
stichting 

mathematisch 

centrum 

AFDELING ZUIVERE WISKUNDE 
(DEPARTMENT OF PURE MATHEMATICS) 

G. VAN D IJ K 

ORBITS ON REAL AFFINE SYMMETRIC SPACES. 
PART I: THE INFINITESIMAL CASE 

Preprint 

~ 
MC 

zw 172/82 MAART 

kruislaan 413 1098 SJ amsterdam 



Punted at .the Mathematic.al. Cen.:tlLe., 413 Kll.l.U6laa.n, Am6.tvu:l.am. 

The Ma:thema.:ti.c.ai. Cen.:tlLe , 6ou.nded .the 11-.th 06 Febtr.wVLy 1946, -l6 a. non­
pJr.o6U w.tit.uti.on a,i.mi,ng at .the pJc.omo.tlon 06 puJr.e mathemati.C-6 a.nd Lt6 
a.ppUc.ati.on6. 1.t ,l6 .6pon6oJt.ed by .the Ne.theJLR.a.nd6 GoveJLnment .thMugh .the 
Ne.thell1.a.ncl6 OJz.ga.ni.za.Uon 6oJt. .the Adva.nc.ement 06 PuJt.e RueMc.h (Z.W.O.). 

1980 Mathematics subject classification: 17BOS, 43A85 



Orbits on real affine syrmnetric spaces. Part I: the infinitesimal case*) 

by 

.. **) G. van D1.Jk 

ABSTRACT 

An exposition is given of the infinitesimal orbit theory on real affine 

symmetric spaces. Main references are the results by Kostant and Rallis on 

complex symmetric spaces and the treatment by Varadarajan of the theory of 

orbits under the adjoint group. Partial results are due to Oshima and 

Matsuki. In a final chapter we consider the problem of tl;le existence of 

invariant measures on the orbits in syrmnetric spaces. 
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INTRODUCTION 

We generalize part of the results of KOSTANT and RALLIS [7] on complex 

symmetric spaces to real spaces. Our selection is primarily based on appli­

cations in analysis on symmetric spaces. We are therefore concerned with the 

theory of Cartan subspaces and the orbit structure·. The main reference for 

our results is the above work, together with VARADARAJ~N'S notes [11] on or­

bits in real reductive Lie algebras under the action of the adjoint group. 

The results on Cartan subspaces are also obtained by OSHIMA and MATSUKI 

[9] by a different method, probably without being aware of the existence of 

[7] • Our starting point was section 1.13 in DIXl1IER 1 S book [1] • 

Let us now list the main results of this paper. Let g be a real reductive 

Lie algebra and a an involutive automorphism of g. Put g =he q, the de­

composition of gin+ and -1 eigenspaces of a. Let G be the connected ad­

joint group of g and H the connected Lie subgroup of G with Lie algebra adh. 

Then q is stable under the action of H. A subspace a c q is called a Cartan 

subspace of g with respect to a if 

(i) a is a maximal abelian subspace in q 

(ii) for each x Ea, adx is a semisimple endomorphism of g. 

We shall prove the following: 

- There are finitely many H-conjugacy classes of Cartan subspaces in q. All 

Cartan subspaces have the same dimension. 

- Any semisimple element in q is contained in a Cartan subspace. 

- Let e be a Cartan involution commuting with a. Then any Cartan subspace 

is H-conjugate to a a-invariant Cartan subspace (g semisimple). 

- H-orbits are closed in q if and only if they consist of semisimple ele­

ments • 

Let N be the set of nilpotent elements in q. Then N is H-stable and splits 

into finitely many H-orbits. 

More precise statements and additional results are given below. We shall 

not make use a priori of similar results for the special case, where g is 

replaced by g x g and a is given by a(x,y) =(y,x). This case is well-known 

since it amounts to the study of the G-space g. On the contrary, we will 

consider this case purely as a special case of our situation. We shall 
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however use the results known for Riemannian symm.etric spaces, i.e. for the 

case where a is a Cartan involution and g a semisimple Lie algebra (see [4]). 

In a final chapter we consider the problem of the existence of invariant 

measures on H-orbits. It turns out that "regular" H-orbits admit an invariant 

measure, but for general H-orbits the answer is negative. This is in con­

trast with the known affirmative answer for the special case of G-orbits 

in g • 

Part II, which shall appear later, will be concerned with the H-orbit 

theory on G/H. We refer to OSHIMA and MATSUKI'S paper [9] for partial results 

in this case. I wish to acknowledge my indebtness to M.T. Kosters, who 

worked out the greater part of the content of Chapter I, following a sugges­

tion of mine. 

This work was done in the framework of the project "Analysis on Lie 

groups", a cooperation of the Mathematical Institute Leiden and the 

Mathematical Centre at Amsterdam. 

I. CARTAN SUBSPACES 

We firstcollect a few technical lennnas which are basic for this section. 

The proofs can be found in DIXMIER'S book [I] 

A Lie subalgebra h of a Lie algebra g is called reductive in g if the 

representation adg of hong is semisimple. If his reductive in g, then 

his a reductive Lie algebra. 

LEMMA I. Let g be a real Lie algebra. The foll(Ju)ing statements are equiva­

lent: 

(i) g is reductive; 

(ii) g is a direct sum of an abelian and a semisirrrple ideal; 

(iii) there exists a finite-dimensional representation p of g such that 

the bilinear fom (x,y) + tr p(x)p(y) is non-degenerate. 

