H.A. Wilbrink & A.E. Brouwer

A Characterization of Two Classes of Semi Partial Geometries by Their Parameters

Preprint
Printed at the Mathematical Centre, 413 Kruislaan, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-profit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).
A characterization of two classes of semi partial geometries by their parameters *)

by

H.A. Wilbrink & A.E. Brouwer

ABSTRACT

We show that, under mild restrictions on the parameters, semi-partial geometries with \(\mu = \alpha^2 \) or \(\mu = \alpha(\alpha+1) \) are determined by their parameters.

KEY WORDS & PHRASES: Semi-partial geometry, partial geometry, strongly regular graph

*) This report will be submitted for publication elsewhere.
Let X be a (finite) nonempty set and L a set of subsets of X. Elements of X are called points, elements of L are called lines. The pair (X,L) is called a partial linear space if any two distinct points are on at most one line.

Two distinct points x and y are called collinear if there exists $L \in L$ such that $x,y \in L$, noncollinear otherwise. Two distinct lines L and M are called concurrent if $|L \cap M| = 1$.

We write $x \sim y$ ($x \not\sim y$) to denote that x and y are collinear (noncollinear). Similarly $L \sim M$ ($L \not\sim M$) means $|L \cap M| = 1(|L \cap M| = 0)$.

If $x \sim y$ ($L \sim M$) we denote by xy (LM) the line (point) incident with x and y (L and M).

For a nonincident point-line pair (x,L) we define:

$$[L,x] := \{ y \in X | y \in L, y \sim x \},$$

$$[x,L] := \{ M \in L | x \in M, L \sim M \}.$$

Given positive integers s,t,α,μ, the partial linear space (X,L) is called a semi-partial geometry (s.p.g) with parameters s,t,α,μ if:

(i) every line contains $s+1$ points,
(ii) every point is on $t+1$ lines,
(iii) for all $x \in X, L \in L$, $x \not\in L$ we have $|[x,L]| \in \{0,\alpha\}$,
(iv) for all $x,y \in X$ with $x \not\sim y$ the number of points z such that $x \sim z \sim y$ equals μ.

A semi-partial geometry which satisfies $|[x,L]| = \alpha$ for all $x \in X, L \in L$ with $x \not\in L$, or equivalently which satisfies $\mu = \alpha(t+1)$, is also called a partial geometry (p.g).

The point-graph of the partial linear space (X,L) is the graph with vertex set X, two distinct vertices x and y being adjacent iff $x \sim y$. The point-graph of a semi-partial geometry is easily seen to be strongly regular. Let (X,L) be a semi-partial geometry.

For $x,y \in X, x \not\sim y$ we define
\[[x,y] := \{ L \in L | x \in L, \|[L,y]\| = \alpha \}. \]

It is easy to see that \(\alpha = s+1 \) iff any two distinct points are collinear iff \((X,L)\) is a Steiner system \(S(2,s+1,|X|)\). We shall always assume \(s \geq \alpha \), hence noncollinear points exist.

Let \(x,y \in X, x \neq y \). Then \(\mu = |[x,y]_\alpha| \) and \(|[x,y]_\alpha| \geq |[x,L]| = \alpha \) if \(L \in [y,x] \). Hence, \(\mu \geq \alpha^2 \) and

\[(*) \quad \mu = \alpha^2 \iff \forall K \in [x,y], L \in [y,x] : K \sim L, \]

\[(* *) \quad \mu = \alpha(\alpha+1) \iff \text{every line } K \in [x,y] \text{ intersect every line } L \in [y,x] \]

but one.

This is the basic observation we use in showing that, under mild restrictions on the parameters, semi partial geometries with \(\mu = \alpha^2 \) or \(\mu = \alpha(\alpha+1) \) satisfy the Diagonal Axiom (D).

(D) \: Let \(x_1, x_2, x_3, x_4 \) be four distinct points no three on a line, such that \(x_1 \sim x_2 \sim x_3 \sim x_4 \sim x_1 \sim x_3 \).
Then also \(x_2 \sim x_4 \).

From DEBROUY [1], it then follows that such a semi-partial geometry is known.

