ii) for each x e a , adx is a semisimplé endomorphism of g.

We shall prove the following:

- There are finitely many H-conjugacy classes of Cartan subspaces in ¢. All
Cartan subspaces have the same dimension.

- Any semisimple element in ¢ is contained in a Cartan subspace.

— Let 6 be a Cartan involution commuting with o. Then any Cartan subspace
is H-conjugate to a 6-invariant Cartan subspace (g semisimple).

- H-orbits are closed in ¢ if and only if they consist of semisimple ele-
ments . .

- Let N be the set of nilpotent elements in ¢. Then N is H-stable and splits

into finitely many H-orbits.

More precise statements and additional results are given below. We shall
not make use a priori of similar results for the special case, where g is
replaced by gxg and ¢ is given by o(x,y) =(y,x). This case is well-known
since it amounts to the study of the G-space g. On the contrary, we will

consider this case purely as a special case of our situation. We shall



however use the results known for Riemannian symmetric spaces, i.e. for the
case where o is a Cartan involution and g a semisimple Lie algebra (see [4]).

In a final chapter we consider the problem of the existence of invariant
measures on H-orbits. It turns out that "regular" H-orbits admit an invariant
measure, but for general H-orbits the answer is negative. This is in con-
trast with the known affirmative answer for the special case of G-orbits
in g .

Part II, which shall appear later, will be concerned with the H-orbit
theory on G/H. We refer to OSHIMA and MATSUKI'S paper [9] for partial results
in this case. I wish to acknowledge my indebtness to M.T. Kosters, who
worked out the greater part of the content of Chapter I, following a sugges-
tion of mine.

This work was done in the framework of the project "Analysis on Lie
groups', a cooperation of the Mathematical Institute Leiden and the

Mathematical Centre at Amsterdam.
1. CARTAN SUBSPACES

We firstcollect a few technical lemmas which are basic for this section.
The proofs can be found in DIXMIER'S book [1] .
A Lie subalgebra h of a Lie algebra g is called reductive in g if the

representation ad_ of h on g is semisimple. If h is reductive in g, then

9

h is a reductive Lie algebra.

LEMMA 1. Let g be a real Lie algebra. The following statements are equiva-—

lent:

(1) g s reductive;

(i1) g is a direct sum of an abelian and a semisimple ideal;

(iii) there exists a finite-dimensional representation p of g such that
the bilinear form (x,y) = tr p(x)p(y) Zs non-degenerate.

(see [1] , Prop. 1.7.3)

LEMMA 2. Let g be a real semisimple Lie algebra, a an abelicn real Lie al-
gebra, p a finite-dimensional representation of g @ a on a real vector space.

The following conditions are equivalent:



(1) op is semisimple;
(ii) for each x € a , p(x) is a semisimple endomorphism.
(see [1] , Cor. 1.6.4)

PROPOSITION 3. Let g be a real semisimple Lie algebra with Killing form B,

mc g a subalgebra satisfying the following two conditions:

Sf) Blmxm i8 non-degeﬂerate 3

(ii) Zf x e mand x = s + n its Jordan decomposition, then s, n € m.
Then m s reductive in g.

(see [1] , Prop. 1.7.6).

From now on let § be a real reductive Lie algebra and o an involutive
automorphism of g. Let h be the + 1 and ¢ the -1 eigenspace of o on g. Then

h is a subalgebra of g and
g= heaq (direct sum)

From Proposition 3 one easily sees that h is reductive in g.

DEFINITION 4. A set a ¢ ¢ is called a Cartan subspace of g (with respect to
o) if

(1) a is an abelian subalgebra of g;

(ii) for all x € a , a%f{ is a semisimple endomorphism of g3

(iii) the centralizer of a in ¢ equals a.

Given x € g we put
QO(X) ={yeg : 3 ne N such that (adx)ny = 0},

an call it the nilspace of x.

An element x € ¢ is called generic if dim (go(x) ng) < dim (go(y)qu) for
all y € q. Clearly x € ¢ is generic if and only if the multiplicity of the
eigenvalue zero of (adx)zlq is minimal, One can show that x € ¢ is generic
if and only if the multiplicity of the eigenvalue zero of adgx is minimal
(c£.[7] , Prop.7).

Clearly the set of generic elements of ¢ is a non—empty Zariski open sub-

set of ¢, hence dense in ¢ in the Euclidean topology. Let q1 denote the



set of generic elements of ¢q .