(see [I] , Prop. 1.7.3) 

LEMMA 2. Let g be a real semisimple Lie algebra, a an abelian Peal Lie al­

gebra, pa finite-dimensional representation of g ea on a real vector space. 

The following conditions are equivalent: 



(i) pis semisirrrpZe; 

(ii) for eaah x €a, p(x) is a semisirrrpZe endomorphism. 

(see [l] , Cor. 1.6.4) 
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PROPOSITION 3. Let 9 be a reaZ semisirrrpZe Lie algebra with KiZZing form B, 

m c g a subaZgebra satisfying the foUowing two aonditions: 

(i) Blmxm is non-degenerate; 

(ii) if x € m and x = s + n its Jordan deaorrrposition, then s, n € m • 

Then m is reduative in g • 

(see [l] , Prop. 1.7.6). 

From now on let g be a real reductive Lie algebra and cr an involutive 

automorphism of g_. Let h be the + 1 and q the -1 eigenspace of cr on g • Then 

his a subalgebra of g and 

g = h sq (direct sum) 

From Proposition 3 one easily sees that his reductive in g. 

DEFINITION 4. A set a c q is called a Cartan subspace of g (with respect to 

cr) if 

(i) a is an abelian subalgebra of g; 
(ii) for all x € a , acI_gx is a semis imp le endomorphism of g; 

(iii) the centralizer of a in q equals a. 

Given x € g we put 

0 

9 (x) = { y € g 
n 3 n € lN such that (adx) y = O}, 

an call it the nilspace of x. 

An element x € q is called generic if dim (g 0 (x) nq) ~ dim (g 0 (y) nq) for 

ally€ q. Clearly x € q is generic if and only if the multiplicity of the 

eigenvalue zero of (adx) 21q is minimal. One can show that x € q is generic 

if and only if the multiplicity of the eigenvalue zero of ad9x is minimal 

(cf. [7] , Prop. 7). 

Clearly the set of generic elements of q is a non-empty Zariski open sub­

set of q , hence dense in q in the Euclidean topology. Let q 1 denote the 
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set of generic elements of q. 

THEOREM 5. (cf. [I], Theoreme 1.13.6). 
0 

Let x be a generic element in q. Then a= g (x) n q is a Cartan subspace of 

g. 

* ~ n o * PROOF. Put g (x) = n!h (adx) g. Then g = g (x) EB g (x) , the Fitting decom-

position of g with respect to adx. Since ox= - x, we have 
0 0 * * 0 O a g (x) = g (x) and og (x) = g (x). Therefore g (x) = ae (g (x) n h). For 

0 * 2 y Ea, both g (x) and g (x) are stable under ady. Therefore (ady) a ca 
2 * * and (ady) (g (x) n q) c g (x) n q for all y E a. Let S be the set of all 

y Ea such that (ady) 2 is bijective on g*(x) n q. Obviously x ES. Sis a 

Zariski open subset of a. Let R be the set of ally Ea such that (ady) 2 1a 

is not nilpotent. R is Zariski open in a. Suppose R is not empty. Then 

Rn Sis not empty. This would imply the existence of y Ea with 

dim g 0 (y) n q < dim a, which contradicts the fact that xis a generic ele­

ment of q. Therefore R is empty. Let y Ea. Then (ady)n a= (O) for some n. 

Moreover, since (ady)(g0 (x) n h) c g0 (x) n q =awe obtain, 

(ady)n+lg0 (x) = (0). Let L be the Killing form of g 0 (x). Then L(y,y) = 0 for 

ally Ea, hence by polarization, L = 0 on axa. Since Lis a-invariant, 

L(a,g0 (x) nh) = O, hence L(a,g 0 (z)) = O. From Proposition 3 we see that 

g0 (x) is reductive in g, hence reductive. Hence a is contained in the center 
0 

of g (x) (by Lennna I) and ady is semisimple endomorphism of g for ally Ea 

(by Lennna 2). Finally let z E q be in the centralizer of a. Then in partic­

ular [z,x] = O, so z E g 0 (x) n q = a. Thus a is a Cartan subspace of g. D 

Let G denote the connected adjoint group of g and let H be the connec­

ted Lie subgroup of G with Lie algebra adh. 

0 

THEOREM 6. Any Cartan subspace of g is of the form g (x) n q where x is a 

generic element of q. 

PROOF. (see also [I], Prop. 1.13.13). 

Let a be a Cartan subspace and denote by m the centralizer of a in h. There 

exist non-zero linear forms A1, ••• ,An on the complexification ac of a such 

that 
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where, as usual, gt= {y E gt : [t,y] = >..(t)y for all t E a.a)(>.. E a«:) • 

Choose y E a. such that >... (y) :/. 0 for all i. Then clearly q = a EB (ady/ q. 
i 

Since (ady) q c h, we also have q =a+ [h,y]. Let f be the mapping from 

Hxa into q given by f(h,t) = h. t and let T be the tangent map off at the 

point (l,y). Then T: h Ell a - q is given by T(z,t) = t + [z,y] 

(z E h,t Ea.). So T is surjective and hence H.a contains an open neighbor-

hood of y iJJ. q . Since the set of generic elements in q is dense in q and 

H-stable, w1e obviously have that a contains a generic element, say x. Clear-
o . 0 

ly a c q (x) n q. But g (x) is a Cartan subspace by Theorem 5, hence 
0 

a= g (x) n q. • 

By an observation like the above, one easily shows that the map 

f: Hx a+ q given by f(h,t) = h.t is submersive on Hx a', where a'= a nq'. 