2. SEMI-PARTIAL GEOMETRIES WITH \(\mu = \alpha^2 \).

Our first theorem deals with the case \(\alpha = 1, \mu = 1 \).

Theorem 1. Every strongly regular graph with parameters \((n,k,\lambda,\mu = 1)\) is the point-graph of a s.p.g. with \(s = \lambda+1, t = \frac{k}{\lambda+1} - 1, \alpha = 1, \mu = 1 \).

Proof. Let \((X,E)\) be a strongly regular graph with \(\mu = 1 \), and let \(x \in X \).
Since two nonadjacent points in \(\Gamma(x) \) cannot have a common neighbour in \(\Gamma(x) \),
the induced subgraph on \(\Gamma(x) \) in the union of cliques. This induced subgraph
has valency \(\lambda \), so it is the union of \(\frac{k}{\lambda+1} \) cliques of size \(\lambda+1 \). \(\Box \)

Next we deal with the case \(\alpha = 2, \mu = 4 \).
THEOREM 2. Let \((X, L)\) be a s.p.g. with parameters \(s, t, \alpha = 2, \mu = 4\). Then \((X, L)\) satisfies \((D)\).

PROOF. Let \(x_1, x_2, x_3, x_4\) be four distinct points no three on a line, such that \(x_1 \sim x_2 \sim x_3 \sim x_4 \sim x_1\). If \(x_2 \neq x_4\), then we can apply \((*)\) to the points \(x_2\) and \(x_4\). Since \(x_1x_4 \in [x_4, x_2]\) and \(x_2x_3 \in [x_2, x_4]\), \(x_1x_4\) and \(x_2x_3\) intersect in a point \(\neq x_2, x_3\). Now \(3 \leq |[x_1, x_2, x_3]| \leq \alpha = 2\), a contradiction. \(\square\)

Let \(U\) be a set containing \(t+3\) elements. Then we denote by \(U_{2, 3}\) the s.p.g. which has as points the 2-subsets of \(U\), as lines the 3-subsets of \(U\) together with the natural incidence.

The parameters are \(s=2, t, \alpha=2, \mu=4\).

DEBROEY [1] showed that a s.p.g. with \(t \geq 1, \alpha=2, \mu=4\) satisfying \((D)\) is isomorphic to a \(U_{2, 3}\). Hence we have the following theorem.

THEOREM 3. A s.p.g. with \(t \geq 1, \alpha=2, \mu=4\) is isomorphic to a \(U_{2, 3}\). \(\square\)

REMARK. A s.p.g. with \(t=1, \alpha=2, \mu=4\) is isomorphic to the geometry of edges and vertices of the complete graph \(K_{s+2}\).

We now consider the case \(\alpha \geq 2\). For the remainder of this section let \((X, L)\) be a s.p.g with \(\alpha \geq 2\) and \(\mu = \alpha^2\).

LEMMA 1. Let \(x \in X, L \in L\) such that \([L, x] = \{z_1, \ldots, z_\alpha\}\). Let \(M\) be a line through \(z_1\) intersecting \(xz_2\) in a point \(u \neq x, z_2\). Suppose there exists \(y \in L, y \neq z_1, \ldots, z_\alpha\) with \(u \neq y\). Then \(M\) intersects \(xz_i\) for all \(i = 1, \ldots, \alpha\) (see Figure 1).

![Figure 1](image.png)
PROOF. By (*) applied to x and y, the α lines \(L = L_1, L_2, \ldots, L_\alpha \) of \([y,x]\) intersect the \(\alpha \) lines \(\alpha x_1, \ldots, \alpha x_\alpha \) of \([x,y]\). In particular \(L_1, \ldots, L_\alpha \) intersect \(\alpha x_2 \). Hence \([y,u] = [y,x] = \{L_1, \ldots, L_\alpha\} \).

Since \(M \in [u,y] \), M intersects \(L_1, \ldots, L_\alpha \) in points \(v_1 = z_1, v_2, \ldots, v_\alpha \) respectively. If \(x \sim v_i \) for all \(i \), then the \(\alpha+1 \) points \(u, v_1, v_2, \ldots, v_\alpha \) on \(M \) are all collinear with \(x \), a contradiction. Hence \(x \not\sim v_i \) for some \(i \). Since \(L_1 \) intersects \(\alpha x_1, \ldots, \alpha x_\alpha \) it follows that \([x,v_i] = [x,y] = \{x_1, \ldots, x_\alpha\} \).