THEOREM 5. (cf. [1], Théoréme 1.13.6).
Let x be a generic element in q. Then a

g.

go(x) n q s a Cartan subspace of

PROOF. Put g*(x) = nﬁ (adx)ng;. Then g go(x) ) g*(x) , the Fitting decom-

position of g with re;pect to adx. Since ox = - x, we have

o go(x) = go(x) and og *(x) = g*(x). Therefore go(x) =as (go(x)n h). For
y € a, both go(x) and g*(x) are stable under ady. Therefore (ady)2 aca
and (ady)z(g*(x) ngq)c g*(x) n g for all y € a. Let S be the set of all

y € a such that (ady)2 is bijective on g*(x) N q. Obviously x € S. S is a
Zariski open subset of a. Let R be the set of all y € a such that (ady)zla
is not nilpotent. R is Zariski open in a. Suppose R is not empty. Then

R n S is not empty. This would imply the existence of y € a with

dim go(y) n ¢ < dim a , which contradicts the fact that x is a generic ele-
ment of ¢. Therefore R is empty. Let y € a. Then (ady)n a = (0) for some n.
Moreover, since (ady)(go(x) nh) c go(x) n g = & we obtain,

(ady)n+lg°(x) = (0). Let L be the Killing form of go(x). Then L(y,y) = 0 for
all y € a, hence by polarization, L = 0 on a xa . Since L is o-invariant,
L(a,go(x) nh) = 0, hence L(a,go(z)) = 0. From Proposition 3 we see that
go(x) is reductive in g, hence reductive. Hence a is contained in the center
of go(x) (by Lemma 1) and ady is semisimple endomorphism of g for all y € a
(by Lemma 2). Finally let z € ¢ be in the centralizer of a. Then in partic-

ular [z,x] = 0, so z € g (x) n ¢ = d. Thus a is a Cartan subspace of g. []

Let G denote the connected adjoint group of g and let H be the connec-

ted Lie subgroup of G with Lie algebra adh.

THEOREM 6. Any Cartan subspace of g is of the form g’ (x) n q where x 18 a

generic element of q.

PROOF. (see also [1], Prop. 1.13.13).
Let a be a Cartan subspace and denote by m the centralizer of a in h. There
exist non—-zero linear forms Al,...,kn on the complexification a, of a such

)
that



Al A

g = (Ma), @ g, @ .. @ gcn s

where, as usual, 92 = {y € 9¢ ¢ [t,y] = A(t)y for all t € ac}(A € a;) .
Choose y € a such that Ai(y) # 0 for all i. Then clearly ¢ = a o (ady)2 q.
Since (ady) ¢ ¢ h, we also have ¢ = a + [h,y]. Let f be the mapping from

H x a into q given by f(h,t) = h.t and let T be the tangent map of f at the
point (l,y). Then T: h ® a — ¢ is given by T(z,t) = t + [z,y]

(z € hyt € a). So T is surjective and hence H.d contains an open neighbor-
hood of y in ¢ . Since the set of generic elements in ¢ is dense in ¢ and
H-stable, we obviously have that a contains a generic element, say x. Clear—
ly a c qo(x) n q. But go(x) is a Cartan subspace by Theorem 5, hence

a = g°(x) nq. 0

By an observation like the above, one easily shows that the map

f: Hx a - q given by f(h,t) = h.t is submersive on Hx a', where a' = a nq'.

THEOREM 7. There are finitely many Cartan subspaces @y soseeesd such that

any Cartan subspace is H-conjugate to some a .

PROOF. By a theorem of Whitney, ' has finitely many connected components,
3 o .
SaY G seeesq - Fix X, € q; and put a, =g (Xi) n q (i—l,...,n).
For any x € ¢', put a, = g°@)n q, a; =a.n q' and a the connected com-
. e + .,
ponent of a; containing x. Clearly OX = H.aX 1s an open and connected sub-

; ) + + +
set of ¢', hence OX c qi for some i. Furthermore, if z € a then ax = az ,

hence 0
x
find hl’h

Oz » Let X,y € q; . Assume Ox n Oy is non-empty. Then we can

+ +
€ H and x' € a »y' € ay such that hlx' = hzy'. Then we have

Ox = Ox' = Oy' = Oy . Since ¢, is connected we get q; = 0

let a be a Cartan subspace. Then a

N

x. for all i. Now
i

= a_ for some x ¢ a'. Let i be such that
+
X € qi - Then x = hz for some z € dy, and some h ¢ H. Hence a = Ilai . O

1

REMARK. If g is a complex reductive Lie algebra and ¢ a complex involution,
then ¢' is connected and all Cartan subspaces of g with respect to ¢ are

conjugate under H,
We recall that an element x € ¢ is said to be semisimple if adx is a

semisimple endomorphism of g.



PROPOSITION 8. Any semisimple element of q is contained in a Cartan subspace

of g with respect to o.