THEOREM 7. '."l'here are finitely many Cartan subspaces a 1 ,a.2 , ••. ,an such that 

any Cartan subspace is H-conjugate to some a . • 
i 

PROOF. By a theorem of Whitney, q' has finitely many connected components, 
0 

E q. and put a. = g (x.) n q 
i l. i 

(i=l, ••. ,n). say q 1, ... ,qn. Fix xi 

For any x E q', put a = g 0 (x) n q, a'.' = a n q' and a+ the connected com-
x X X X 

f I •• 1 1 0 +. ponent o a containing x. C ear y = H.a is an open and 
X X X 

set of q', hence O c q. for some i. Furthermore, if z Ea+ 
X i X 

connected sub­
+ + 

then a = a 
X Z 

hence O = 0 • Let x,y E q. Assume O n O is non-empty. 
X Z + i + X y 

find h 1,h2 EH and x' E ax,y' E ay such that h 1x 1 

Then we can 

0 = 0, = 0 , = 0 . Since q. is connected we get 
X X y y i 

= h2y'. Then we have 

q. = Ox. for all i. Now 

let a be a Cartan subspace. Then a= a for some x 
X 

i i 

Ea'. Let i be such 
+ x E q. . Then x = hz for some z E ax. and some h E H. Hence a = h a . . 

i i i 

that 

• 

REMARK. If g is a complex reductive Lie algebra and cr a complex involution, 

then q' is connected and all Cartan subspaces of g with respect to cr are 

conjugate under H. 
We recall that an element x E q is said to be semisimple if adx is a 

semisimple endomorphism of g. 
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PROPOSITION 8. Any semisimpZe eZement of q is contained in a Cartan subspace 

of g with respect to a. 

0 2 
PROOF. Let x e: q be a semisimple element, Put P = {y e: g (x) n q : (ady) 

X 

is non-singular on g * (x) n q } • Then x E P and P is Zariski open in 
0 X X 

g· (x) n q. The mapping (h,y) I-+ h.y from H x P to q is everywhere submersive. . X 

Hence H.P is open in q and thus contains a generic element. Therefore P 
X X 

itself contains a generic element z e: q. Since [x,z] = O, we have 
0 

x e: g (z) n q. • 

A subalgebra of g consisting of semisimple elements is called a torus. 

Any torus is an abelian subalgebra. A torus which is contained in q is cal­

led a q-torus. 

PROPOSITION 9. Any q-torus is contained in a Cartan subspace. 

PROOF. Let b be a torus, b c q. We can certainly find x e: b such that 

Z(b) = Z(x)(Z denoting centralizer). By Proposition 8, Z(x) contains a 

Cartan subspace a.. Since [b,a.] = (O), we have b c a. • • 

COROLLARY 10. Any mazimaZ q-torus is a Cartan subspace. 

2. ORBIT STRUCTURE ON q 

In this chapter we follow [10], Part I, 1. 

1 • PRELIMINARIES 

Throughout what follows g is a real reductive Lie algebra and gc its 

complexification. G (resp. G) is the connected adjoint group of g 
C 

(resp.g ). Let a be an involutive automorphism of g and g = h $ q the cor­
e 

responding decomposition in +land -1 eigenspaces. Extending a tog in the 
C 

natural manner, g =h $ q is the corresponding decomposition in +land -1 
C C C 

eigenspaces. Denote H(resp.H) the connected Lie subgroup of G (resp. G) 
C C 

with Lie algebra adh (resp. adh ). 
C 

If g is semisimple, we can find a compact real form u of g which is 
C 
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a-invariant ([8] ,p. 153). Write k.JR = h nu. and pJR = q n i u.. Then 

qJR = k.JR EB pJR is the Cartan decomposition of a real form gJR of gc, such 

that he= (k.JR)c, qc = (pJR)c, If a.JR is a maximal abelian subspace of pJR, 

then ac = (a.JR.) c is a Cartan subspace of g c with respect to cr. 

Let g be as before, a real reductive Lie algebra. Let z be the center 

of g • Clearly z is a-stable. Put z 
C 

and - I eigE:nspaces with res pee t to 

+ - .• = z e z , the decomposition 
C 

a. Write 9 = z e 9 1 with g1 = 

in + I 

[g,g]. 

Clearly 91 is a-stable too. Choose a Cartan 

Then, a. e z - is a special Cartan subspace 

subspace a. in 9 1 as above. 
C , C 

C C 
of 9 with respect to a. Every 

C 

Cartan subspace of 9 is H -conjugate 
C C 

to this special one (Theorem 7,Remai"k), 

and hence "special". 

Put I the algebra of all H -invariant polynomials on q • For any in-
c C 

determinate T and x E q , let 
C 

2 det(T-(adx) ) 
qc 

m 

I 
i=O 

q. (x) Ti 
1 

where m = dim q • Put .t = dimension of a Cartan subspace of q , and call 
C C 

it the q -rank of g • Then we have q. EI, q. homogeneous of degree 2(m-i), 
1 1 

qm = I, qs = 0 for O ~ s ~ .t and qi IO. Let q,e__ = s, Then, as before, 

x E q is generic ifs (x) I 0. As usual, let q' denote the set of generic 
C C 

elements of q and put a.'= a. n q' for any subset a. of q If a. c q 
C C C C C C° C C 

is a Cartan subspace and t:, the set of roots of (9 ,a.) , then 
C C 

m 
sCt) = n a.Ct) a. Ct Ea.) 