Since \(M \in [v_i,x] \), M intersects all lines in \([x,v_i]\). □

Lemma 2. Let \(x \in X, L \in L, x \not\in L \) such that \([L,x] = \{z_1, \ldots, z_\alpha\}\). Let \(M \) be a line through \(z_1 \) intersecting \(\alpha x_2 \) in a point \(u \not\in x_2 \). If \(s > \alpha \), then \(M \) intersects \(\alpha x_1 \) for all \(i = 1, \ldots, \alpha \).

Proof. Assume that \(M \) intersects \(\alpha x_1 \), \(i = 1, \ldots, \beta \) \((2 \leq \beta < \alpha) \) in points \(v_1 = z_1, \ldots, v_\beta \) respectively and does not intersect \(\alpha x_\beta+1, \ldots, x_\alpha \). Take \(y \in L, y \not\sim z_1, \ldots, z_\alpha \). By lemma 1 \(y \sim u_1, i = 1, \ldots, \beta \).

Since \([M,x] = \alpha \), there is a \(v \in M \) such that \(v \sim x, v \not\in u_1, \ldots, u_\beta \).

Also \(v \sim z \) for all \(z \in \bigcup_{i=1}^{\beta} [yu_1, x] \), for if \(v \not\sim z \) for some \(z \in [yu_1, x] \), then \(v \in [v,z] \) and \(yu_1 \in [z,v] \). Hence \(v \sim yu_1 \) and so \(yu_1 \) intersects the \(\alpha+1 \) lines \(x_1, x_1, \ldots, x_\alpha \) through \(x \), a contradiction. The points of \(\bigcup_{i=1}^{\beta} [yu_1, x] \) are therefore on the \(\alpha \) lines \(M = v_1, v_2, \ldots, v_\alpha \) of \([v,y]\).

Since \(s > \alpha \) we can take \(y' \in L \) such that \(y' \not\sim y, z_1, \ldots, z_\alpha \).

Now if \(z \in [yu_2, x] \), then \(z \sim y' \). Indeed, as shown \(z \) is on some \(vz_1 \) and since \(vz_1 \) intersects at most \(\alpha-1 \) of the lines \(x_1, \ldots, x_\alpha \), it follows from Lemma 1 that every point of intersection of \(vz_1 \) and a line \(x_1 \), so in particular \(z \), is collinear with \(y' \).

But now we have \([yu_2, y'] \geq [yu_2, x] \cup \{y\} = \alpha+1 \), a contradiction. □

Lemma 3. Let \(x \in X, L \in L, x \not\in L \) such that \([L,x] = \{z_1, \ldots, z_\alpha\}\). If \(s > \alpha \), then every line \(M \) not through \(x \) which intersects two lines of \([x,L] = \{xz_1, \ldots, xz_\alpha\} \) also intersects \(L \) and all lines of \([x,L]\).

Proof. The number of pairs \((u,v) \not\in (z_1, z_2)\) such that \(u \in xz_1, v \in xz_2 \), \(u,v \not\in x, u \sim v \) equals \(s(\alpha-1)-1 \). Every line \(M \not\in xz_1, \ldots, xz_\alpha \) which intersects \(L \) and \(xz_1, \ldots, xz_\alpha \) gives rise to such a pair \((u,v)\). By (*) and Lemma 2 the number of these lines equals \(s(s-1)(\alpha-1) + \alpha(\alpha-1) = s(s-1)-1 \). □
Let $L_1, L_2 \in L$ intersect in a point x. If L is any line intersecting L_1 and L_2 not in x, we let $L_3, L_4, \ldots, L_\alpha$ be the other lines in $[x, L]$. By lemma 3, $L_3, L_4, \ldots, L_\alpha$ are independent of the choice of L. Put

$$L(L_1, L_2) := \{ L_1, L_2, \ldots, L_\alpha \} \cup \{ L \in L | L \sim L_1, L_2, LL_1 \neq x \neq LL_2 \},$$

$$X(L_1, L_2) := \cup_{L \in L(L_1, L_2)} L.$$

Lemma 4. Let $L_1, L_2 \in L$, $L_1 \sim L_2$. If $s > \alpha$, then $<L_1, L_2> := (X(L_1, L_2), L(L_1, L_2))$ is a partial geometry (in fact a dual design) with parameters $\tilde{s} = s$, $\tilde{t} = \alpha$, $\tilde{\alpha} = \alpha$.