PROOF. Let x € q be a semisimple element. Put Px = {y € go(x) n q: (ady)2
is non-singular on.g*(x) n q}. Then x ¢ Px and Px is Zariski open in

go(x) n ¢ . The mapping (h,y) » h.y from Hx Px to ¢ is everywhere submersive.
Hence H.PX is open in ¢ and thus contains a generic element. Therefore Px
itself contains a generic element z € ¢. Since [x,z] = 0, we have

xeg (z)n q. O

A subalgebra of g consisting of semisimple elements is called a torus.
Any torus is an abelian subalgebra. A torus which is contained in ¢ is cal-

led a g-torus.

PROPOSITION 9. Any g-torus is contained in a Cartan subspace.

PROOF. Let b be a torus, b ¢ g. We can certainly find x ¢ b such that
Z(b) = Z(x)(Z denoting centralizer). By Proposition 8, Z(x) contains a

Cartan subspace d. Since [b,al] = (0), we have b c a . O

COROLLARY 10. Any maximal q-torus is a Cartan subspace.

2, ORBIT STRUCTURE ON ¢
In this chapter we follow [10], Part I, 1.
1. PRELIMINARIES

Throughout what follows g is a real reductive Lie algebra and 9 its
complexification. G (resp. Gc) is the connected adjoint group of g
(resp.gc). Let o be an involutive automorphism of g and g = h @ ¢ the cor-
responding decomposition in +1 and -1 eigenspaces. Extending ¢ to 9. in the
natural manner, 9. =’% ®q, is the corresponding decomposition in +1 and -1
eigenspaces. Denote H(resp.HC) the connected Lie subgroup of G (resp. Gc)
with Lie algebra adh (resp. adhc).

If g is semisimple, we can find a compact real form U of 9. which is



o-invariant ([8] ,p.153). Write k]& = hnuand PR = 4 ni u. Then
g = hﬂR ® Pp is the Cartan decomposition of a real form IR of 9> such
that hc = (k]R)c s qc = (p]R)c' If a]R is a maximal abelian subspace of pHP
then a, = (a]]R)c is a Cartan subspace of 9. with respect to o.

Let g be as before, a real reductive Lie algebra. Let z be the center
of g. Clearly z is o-stable. Put z, = z: ® z , the decomposition in +'1
and -1 eigenspaces with respect to 0. Write g =z & g, with g, = [g,g].
Clearly 9, is_c-stable too. Choose a Cartan subspace a, in g],c as above.
Then, a, & Z, is a special Cartan subspace of 9 with respect to o. Every
Cartan subspace of 9. is Hc—conjugate to this special one (Theorem 7,Remark),
and hence ''special".

Put I the algebra of all Hc~invariant polynomials on qq- For any in-

determinate T and x € Q. > let

m .
det(T-(adx)?) = 3§ q.(x) T .
q .2 1
c i=0
where m = dinlqc. Put £ = dimension of a Cartan subspace of Q.o and call
it the q -rank of g . Then we have q; € I, qs homogeneous of degree 2(m-i),
Ip

X € q, is generic if & (x) # 0. As usual, let qé denote the set of generic

=1, qq = 0 for 0 < s < £ and q; # 0. Let qp = €. Then, as before,

elements of Qe and put aé =a,n qé for any subset a, of qq - If a. < q,

is a Cartan subspace and A the set of roots of (gc,ac) s then
m
E(t) = M o(t) & (tea)
ael c

where m, = dinlga.

Let x € g . x is called semisimple (s.s) (resp. nilpotent) if adx is
a semisimple endomorphism of gc(resp. X € [gc,gc] and adx a nilpotent en-
domorphism of gc). Any x € g, can be written uniquely as Xt x where
X_o X €. X is s.s., X is nilpotent and [xs,xn] = 0 (Jordan decompo-
sition of x). If x € g, then X oX € g. Moreover, if x € Q. then X and

X in Qo - xs(resp.xn) is called the s.s. (resp. nilpotent) component of x.

LEMMA 11. Let x € q be nilpotent. Then there exists t € [g,g]1 n h such that
[t,x] = 2x .



PROOF. By the Jacobson-Morozow theorem, there are ty and Yo in [g,g] such

0 =t + t] where

,x] = [t,x] + [tl,x], we

that [to,x] = 2x , [to,yoJ = - 2y0 and [x,yo] = t;- Put t

teh,t, e q. Then t € [g,gl nh. Since 2x = [t

1
get [t],x] =0 and [t,x] = 2x. [

0

REMARK. One can prove a stronger result,saying that there exist
t,y € [g,8] ,t € h, y € ¢ such that [t,x] = 2x , [t,y] = -2y , [x,y] = t.

For details we refer to [7].

LEMMA 12, Let x € q. Then X, € CL(H.x) (ClL=closure) and p(x) = p(xs) for
all p € 1. x 28 nilpotent Zf and only if cx € H.x for some c # 1; in this
case cx € H.x for all ¢ > 0 and © € CL(B.x). If Q Zs a H-invariant open sub-—

set of q containing all s.s. points of q , then Q = q.