a.El::, C 

where m = dim g • a. a. 
Let x E gc • x is called semisimpZe (s.s) (resp. nilpotent) if adx is 

a semisimple endomorphism of g (resp. x E [ g ,g ] and adx a nilpotent en-
c C C 

domorphism of g ) • Any x E g can be written uniquely as x + x where 
C C S n 

xs, xn E g , x is s.s., x is nilpotent and [x ,x] = 0 (Jordan decompo-c s n s n 
sition of :x:). If x E g , then x ,x E g. Moreover, if x E q then x and 

S n C S 

x in q • x (resp.x) is called the s.s. (resp. nilpotent) component of x. n c s n 

LEMMA I I. Let x E q be nilpotent. Then there exists t E [ g ,g J n h such that 

[t,x] = 2x. 
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PROOF. By the Jacobson-Morozow theorem, there are t 0 and y0 in [g,g] such 

that [t0 ,x] = 2x, [t0 ,y0J = - 2y0 and [x,y0J = t 0 • Put t 0 = t + t 1 where 

t E h, t 1 E q • Then t E [g,g] n h. Since 2x = [t0 ,xJ = [t,x] + [t1 ,x], we 

get [t1,x] = 0 and [t,x] = 2x. D 

REMARK. One can prove a stronger result,saying that there exist 

t,y E [g,g], t Eh, y E q such that [t,x] = 2x, [t,y] = -2y, [x,y] = t. 

For details we refer to [7]. 

LEMMA 12. Let x E q. Then x E CL(H.x) (CL=closure) and p(x) = p(x) for 
s s 

aU p E I. x is nilpotent if and only if c x E H. x for some c # 1; in this 

ease ex E H. x for aU c > 0 and o E CL (H. x). If Q is a H-invariant open sub­

set of q containing aU s.s. points of q, then Q = q. 

PROOF. Let z denote the centralizer of x in g • Since x E q , z is a-in-
s s 

variant. Furthermore x and x belong to z n q and z is reductive in g. By 
n 

Lennna 11, there is t E z n h such that [t,x] = 2x. Hence 
n n 

>.. adt 
e X = X 

2>.. 
+ e X -+ X when>..+ - 00 

s n n 

Sox E CL(H.x) and p(x) = p(x) for all p EI. If xis nilpotent, then 
2>.. s s 

e x E H.x by the above calculation, for all>.. E lR. Conversely if ex E H.x 

for some c # 1, then x E [g,g] and ad(cx) and adx have the same eigenvalues, 

which must be zero. The remaining statements are clear. D 

COROLLARY 13. Let x E q be suah that H.x is a closed subset of q. Then x 

is s. s. . 

This is clear, from Lennna 12. 

2. ORBITS IN q 
C 

The greater part of this section is known (see [7]. We include it for 

the sake of completeness and as preparation for the structure theory of the 

orbits in q. 

Let N (resp.N) be the set of nilpotent elements of q(resp. q ). 
C C 
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PROPOSITION 14. N is the set of aorronon zeros of all p EI with p(o) = O. 
C 

N is H -stable and splits into finitely many orbits. 
C C 

As to the first assertion, observe that if (adx) 2 is nilpotent on qc, 

then adx is nilpotent on g, for x E q • Moreover p(x) = p(o) for all nil-
c C 

potent x E q , since o E CL(H.x) (Lemma 12). The proof of the second asser­
c 

tion is due to KOSTANT and RALLIS. We shall need it in the real case also 

and prove it in Theorem 23. The result for g follows by applying this 
C 

theorem to the real Lie algebra underlying g • We omit the proof of the 
C 

second assertion therefore at this time. 

Let us fix a special Cartan subspace a of q as in section 1. Let W 
C C 

denote the Weyl group of the root system associated with the pair (g ,a). 
C C 

Then W c,,! normalizer of a in H / centralizer of a in H • 1) If I (a ) denotes 
C C C C C 

the algebra of W-invariant polynomials on a , then I(a) is isomorphic to 
C C 

a polynomial algebra in l variables. Furthermore, the restriction map 

p ~ pj from I to I (a) is an algebra isomorphism. All this is an easy a C 

consequenge of the similar results for the "Riemannian" case (see [3])) • 

Let p1, ••• ,pl be algebraically independent homogeneous polynomials such 

that I = C [ p 1 , ••• , pl J • Let 

M = qi - 1 ( <j>(x) ) 
X 

(xEq ) 
C 

qi is constant on H - orbits and each M is H - stable. 
C X C 

LEMMA 15. Let a be a Cartan subspaae of q and put qia 
l C C C 

qi,., : a -+ a: is surjeative and proper. 
""c C 

= qila • Then 
C 

PROOF. The surjectivity can be shown by the method of [5], 23, exercise 9. 

If 6 is the set of roots of (g ,a), then fort Ea the numbers a(t)(aE6) 
C C C 

are the roots of the equation (in z) 

I) This can be shown similar to: N.R. Wallach, Harmonic 
geneous spaces, Marcel Dekker, Inc. New York(l973); 
Observe that the right-hand-side is a finite group. 

analysis on home­
Proposition 8.9.6. 
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2m m-1 2i z + I q. (t) z = 0 . 
i=O 1 

m 
Hence la<t) I :::; I I q · <t) I (aEL'l,tEa.) . 

1 C 
i=O 

The proof of the properness 1s now easily completed as in [11], Part I, 

Lemma 6. D 

For any orbit yin qc, put ~y = ~(x) (xEy). 