Proof. Clearly two points are on at most one line and each line contains $s+1$ points. Using (*) and Lemma 3 it follows immediately that every point $x \in X(L_1, L_2)$ is on α lines of $L(L_1, L_2)$ so $\tilde{t} + 1 = \alpha$. It also follows immediately that any two lines of $L(L_1, L_2)$ intersect, hence $\tilde{\alpha} = \tilde{t} + 1 = \alpha$. □

Notice that for $M_1, M_2 \in L(L_1, L_2)$, $M_1 \neq M_2$, $M_1 \sim M_2$ we have $<M_1, M_2> = <L_1, L_2>$. Notice also that for any two noncollinear points x and y of $<L_1, L_2>$ there are $\tilde{u} = \tilde{a}(\tilde{t} + 1) = \alpha^2 = \mu$ points $z \in X(L_1, L_2)$ collinear with both x and y, i.e. the common neighbours of x and y in (X, L) are the common neighbours of x and y in $<L_1, L_2>$.

Theorem 4. Let (X, L) be a s.p.g. with parameters $s, t, \alpha (\geq 2)$, $\mu = \alpha^2$. If $s > \alpha$ and $t \geq \alpha$, then (X, L) satisfies (D).

Proof. Let x_1, x_2, x_3, x_4 be four distinct points no three on a line, such that $x_1 \sim x_2 \sim x_3 \sim x_4 \sim x_1 \sim x_3$.

Suppose $x_2 \neq x_4$. Since $x_2 \sim x_1 \sim x_4$ it follows that

$$x_1 \in <x_4, x_3, x_2, x_3> \quad (\dagger)$$

In (X, L) there are $\lambda = s-1 + (\alpha-1)t$ points collinear with both x_1 and x_3. In $<x_4, x_3, x_2, x_3>$ there are $\tilde{\lambda} = \tilde{s}-1 + (\tilde{\alpha}-1)\tilde{t} = (s-1) + (\alpha-1)^2$ points collinear with both x_1 and x_3. Since $\tilde{t} \geq \alpha = \tilde{t} + 1$ it follows that $\tilde{\lambda} < \lambda$ and so there exists $x_5 \in X \setminus X(x_4, x_3, x_2, x_3)$ such that $x_1 \sim x_5 \sim x_3$. Now application of
DEBROEY [1] showed that a s.p.g. with parameters \(s, t, \alpha > 2 \), \(\mu = \alpha^2 \) satisfying (D) is of the following type: the "points" are the lines of \(\text{PG}(d, q) \), the "lines" are the planes in \(\text{PG}(d, q) \) for some prime power \(q \) and \(d \in \mathbb{N} \), \(d \geq 4 \). In this case \(s = q(q+1) \), \(t = (q-1)^{-1}(q^{d-1}-1)-1 \), \(\alpha = q+1 \), \(\mu = (q+1)^2 \).

THEOREM 5. Let \((X, L)\) be a s.p.g. with parameters \(s, t, \alpha > 2 \), \(\mu = \alpha^2 \). If \(s > \alpha \) and \(t \geq \alpha \), then \((X, L)\) is isomorphic to the s.p.g. consisting of the lines and planes in \(\text{PG}(d, q) \). In particular \(s = q(q+1) \), \(t = (q-1)^{-1}(q^{d-1}-1)-1 \), \(\alpha = q+1 \), \(\mu = (q+1)^2 \).