PROOF. Let z denote the centralizer of X in g . Since X, €Qq, 2 is o-in-
variant, Furthermore x and X belong to z n ¢ and z is reductive in g. By
Lemma 11, there is t € z n h such that [t,xn] = 2xn. Hence

A adt 2

e

X=x + e X — X when A - — »
s n n

So X, € CL(H.x) and p(x) = p(xs) for all p € I. If x is nilpotent, then
ezxx € H.x by the above calculation, for all A € IR. Conversely if cx € H.x
for some ¢ # 1, then x € [g,g] and ad(cx) and adx have the same eigenvalues,

which must be zero. The remaining statements are clear. O

COROLLARY 13. Let x € q be such that H.x 28 a closed subset of q. Then x

18 8.8. .

This is clear, from Lemma 12,
2. ORBITS IN qc

The greater part of this section is known (see [7]. We include it for
the sake of completeness and as preparation for the structure theory of the
orbits in q.

Let N (resp.Nc) be the set of nilpotent elements of ¢(resp. qc).



PROPOSITION 14, NC 18 the set of common zeros of all p € 1 with p(o) = 0.
Nc 18 Hc-stable and splits into finitely many orbits.

As to the first assertion, observe that if (adx)2 is nilpotent on q.s
then adx is nilpotent on gc, for x € q. - Moreover p(x) = p(o) for all nil-
potent X € q_, since 0 € CL(H.x) (Lemma 12). The proof of the second asser-
tion is due to KOSTANT and RALLIS. We shall need it in the real case also
and prove it in Theorem 23. The result for 9. follows by applying this
theorem to the real Lie algebra underlying 9.+ We omit the proof of the

second assertion therefore at this time.

Let us fix a special Cartan subspace a, of q. as in section 1. Let W
denote the Weyl group of the root system associated with the pair (gc,ac).
Then W = normalizer of acin HC/ centralizer of a, in HC.]) If I(ac) denotes
the algebra of W-invariant polynomials on a, s then I(ac) is isomorphic to
a polynomial algebra in £ variables. Furthermore, the restriction map
p —> p|a from I to I (ac) is an algebra isomorphism. All this is an easy

c . . . .
consequence of the similar results for the "Riemannian'" case (see [3])) .

Let Pys+-+sPp be algebraically independent homogeneous polynomials such

that I = € [pl,...,ptj . Let
0G0 = (py(0)5.eespp(0)), M= 67 (4(x))  (xeq) .

¢ is constant on HC- orbits and each Mx is HC - stable.

LEMMA 15. Let a, be a Cartan subspace of q. and put ¢4 = ¢|a . Then
—_— Cc (&

9 4. —C 18 surjective and proper.
c

PROOF. The surjectivity can be shown by the method of [5], 23, exercise 9.
If A is the set of roots of (gc,ac), then for t € a, the numbers a(t) (ceAd)

are the roots of the equation (in z)

1) This can be shown similar to: N.R. Wallach, Harmonic analysis on home-
geneous spaces, Marcel Dekker, Inc. New York(1973); Proposition 8.9.6.
Observe that the right-hand-side is a finite group.
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m-1 .
z2m + 2 q. (t) 221 =0 .
. i
1=0
m
Hence Ia(t) I < X lqi(t) l (a e, t eac)
i=0
The proof of the properness is now easily completed as in [11], Part 1,

Lemma 6. [
For any orbit y in qc , put ¢Y = ¢(x) (xey).

PROPOSITION 16. The s.s. orbits in q,are precisely the closed onig, and the
map Yy > ¢'Y 18 a bijection of the set Of all s.s. orbits onto C . If

c
the correspondence y > y n a, 18 a bijection of the set of all s.s. or-—

a, < q, 18 a Cartan subspace and W is the Weyl group of the pair (gc,ac),

bits onto the set of all W-orbits in a,. Let x € q. Then M 18 a finite
union of orbits, exactly one of which is closed, and this one consists of
all s.s. elements of M%. Moreover, x'e MX if and only i1f x; € Hc.xs.

Furthermore, we can write Mi =0, UsoaU OS where the 0i are disjoint orbits,

1
0. U... U 0 8 closed and contains 0. as an open subset for i=1,...,s.

Finally, if X 18 generic then M= H_.x.

PROOF. This is similar to the proof of [11], Part I, Proposition 7. O

PROPOSITION 17. Let x € q, Then H, .x 18 open in its closure in q. and s
a regularly imbedded submanifold of q.- If Zc 18 the centralizer of x in
H, then hz, — hx Zs an analytic diffeomorphism of HC/Zc onto H_.X.

This can be shown similar to [11], Part I, Proposition 8.