PROPOSITION 16. The s.s. orbits in q are precisely the closed ones, and the 
C f -,-, b" .t f map y 1---+ ~ is a bijection of the set o aH s.s. or 1-,ts onto a; • I 

y 
a.cc qc is a Cartan subspace and Wis the Weyl group of the pair (gc,a.c), 

the correspondence y ,.___ y n a. is a bijection of the set of aU s.s. or­
e 

bits onto the set of aU W-orbits in a . Let x E q . Then M is a finite 
C C X 

union of orbits, exactly one of which is closed, and this one consists of 

aU s.s. elements of M • Moreover, x'E M if and only if x' E H .x . 
X X S C S 

Furthermore, we can write M = O 1 u ••• u O where the O. are disjoint orbits, 
X S 1 

0. u ••• 
1 

Finally, 

u O is closed and contains O. as an open subset for i = I, ••• , s. 
S 1 

if xis generic then M = H .x. 
X C 

PROOF. This is similar to the proof of [II], Part I, Proposition 7. D 

PROPOSITION 17. Let x E q . Then H .x is open 1-,n its closure in q and is 
C C C 

a regularly imbedded submanifold of Q • If Z is the centralizer of x in 
C C 

H , then h Z I-+ h x is an analytic diffeomorphism of H /Z onto H .x. 
C C C C C 

This can be shown similar to [II], Part I, Proposition 8. 

LEMMA 18. Let a c q be a Cartan 
C C 

subspace. For B c a. , let < B > be the 
C 

set of aU- x ,:: q such that x E H • B. 
C S C 

Then< B > is open (resp.closed) in 

Q if B is open (resp. closed) in a. . 
C C 

PROOF. Similar to the proof of [11], Part I, Lemma 9. 

LEMMA 19. Let a.c be a Cartan subspace and a0 c a.c any subset. Then the cen­

tralizer of a.0 in Ge is connected. 
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For the proof, we refer to [11], Part I, Lennna 10. 

3. H -INVARIANT OPEN SETS IN q • THE SETS U , V • 
C C W W 

We start with a result by KOSTANT & RALLIS ([7], Proposition 1). 

Let H denote the subgroup of elements a E G which connnute with a. Then c,a 
hand q are obviously stable under H and the identity component of H c c c,a c,a 
is just H. Let a be a Cartan subspace of g with respect to a, put 

C C C 

A= exp ad a and let F be the finite group of all elements of order 2 in 
C 

A. Clearly F c H and therefore normalizes H c,a c,a 

PROPOSITION 20. One has H = F.H c,a c 

See also Theorem 31. 

Fix a s.s. element x E q. Clearly g0 (x) is the centralizer of x in 
C C Q 

g • 
C 

Let Z 
C 

be the centralizer of x in H. Clearly Z c Z c Z(x) where 
C C C c,a 

the centralizer of x in G and Z(x) = Z(x)c n H • Obviously c c,a c,c Z(x) is 
0 a 

Z is the 
C 

identity component of Z(x) • As in the proof of Proposition 8, c,a 
we put 

PX= {y Eg~(x) 

P is Z stable 

n q : (ady) 2 is non-singular on g*(x) n q }. Then x E P , 
C Q C C X 

X C 
and is an open dense subset of g (x) n q • The mapping 

C C 

TT: H x P --+ q defined by n(h,y) = h.y is everywhere submersive. Hence 
C X C 

H .U is open in q for every open 
C C 

0 subset U of P • Let a c g (x) n q be a 
X C C C 

Cartan subspace of g0(x). Then a 
C C 

is also a Cartan subspace of g • Further­
c 

more, x E a • Let W (resp. W ) denote the 
0 C X 

(resp.g (x),a ). The W is the centralizer 
C C X 

Weyl group of (gc,ac) 

of x in W. We can find an open 
s set w0 in ac, containing x, such that w0 c Px, w0 = w0 for all 

S E WX, W ~ n WO = ~ if S E W \ W X • 

For any subset w Ca we put 
0 C 

U = {y: y E g (x) n q , s.s. component of y lies in Z w}. Note that 
W Q C C C 

Z w = Z w • Moreover, if w is open (resp. closed) then U is open (resp. 
C C Q W 

closed) in g (x) n q • Let V = H .U • Observe that for w E a n P we 
C C W CW C X 

have that y E V implies M e; V • Indeed, if y E U then y E U ; hence w y w w s w 
y EV implies y EV • Since M = M__ we may assume that y is semisimple w s w y --ys 
abd also that y E U • Let y' E M • Then h y~ = y for some h E H • Put 

w oY o c 
n = hy'. Since y E Px we have g (y) n q cg (x) n q. Therefore n C C C 
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n e: 

hy' 

go (x) n q , hence hy' e: go (x) n q and (hy') 
C C C C S = y. Consequently 

e: U and hence y' e: V • 
w w 

PROPOSITION 21 • For any open set w c w0 , U is open in P and v is open 
W X W 

in q • U is Z - invariant and contains, along with any element. its s.s. C W C ~ 

component. Moreover, 

he:H, hU nu :/:0 => he:Z 
C W W C 

PROOF. We only have to prove the last statement. Lethe: H be such that 
C 

h U n U :/: 0 . Since the generic elements in P are dense in P , there is 
W W X X 

a generic element ye: U such that hy e: U • There exist h 1,h2 e: Zc such 
-1 w w 

that t = h 1 y e: w and h2hh1 t e: w and both generic. Put h0 = h2hh1 • Then 

h0 • ac = ~c, so ho lac e: w. By the definition of w0 , h0 1ac = kolac for some 

ko € He with ko X = X. Consequently , ho X = X , so ho € zc , hence h € zc. 