The only interesting case remaining is \(s = \alpha \). Now if \((X, E)\) is a Moore graph of valency \(r \), i.e. a strongly regular graph with \(\lambda = 0 \), \(\mu = 1 \), then \((X, \Gamma(x) \mid x \in X)\) is easily seen to be a s.p.g. with parameters \(s = t = \alpha = r-1 \), \(\mu = (r-1)^2 \) (here \(\Gamma(x) = \{ y \in X \mid (x, y) \in E \} \)). The point graph of this s.p.g. is the complement of \((X, E)\). Such a s.p.g. does not satisfy (D) for \(r > 2 \). From the following theorem follows immediately that a s.p.g. with \(\mu = \alpha^2 \), \(s = \alpha \) is necessarily of this type.

THEOREM 6. Let \((X, L)\) be a s.p.g. with \(t \geq \alpha \), \(\mu = \alpha^2 \) and \(s = \alpha \). Then \(t = \alpha \).

PROOF. Let \(x, y \in X \), \(x \neq y \). Let \([x, y] = \{ L_1, \ldots, L_{\alpha} \} \), \([y, u] = \{ M_1, \ldots, M_{\alpha} \} \) and put \(z_{ij} = L_i \cap M_j \), \(i, j = 1, \ldots, \alpha \) (see figure 2).

![Figure 2](image-url)
The number of \((z_{ij}, z_{k\ell})\) with \(i \neq k, j \neq \ell, z_{ij} \sim z_{k\ell}\) equals \(a^2 \cdot (a-1)(a-2)\). Now let \(K\) be a line through \(x, K \neq L_1, \ldots, L_a\), and let \(u\) be a point on \(K, u \neq x\).

Then \(u\) is collinear with \((a-1)\) of the \(a\) points \(z_{i,1}, \ldots, z_{i,a}\), for \(i = 1, \ldots, a\). Since \(u \neq y\), \(u\) is collinear with all of \(z_{i,j}, \ldots, z_{a,j}\) or with none, for \(j = 1, \ldots, a\).

It follows that there are \(a\) lines through \(u\) intersecting \((a-1)\) of the \(a\) lines \(M_1, \ldots, M_a\). Hence each point \(u \neq x\) on \(K\) gives rise to \(a(a-1)(a-2)\) pairs \((z_{ij}, z_{k\ell})\) as described, so \(K\) gives rise to all \(a^2(a-1)(a-2)\) pairs \((z_{ij}, z_{k\ell})\).

Suppose \(t > a\), then we can find two such lines \(K\) and \(K'\). It follows that for \(u \in K\), the \(a\) lines through \(u\) intersecting \((a-1)\) of the \(a\) lines \(M_1, \ldots, M_a\) also intersect \(K'\). But now \([u, K'] = a+1\), a contradiction. \(\square\)

3. SEMI-PARTIAL GEOMETRIES WITH \(\mu = \alpha(a+1)\).

In this section \((X, L)\) is a semi-partial geometry with parameters \(s, t, \alpha\) and \(\mu = \alpha(a+1)\).

If \(x, y \in X, x \neq y\) we shall always denote the \(a+1\) lines in \([x, y]\) by \(K_1, \ldots, K_{a+1}\), and the \((a+1)\) lines in \([y, x]\) by \(L_1, \ldots, L_{a+1}\). By (**) we can number these lines in such a way that \(K_i \cap L_i = \emptyset, i = 1, \ldots, a+1\) and \(K_i \cap L_j \neq \emptyset, i, j = 1, \ldots, a+1, i \neq j\) (see figure 3).

![Figure 3](image-url)

Figure 3.

Again our aim will be to show that the diagonal axiom (D) holds. We first
deal with the case $\alpha = 2$.

Lemma 3. If $\alpha = 2$ and $t > s$, then a set of 3 collinear points not on one line can be extended to a set of 4 collinear points no 3 on a line.