LEMMA 18. Let a, < q, be a Cartan subspace. For B c a, let < B > be the
set of atl-x € Qe such that X, € HC.B. Then < B > is open (resp.closed) in

q, if B is open (resp.closed) in a,.

PROOF. Similar to the proof of [11], Part I, Lemma 9.

LEMMA 19. Let a, be a Cartan subspace and a, < a, any subset. Then the cen-

tralizer of a, in G, 18 connected.
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For the proof, we refer to [11], Part I, Lemma 10.
3. HC—INVARIANT OPEN SETS IN qc . THE SETS Uw’vw'

We start with a result by KOSTANT & RALLIS ([7], Proposition 1).

Let Hc o denote the subgroup of elements a ¢ G which commute with o. Then
9

hcand q,are obviously stable under HC and the identity component of H_ o

3 9

is just Hc' Let a, be a Cartan subspace of 9. with respect to o, put
A = exp ad a, and let F be the finite group of all elements of order 2 in

A. Clearly F ¢ H
c,0

and therefore normalizes Hc G’
]

H

PROPOSITION 20. One has H =F.H .
c,0 c

See also Theorem 31.

Fix a s.s. element x € q, Clearly gg(x) is the centralizer of x in
9. Let ZC be the centralizer of x in Hc. Clearly Zg c Zc c Z(x)c,o where
Zéx)0 is t?e ce?trallzer of x in GC and Z(x)czCf = Z(X)C n Hc,c . Ob?l?usly
Zc is the identity component of Z(x)c’0 » As in the proof of Proposition 8,
we put
PX = {y'egg(x) nq,: (ady)2 is non-singular on gZ(x) n qc}. Then x € PX .
ijs Zc stable and is an open dense subset of gg(x)twqc . The mapping
T 2 Hc X PX — q, defined by w(h,y) = h.y is everywhere submersive. Hence
Hc'U is open in Qe for every open subset U of'PX - Leta_ < gZ(x) nq, be a
Cartan subspace of gg(x). Then a, is also a Cartan subspace of 9.- Further-—
more, X € 4 . Let W (resp. WX) denote the Weyl group of (gc,ac)
(resp.gg(x),ac). The W, is the centralizer of x in W. We can find an open

S for all

ot . .. _
s wy in ac, containing x, such that Wy < Px’ Wo wo

s .
sewx,wonwo—(b_lfseW\Wx.
For any subset w c ac we put

Uw = {y

Zc w =2 w. Moreover, if w is open (resp. closed) then U, is open (resp.

y € gg(x) nq, > s.s. component of y lies in ch} . Note that

0 O e

closed) in go(x) ng . Let V. =H .U . Observe that for w e a_n P_ we
c c ) cw c X
have that y ¢ V implies M < V . Indeed, if y ¢ U then y_ € U ; hence
w y w w s w
y € Vw implies Vg € Vw . Since My = Mys we may assume that y is semisimple
abd also that y € Uw . Let y' € My . Then hy; =y for some h ¢ Hc . Put
n = }1y£. Since y € P, we have gg(y) ngq,-< gg(x) N q. Therefore
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0 0
n € QC(X) n q, » hence hy' € g.(x)n G, and (hy')S =y . Consequently

1] )
hy' € Uw and hence y' ¢ Vw'

PROPOSITION 21. For any open set w c Wy » Uw 18 open in PX and V. is open
w

in Q.- U, 18 Z, - invariant and contains, along with any element, its s.s.
component. Moreover,

h e Hc , h Uw n Uw #@ = he Zc .

PROOF. We only have to prove the last statement. Let h € Hc be such that

h U& n Uw # @ . Since the generic elements in Px are dense in PX, there is
a generic element y € Uw such that hy e Uw . There exist h],h2 € ZC such

that t = h_ly € w and h = hzhh Then

1 2 0 1°

h0 *a,=a,, so hOlac € W. By the definition of Wg» hOIac = kO'a for some

k. ¢ H with k
0 c
O

hh]t € w and both generic. Put h

X = x. Consequently , h,x =x, so h, € Zc , hence h € Zc'

0 0 0

4. H-ORBITS IN ¢

THEOREM 22, Let x € q. Then H.x is closed if and only if x is semisimple.
In this case, (Hc.x) n q has finitely many connected components; each com-—

ponent is a closed H-orbit and H.x is the component containing x.