• 

4. H-ORBITS IN q 

THEOREM 22. Let x e: q. Then H.x is closed if and only if xis semisimple. 

In this case, (H .x) n q has finitely many connected components; each com­
e 

ponent is a closed H-orbit and H.x is the component containing x. 

PROOF. H.x can be closed only when xis s.s. by Cor. 13. Conversely, let 

x e: q be semisimple. Define w0 as before (with respect to x) and let 

U = U n g0(x), V = H.U. Then Vis an open subset of q. We assert that 
WO 

V n H • x = H.x • 
C 

then we get from 

If y = hx = kx' e: V for some x' e: U, he: H and k e: H, 
C 

Proposition 21, h-lk e: Z, hence h.x = k.x, and so 
C 

y = k.x e: H.x. So H.x is open in H .x n q. This argument can be used for 
C 

all x' e: H .x n q. Therefore, each H-orbit 
C 

in H .x n q is open in H .x n q, 
C C 

showing that they are precisely the connected components of Hc.x n q, and that 

they are all closed also, since H .x n q is closed in q. They are finite in 
C 

number since H .x n a is finite for all Cartan subspaces a c q and since 
C 

there are only finitely many H-conjugacy classes of Cartan subspaces in q. • 
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We now come to nilpotent orbits in q and prove the theorem alluded to 

under Proposition 14, for the real case. 

THEOREM 23. Let N be the set of nilpotent elements in q. N splits into fi­

nitely many H-orbits. Moreover, we can write N = o1 u ••• u O where the o. 
s l. 

are disjoint orbits and for 1 s i s s , O. u ••• u O is a closed set con-
1. s 

taining O. as an open subset; O = (O). 
l. s 

The closed orbit in N is (0) by Cor. 13. It is enough to show that N 

splits into finitely many H-orbits. The other assertions are direct conse­

quences of the Baire category theorem. 

The proof of Theorem 23 is due to KOSTANT and RALLIS in the complex 

case. The arguments for the proof in the real case are quite similar. For 

completeness we include the headlines of the proof in the form of three 

lemmas. 

A set of three linearly independent elements (t,x,y) in g is said to 

be an S-triple if the relations: [t,x] = 2x, [t,y] = - 2y and [x,y] =tare 

satisfied. An S-triple (t,x,y) will be called a normal S-triple if t Eh 
and x,y E q. H operates on the set of normal S-triples by h(t,x,y) = 
(ht,hx,hy). 

LEMMA 24. Any O #- x E N can be embedded in a normal S-trip Ze ( t, x ,y) • Moreover 

this sets up a one-to-one correspondence between the set of all H-orbits 

in N- (O) and the set of all H- conjugacy classes of normals-triples in g. 

PROOF. Similar to [7], Proposition 4. In fact, everything stated is valid 

if we replace t by any field of characteristic zero. 

It is well-known that any two elements of an S-triple uniquely deter­

mine the third (cf. [6] , Cor. 3.5) 

LEMMA 25. Let (t,x,y) be a normal S-triple. There exist finitely many 

x 1, ••• ,xn and y 1, ••• ,yn in N- (O) such that 

(i) (t,x1 ,Y 1) , ••• , (t,xn,yn) are normal s-triples 

(ii) any normal s-triple of the form (t,x' ,y') is H- conjugate to one of 

the normal S- triples (t,x. ,y.) , l s i s n. 
l. l. 

• 
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o ho o • h PROOF. Let g , and q be the centralizers oft in g, and q respectively. 
• o ho o • o Obviously g = $ q, since at= t. Let H c H be the Lie subgroup corre-

. ho 1 2 h2 2 . sponding to ad • Now et g, and q be respectively the spaces of all 

z E: g , h and q such that [t,z] = 2z. Then g2 = h2 $ q2 • 

Th 1 . [ o 2] 2 . 1 . [ho 2] 2 h 2 . o • • ere ation g ,g cg imp ies ,q c q , sot at q is H -invariant. 
2 0 2 Let V be the Zariski open set of all z E: q such that [h ,z] = q • 

• • 0 
Vis not empty since x E: V. Vis clearly H-stable. On the other hand if 

h . o • • [ ho J 2 z E: V, t en the tangent space to the orbit H • z c V at z is Just ,z = q , 
0 • 

so H .z is open in V. By a theorem of Whitney, V has finitely many connected 
0 • • 0 components, which are all H -invariant, hence they are all of the form H .z 

for some z E: V. So there exist x 1, ••• ,xn E: V c N such that for all normal 
0 

S-triples (t,x',y') we have: hx' = x. for some i (I~i~n) and some h E: H. 
i 

Hence H(t,x',y') = (t,xi,yi) where yi = hy! Note that yi is determined by 

t and x.. D 
i 

LEMMA 26. Let X be the set of aZZ t E: h which appear in normaZ S-tripZes of 

the form (t,x,y). Then Xis H-stabZe and spZits into finiteZy many H-orbits. 

PROOF. This is similar to the proof of [7], Theorem 2, observing that any 

t E: Xis contained in one of the finitely many H-conjugacy classes of Cartan 

subalgebras of the reductive Lie algebra h. • 

The proof of Theorem 23 follows now easily from the above lennnas. 