PROOF. H.x can be closed only when x is s.s. by Cor. 13. Conversely, let

o as before (with respect to x) and let

X € q be semisimple. Define w
U="0, n go(x) , V=H,U., Then V is an open subset of ¢. We assert that

Vn ch x =H.x. If y = hx = kx' € V for some x' ¢ U, h ¢ HC and k € H,

then we get from Proposition 21, h_]k € Zc’ hence h.x = k.x, and so

y = k.x € H.x. So H.x is open in Hc.x n q. This argument can be used for

all x' € Hc.x N qG. Therefore, each H-orbit in HC.X n q is open in Hc.x n q,
showing that they are precisely the connected components of H,.xn ¢, and that
they are all closed also, since Hc.x n q is closed in q. They are finite in
number since Hc.x n a is finite for all Cartan subspaces a < ¢ and since

there are only f%nitely many H-conjugacy classes of Cartan subspaces in ¢. []
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We now come to nilpotent orbits in ¢ and prove the theorem alluded to

under Proposition 14, for the real case,

THEOREM 23. Let N be the set of nilpotent elements in q. N splits into fi-

nitely many H-orbits. Moreover, we can write N = 0. u...U 0, where the 0,

1
are disjoint orbits and for 1 < i < s, 0i U.eeU O is a closed set con-

taining 0. as an open subset; o, = (0).

The closed orbit in N is (0) by Cor. 13. It is enough to show that N
splits into finitely many H-orbits. The other assertions are direct conse-
quences of the Baire category theorem.

The proof of Theorem 23 is due to KOSTANT and RALLIS in the complex
case. The arguments for the proof in the real case are quite similar. For
completeness we include the headlines of the proof in the form of three
lemmas.

A set of three linearly independent elements (t,x,y) in g is said to
be an S-triple if the relatiomns: [t,x] = 2x , [t,y] = - 2y and [x,y] = t are
satisfied. An S-triple (t,x,y) will be called a mormal S-triple if t € h
and X,y € ¢ . H operates on the set of normal S-triples by h(t,x,y) =
(ht,hx,hy).

LEMMA 24. Any 0 # x € N can be embedded in a normal S-triple (t,x,y).Moreover
this sets up a one—to-one correspondence between the set of all H-orbits

in N-= (0) and the set of all H- conjugacy classes of normal S—triples in g.

PROOF. Similar to [7], Proposition 4. In fact, everything stated is valid

if we replace C by any field of characteristic zero. O

It is well-known that any two elements of an S-triple uniquely deter-

mine the third (cf.[6] , Cor. 3.5)

LEMMA 25. Let (t,x,y) be a normal S—triple. There exist finitely many
XpseensX and Yysees¥y in N-= (0) such that

(1) (t’xl’yl) y oo ,(t,xn,yn) are normal S-triples
(ii) any normal S-triple of the form (t,x',y') <s H- conjugate to one of

the normal S- triples (t,xi,yi) , 1 £1i<n.
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PROOF. Let g o, h° and qo be the centralizers of t in g, h and ¢ respectively.
Obviously g° =h’ e qo, since ot = t. Let H c H be the Lie subgroup corre-
sponding to ad h°. Now let gz,llz and q2 be respectively the spaces of all
ze€g, hand q such that [t,z] = 2z. Then g2 =i’ e qz.

The relation [go,gz] c g2 implies [ho,qzj c qz , so that q2 is H -invariant.
Let V be the Zariski open set of all z € q2 such that [ho,z] = q2 .

V is not empty since x ¢ V . V is clearly Hostable. On the other hand if

z € V, then the tangent space to the orbit H .z ¢ V at z is just [ho,z] =q2,
so H .z is open in V., By a theorem of Whitney, V has finitely many connected
components,‘which are all Ho—invariant, hence they are all of the form 1.z
for some z € V. So there exist XiseeesX € V < N such that for all normal
S-triples (t,x',y') we have: hx' = X for some i (I<i<n) and some h € H .
Hence H(t,x',y') = (t,xi,yi) where y; = hy! Note that s is determined by

t and x.. 0

LEMMA 26. Let X be the set of all t € h which appear in normal S-triples of
the form (t,x,y). Then X iZs H-stable and splits into finitely many H-orbits.

PROOF. This is similar to the proof of [7], Theorem 2, observing that any
t € X is contained in one of the finitely many H-conjugacy classes of Cartan

subalgebras of the reductive Lie algebra h . 0
The proof of Theorem 23 follows now easily from the above lemmas.

THEOREM 27. Let Xy € ¢q and let Z be the centralizer of X, in H. Then H.x
18 open in its closure in ¢, 1s a regularly embedded analytic submanifold

of q and hZ — h.x, 78 an analytic diffeomorphism of H/Z onto H.x

0 0°

PROOF. Similar to the proof of [11] , Part I, Theorem 17. 0
3. COMPLEMENTS

In this chapter, g is a real semisimple Lie algebra with Killingform
B and o an involutive authomorphism of g. Let 6 be a Cartan involution of g
which commutes with o (such 8 exist, see for instance [8] , p.153). Let

h,q and k,p be the +1 and -1 eigenspaces of ¢ and 6 respectively. Then we
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have
g=hegq = ke p.