THEOREM 27. Let x0 E: q and Zet Z be the centraZizer of x0 in H. Then H.x0 
is open in its cZosure in q, is a reguZarZy embedded anaZytic submanifoZd 

of q and hZ 1---+ h.xO is an anaZytic diffeomor-phism of H/Z onto H.xO• 

PROOF. Similar to the proof of [II] , Part I, Theorem 17. • 

3. COMPLEMENTS 

In this chapter, g is a real semisimple Lie algebra with Killingform 

Band a an involutive authomorphism of g. Let 8 be a Cartan involution of g 

which commutes with a (such e exist, see for instance [8] ,p.153). Let 

h,q and k,p be the +I and -1 eigenspaces of a and 8 respectively. Then we 



have 

g=heq = kep. 

Let H (resp .. K) be the connected Lie subgroup of G with Lie algebra ad h 

(resp. ad k) .. 
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THEOREM 28. Let a c q be a Cartan subspace of g with respect to a. There 

exist h 0 E H such that h0 • a is a e-stable Cartan subspace of g with respect 

to a. 

PROOF. Fix a generic element x E q such that a= gO(x) n q. The orbit H.x 

is closed in q by Theorem 22. Put 

f(h) = - B(hx,B(hx)) (h EH). 

00 • 

Then f is a positive C -function on H, which takes its minimum in a point 

ho EH. In particular, 

for all y E h. 

So 

B(h0 [y,x] ,e (h0 .x)) + B (h0 x, 8 (h0 .[y,x]) = 0, 

hence, since e2 = 1, B(B (h0 .x) , [y,h0 .x ]) = 0 for all y E h, and also 

B( [ B(ho.x):,ho.x], y) = 0 for ally Eh. 

Since B is non-degenerate on h x h , we get [8 (h0 .x) , h 0 .x] = 0. Note that 

8 (q) = q • Therefore 0(h0 .x) E h 0 .a and hence 8 (h0 .a) = h 0 .a • 0 

THEOREM 29. Let both a and b be a-stable Cartan subspaces of g with respect 

to a which are H-conjugate • There is h0 E H n K such that h0 a. = b. 

PROOF. Choose h 1 EH such that h 1 a.= b. 
Then clearly h 1(a.nk) = b n k and h 1(a.nj) = bn p. Since H = HnK. 

exp ad(h np) = exp ad(h n p). H n K, being just the Cartan decomposition of 

H, we can write 
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h 1 = exp ad t • h0 where t e h n p , ho E H n K. 

Let z Ea n k be arbitrary and put u = h1.z Eb n k. From 

hi. exp adz • -1 
ad .u hi = exp 

we get 

exp adt • h0 • exp adz 
-1 

exp(-adt) ho = exp adu and 

also, by applying e (which can be lifted to G) , 

exp(-adt) • h0 • exp adz exp adt = exp ad u 

and thus, 

exp ad (-u) • exp 2 adt • exp ad u = exp 2 adt. 

By diagonalizing adt, we see that exp ad u and exp adt commute. Consequent­

ly, exp ad h0 .z = exp ad u for all z Ea n k. Therefore h0 • z = u and thus 

h0 (a n k) = b n k. Similarly h0 (a np) = b n p and hence h0 a= b. • 

PROPOSITION 30. Any a-stable q-torus is contained in a e-stable Car>tan sub­

space of g with respect to a. 

PROOF. Let b be a 0-stable q-torus. Denote by Z(b) the centralizer of bin 

g. Z(b) is both cr and 8-stable. Also q-rank Z(b) = q-rank of g. Let Z 
denote the center of Z(b). Clearly Z is both cr and 8-stable and b c Zn q. 
Let a 1 be a 8-invariant Cartan subspace of [Z(b),Z(b)J n q. Such a 1 exist 

by Theorem 28 and the fact that the restriction of 8 to [Z(b),Z(b)J is a 

Cartan involution of [Z(b),Z(b)J. Then a= Zn q e a 1 is a 8-invariant 

Cartan subspace of g ·with respect to a , containing b. D 

Let H be the subgroup of G consisting of all g E G which commute with a. 
a 

Clearly His the connected component of e in H • Let a c q n k be a torus a 
of maximal possible dimension. 

Put A= exp ad a and let F = {a E A: a2 = 

2ro 1·f Note that card F = r 0 = dim A. 

THEOREM 3 1 • H = F H = H F • a 

e} • 



PROOF. Clearly F c H • Indeed, if x Ea, 
(J then ox= - x and hence a0 = a 
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-I 

for all a EA. For a E F we have a= a-I , (J 
so a = a. Conversely let h EH 

(J 

Put P = exp ad p. Then G =KP and Kn P = (e). Write 

h = k.exp ad x (kEK,xEp). 

Applying o to both sides gives 

h = k0 exp ad o(x) , 

hence k = k0 and o(x) = x. Therefore k EK n H and 
(J 

x E h n p , so h E (K n H ) • H • The pair (K, K n H ) is a compact synnnetric 
(J (J 

pair. Let L be the connected component of the identity of Kn H • Then 
(J 

L c H. It is known that K =LA L (see [4], Theorem 6.7). So, any 

y E K n H0 can be written as y = .e.1 a .t2 with a E A , .e.1, £2 E L. Applying 

a to both sides we get y = .l~ a0 .l~ = .i1 a0 .i2 , hence a= a0 = a-1• Thus 

y E L F L , so h E L F L H = L F H = L H F = H F 0 

Theorem 31 generalizes Proposition 20. 

4. INVARIANT MEASURES ON H-ORBITS 

In this chapter g is a real reductive Lie algebra with involution o. 