Let H (resp.K) be the connected Lie subgroup of G with Lie algebra ad h
(resp.ad k).

THEOREM 28. Let a < q be a Cartan subspace of g with respect to o. There

exist hye H such that hy.a s a 6-stable Cartan subspace of g with respect
to o.

PROOF. Fix a generic element x € ¢ such that a = go(x) n qg. The orbit H.x
is closed in ¢ by Theorem 22. Put

f(h) = - B(hx,8(hx)) (heH).

00
Then f is a positive C -function on H, which takes its minimum in a point

hO € H. In particular,

d tady
It f(ho.e ) =0 for all y e h.

So
B(hy [y,x1,8 (hy.x)) + B (hyx, 6 (hy.[y,x]) =0,

hence, since 62 =1, B(S(ho.x) s [y,ho.xj) =0 for all y e h, and also
B( [e(ho.x),ho.x] ,y) =0 for all y e h.
Since B is non-degenerate on h x h , we get [e(ho.x) ,ho.x] = 0. Note that

8(q) = ¢q. Therefore'e(ho.x) € h..a and hence e(ho.a) = h..a. O

0 0

THEOREM 29. Let both a and b be 6-stable Cartan subspaces of g with respect

to o which are H-conjugate . There is h0 € Hn K such that h0 a = b.

PROOF. Choose h € H such that h a = b.
Then clearly hl(arwk) = b nk and hl(afwj) = bnp. Since H= HnK,
exp ad(hnp) = exp ad(hn p) . H n K, being just the Cartan decomposition of

H, we can write
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h = exp adt . h; where t ¢ hnp, h

| € Hn K.

0

h..z € b n k. From

Let z € a n k be arbitrary and put u :

h]. exp adz . h]] = exp ad u

we get

-1

0 exp(-adt) = exp adu and

exp adt . h, .exp adz h

0

also, by applying € (which can be lifted to G) ,

« exp adz h_l exp adt = exp ad u

exp(—adt) - h 0

0
and thus,

exp ad(-u) . exp 2 adt . exp ad u = exp 2 adt.

By diagonalizing adt , we see that exp ad u and exp adt commute. Consequent-—

ly, exp ad h = exp ad u for all z € a n k. Therefore h,. z = u and thus

.z
0 0
ho(a nk) = bn k. Similarly ho(arwp) = b n p and hence ho a=5b. 0

PROPOSITION 30. Any 6-stable q-torus is contained in a @-stable Cartan sub-—

space of g with respect to o.

PROOF. Let b be a 6-stable g¢-torus. Denote by Z(b) the centralizer of b in
g. Z(b) is both ¢ and 6-stable. Also ¢-rank Z(b) = g-rank of g. Let Z
denote the center of Z(b). Clearly Z is both o and 6-stable and b < Z n gq.
Let a, be a 6-invariant Cartan subspace of [Z(b),Z(b)] n q. Such a, exist
by Theorem 28 and the fact that the restriction of 6 to [Z(b),Z(b)] is a
Cartan involution of [Z(b),Z(b)]. Thena =2 n q e c:(.l is a 6-invariant
Cartan subspace of g with respect to ¢ , containing b. U

Let H0 be the subgroup of G consisting of all g € G which commute with o .
Clearly H is the connected component of e in Ho . Let a € g nk be a torus
of maximal possible dimension.

Put A =-exp ad a and let F = {aec A: a = el}.
r
20 if r. = dim A.

Note that card F = 0

]
o
jan]

]
=]
i

THEOREM 31. HG
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PROOF. Clearly F c H0 . Indeed, if x € a, then ox = - x and hence a° = a_1
for all a € A. For a € F we have a = a_l, so a° = a. Conversely let h e H .
o}

Put P = exp ad p. Then G = K P and K n P = (e). Write
h = k.exp ad x (keK,xep).

Applying o to both sides gives

h = k° exp ad o(x) ,

hence k = k% and 0(x) = x. Therefore k € K n Hc and

xe hnp, sohe (KIWHG).H . The pair (K,KrﬁHO) is a compact symmetric
pair. Let L be the connected component of the identity of K n H0 . Then
L < H. It is known that K=L A L (see [4], Theorem 6.7). So, any

y € Kn H_can be written as y =-ela £2 with a € A, 21,29 e L. Applying

o} -1

o to both sides we get y = ET acﬂg = Kl a’ £, hence a = a’ = a~'. Thus

2’
ye LFL, sohe LFLH = LFH = LHF = HF. O

Theorem 31 generalizes Proposition 20.
4, INVARIANT MEASURES ON H-ORBITS

In this chapter g is a real reductive Lie algebra with involution o .
We keep to the notation of the previous chapters.

It is well-known that any G-orbit in g admits an invariant measure,
which even can be viewed as a tempered Radon measure on g . Here we present
some (partial) results on the existence and properties of invariant measures
on H-orbits in ¢. It turns out that in general not every H-orbit admits an
invariant measure. Let us therefore consider the following example.

Let G = S L(n,R), H, = S(GL(1,R) X GL(n-1,R)), (n23) .

0
. . _11*}\
— Let J be the matrix given by J = o - ) and ©
the involution on G given by ox = JxJ . Then H0 ={xeG:0x =x} .

= Lifting o to the Lie algebra g = sf{(n,RR), we get the usual decomposition

g = h ® ¢ with ¢ the space of matrices
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x(p,q) = . , where

n-
P = (pl""’pn—l) e R
- H0 acts on q . If

(h € GL(n-1,R)),

then

1

g. x(psq) = x (det h-1~p h ,deth.hq)

Here we regard p as a (n-1) x1 matrix and q as a 1 x(n-1) matrix.
=1

n
- For x = x(p,q) , put Q%) = igl p;4; -

Denote H the identity component of HO . Then

«.--]: heGL, (n~1,IR) } .

” m— -

- The H-orbits in ¢ are:
(1) Q) = a (a#0) (generic orbits)

(ii) the four nilpotent orbits

01 = { X(p,O) HE # 0 } 9 02 = { X(O’q) - q # O} 9
O3 = { X(p,q) :Q(x) =0, p#0, q# 0} and
OO = { X(0,0)} o

- The orbits O1 and O2 do not admit an invariant measure, but O3 does

(03 is a so-called g-regular H-orbit).

Since O, = H x(el,O) , we have to compute the Haar modulus A] of

1
Stab x(el,O) =
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deth! 0...0

- 0 . -
{ g = - deth-] %-...%| s det g =1, h e GL +(n—l,IR)} .
i 0
0 . *
0

one easily gets Al(g) =o %= (det h)*.
A similar observation gives Az(g) = (det h)_n for g € Stab X(O,e]).Finally,

Stab x(ez,eﬂ) is unimodular. We leave the proof to the reader (do.it!)

What can be said about the general situation.
Call x € ¢, q-regular if dim H.x = n - £ , where n = dim ¢. Denote R the
set of ¢ — regular elements. Obviously Z' < R and g is a Zariski open subset
of q .Let I be, as before, the algebra of Hc— invariant polynomials on Q.
and let Pyse++sPp be algebraically independent homogeneous elements of I such
that I = € Epl""’Pﬁ ]. We may ssume that Py>--->Pp are real-valued on q.
By a result of KOSTANT and RALLIS ([7] , Theorem 13), the differentials
dp],...,dpz are linearly independent in each point of R, Let Q : ¢ —> ]RK
be the mapping defined by Q(x) = (PI(X)""’pK(X)) . Then Q : R — ]Ie is
a submersion, hence in particular, Q(R) is an open subset of BRK . Fix a
translation invariant measure dx (resp.dy) on ]iz (resp.R). If Q c ﬂﬂi is
an open set, we put CO(Q) the space of continuous functions f on Dgg with

compact support and Supp f ¢ Q.

THEOREM 32. There exists a well-defined map £ — M of Cy(R) onto
CO(Q(R)) such that for all ¢ € CO(Q(R)) one has

J $(Q(x)) £f(x) dx = { ¢(y) Mc(y)dy .
4 Q(R)
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Moreover
Supp (M) < Q (Supp £).

This theorem is a special case of a general theorem by HARISH-CHANDRA (see
[3]1, p.274).

For y € IRE put ;Y ={xe R:Qx) =v1}. Fy is a closed subset of R. If

y € Q(@') , then Py ={xeq: Q(x) =y} and hence a closed subset of q.
Note that TO =R n N. Both Fo and Py (y €Q(q')) are H-stable and splits
into finitely many (open) H-orbits of the same dimension (cf.Theorem 22,23).
Let y € Q(R) be fixed. Then f Mf(y)(f eCO(R)) defines a positive measure
on R with support contained in Fy. This measure is clearly H-invariant and
non-zero, since the map f Mf is surjective. Therefore this measure de-
fines an H-invariant non-zero positive measure on Fy and also on each H-

orbit, contained in Fy . Resuming :

THEOREM 33. Any q-regular H-orbit in q carries an H-invariant positive mea-—

sure,

On generic orbits in ¢ , these measures can of course be considered as
Radon measures on ¢. For g-regular nilpotent orbits this is still an open
problem (except in special cases). Let £ = 1 and dim ¢ >2. If H.x is a ¢-
regular orbit in ¢ , then the invariant measure on H.x defines a tempered
Radon measure on ¢. This cas be shown by the method used in ([10], Propo-

sition 2-5.) .
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