We keep to the notation of the previous chapters. 

It is well-known that any G-orbit in g admits an invariant measure, 

which even can be viewed as a tempered Radon measure on g • Here we present 

some (partial) results on the existence and properties of invariant measures 

on H-orbits in q. It turns out that in general not every H-orbit admits an 

invariant measure. Let us therefore consider the following example. 

Let G = S L(n,lR), HO= S(GL(J,lR) x_ GL(n-1,lR)), (n~3). 

r-1 -a-) - Let J be the matrix given by J = \-& \ 1 and o 

the involution on G given. by ox = JxJ . Then H0 = {x E G : ox = x} • 
; Lifting a to the Lie algebra g = sl(n,lR), we get ~he usual decomposition 

g =he q with q the space of matrices 
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( g P1 '' •Pn-) 
x(p,q) = • I , where 

: -B-
4n- I 

n-1 n-1 
P = (p]'''''pn-1) E JR 'q = (q1,···,qn_l) E JR • 

- H0 acts on q. If 

deth , 0 

g E: H0 , g = - - - - - ;- - - -( 
-1, ) 

(h E GL(n-1, JR)) , 

then 

g. x(p,q) 

0 : h 
I 
I 

-I - I 
= x (det h .p h ,deth.hq) 

Here we regard p as a (n-1) x I matrix and q as a 1 x(n-1) matrix. 
n-1 

- For x = x(p,q) , put Q(x) = i~I piqi 

Denote H the identity component of H0 . Then 

H = { (d_e_t~_\ .• 0) : h e: GL+ (n-1, lR) } • 
O , h 

I 

- The H-orbits in q are: 

(i) Q(x) = a (a#O) (generic orbits) 

(ii) the four nilpotent orbits 

01 = { x(p,O) p ; 0} ' 0 = { x(O, q) : q # O} 
2 

03 = { x(p,q) Q(x) = o, p # O, q ; 0 } and 

0 = { x(O,O)} • 
0 

- The orbits o1 and o2 do not admit an invariant measure, but o3 does 

(03 is a so-called q-regular H-orbit). 

Since o1 == H x(e 1 ,0) , we have to compute the Haar modulus Ll 1 of 

Stab x(e 1,0) = 



deth-l 0 . . . 0 
.[ g = 0 

deth-I l *----* 
0 

det g = I, h EGL +(n-1,JR)}. 

0 * . 
0 

Identifying this group with the group 

{ (rr:·---J a 2 det u = !, a>O} 

-n one easily gets ~1(g) = a = (det h)n . 
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A similar observation gives ~2 (g) = (det h)-n for g E Stab x(O,e 1). Finally, 

Stab x(e2 ,e 11 ) is unimodular. We leave the proof to the reader (do.it!) . 

What can be said about the general situation. 

Call x E q , q-regular if dim H. x = n - £. , where n = dim q. Denote R the 

set of q - regular elements. Obviously ;1,' c R and ~ is a Zariski open subset 

of q. Let I be, as before, the algebra of H - invariant polynomials on qc ~ C 

and let p 1, ••• ,p.l be algebraically independent homogeneous elements of I such 

that I = C: [p 1, ••• ,P,e.]. We may ssume that p 1 , ••• ,pl are real-valued on q. 

By a result of KOSTANT and RALLIS ([7], Theorem 13), the differentials 
l dp 1,.,.,dp.l are linearly independent in each point of R. Let Q: q - JR 

be the mapping defined by Q(x) = (p 1 (x), •.. , Pf (x)) • Then Q : R - JR.£. is 

a submersion, hence in particular, Q(R) is an open subset of JR£.. Fix a 
£. k translation invariant measure dx (resp.dy) on lR (resp.JR). If Q c lR is 

an open set,, we put c0 (Q) the space of continuous functions f on lRk with 

compact support and Supp f c Q • 

THEOREM 32. There exists a well-defined map f .--. Mf of c0 (R) onto 
c0 (Q(R)) sueh that for all cp E c0 (Q(R)) one has 

f cj>(Q(x)) f(x) dx = f cp(y) Mf(y)dy 

q Q(R) 
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Moreover 

Supp (Mf) c Q (Supp f). 

This theorem is a special case of a general theorem by HARISH-CHANDRA (see 

[3] , p.274). 

For y € ]R. .e. put ry = { x € R : Q (x) = y } • r y is a closed subset of R • If 

y € Q(q') , then r = { x € q: Q(x) = y} and hence a closed subset of q. 
y 

Note that r O = R n N • Both r O and r Y (y € Q(q')) are H-stable and splits 

into finitely many (open) H-orbits of the same dimension (cf.Theorem 22,23). 

Let y € Q(R) be fixed. Then f ~ Mf(y) (f € c0 (R)) defines a positive measure 

on R with support contained in r. This measure is clearly H-invariant and 
y 

non-zero, since the map f I--+ Mf is surjective. Therefore this measure de-

fines an H-invariant non-zero positive measure on r and also on each H-
y 

orbit, contained in r . Resuming 
y 

THEOREM 33. Any q-reguZar H-orbit in q carries an H-invariant positive mea­

sure. 

On generic orbits in q, these measures can of course be considered as 

Radon measures on q. For q-regular nilpotent orbits this is still an open 

problem (except in special cases). Let l = I and dim q > 2. If H.x is a q­

regular orbit in q, then the invariant measure on H.x defines a tempered 

Radon measure on q. This cas be shown by the method used in ([10], Propo­

sition 2-5.) • 
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