Proof. Let x, a and b be three distinct collinear points not on one line. There are $t - 1$ lines $\neq xa, ab$ through a and on each of those lines there is a point $y_i \sim b$, $y_i \neq a$, $i = 1, \ldots, t - 1$. Suppose $y_i \not\in x$ for all $i = 1, \ldots, t - 1$. Now for each $i = 1, \ldots, t - 1$, $ay_i \neq xb$ (for otherwise $|[a, xb]| \geq 3$) and $by_i \neq xa$. Also $xa, xb \in [x, y_1]$ and $ay_i, by_i \in [y_i, x]$. Hence, by (**) there is a third line through y_i intersecting xa and xb in points u_i and v_i respectively. Clearly $u_i \neq u_j$ if $i \neq j$, for $u_i = u_j$ implies $x, v_i, v_j \in [u_i, xb]$. Thus xa contains $t + 1 > s + 1$ points (namely $x, a, u_1, \ldots, u_{t - 1}$), a contradiction.

Lemma 6. Suppose $\alpha = 2$. If x_1, x_2, x_3, x_4 are four distinct collinear points, no three on a line, then no point can be collinear with exactly three of these four points.

Proof. Suppose x_5 is collinear with x_2, x_3, x_4 and $x_1 \not\in x_5$. Clearly $x_5 \not\in x_2x_3, x_2x_4, x_3x_4$. Hence $\{x_1x_2, x_1x_3, x_1x_4\} = [x_1, x_5]$ and $\{x_5x_2, x_5x_3, x_5x_4\} = [x_5, x_1]$ so x_5x_2 has to intersect x_1x_3 or x_1x_4 by (**). But then $|[x_2, x_1x_3]|$ or $|[x_2, x_1x_4]| > 2$, a contradiction.

Lemma 7. Same hypothesis as in lemma 6. Then the only points collinear with exactly two points of $\{x_1, x_2, x_3, x_4\}$ are the points on the lines x_1x_j, $i \neq j$.

Proof. Suppose $x_5 \sim x_1, x_4$ and $x_5 \not\in x_2x_3$, $x_5 \not\in x_1x_4$ (see figure 4).

![Figure 4](image-url)
Apply (**) to x_3 and x_5 to get a line ab through x_3 with $a \in x_5x_4$, $b \in x_5x_1$.
Similarly (**) applied to x_5 and x_2 gives us a line cd through x_2 with $c \in x_5x_4$, $d \in x_5x_1$. Clearly $b \neq c$ so we can apply (**) to b and c. It follows that $ab \cap cd = \emptyset$. Also $x_2 \neq a$ and (**) applied to x_2 and a yields:
$ab \cap cd \neq \emptyset$ or $ab \cap x_2x_4 \neq \emptyset$. Hence $ab \cap x_2x_4 \neq \emptyset$, a contradiction since
$\{x_2, x_4\} = [x_2x_4, x_3]$. []

THEOREM 7. If (X,L) is a s.p.g with parameters $s,t,\alpha = 2$, $\mu = 6$ and $t > s$,
then (X,L) satisfies (D).

PROOF. Let x_1, x_2, x_3 and x_4 be four distinct points no three on a line such
that $x_4 \sim x_1 \sim x_2 \sim x_3 \sim x_4 \sim x_2$. By Lemma 5 there exists $x_5 \sim x_2, x_3, x_4$.

By Lemmas 6 and 7 $x_1 \sim x_3, x_5$. []

REMARK. If (X,L) is a s.p.g but not a partial geometry, then $t \geq s$ (see
DEBROEY & THAS [2]). Using the integrality conditions for the multiplicities of the eigenvalues of a strongly regular graph it follows that a s.p.g with $s=t$, $\alpha=2$ and $\mu=6$ satisfies $(8(s^2-24s+25)(8(s+1)(2s^3-9s^2+19s-30))^2$.

From this one easily deduces an upper bound for s. The remaining cases were
checked by computer and only $s=t=28$ survived. Thus, every s.p.g which is
not a partial geometry satisfies (D) or has $s=t=28$ (and 103125 points).

We now turn to the case $\alpha \geq 3$. We shall make two additional assumptions
in this case. The first assumption is $\alpha \neq 3$, the second assumption is
$s \geq f(\alpha)$ where f is defined in Lemma 9. Notice that this bound on s is used
only in the proof of Lemma 9.

LEMMA 8. Let $x, y \in X$, $x \neq y$ and suppose $[x, y] = [K_1, \ldots, K_{\alpha+1}]$, $[y, x] =
[L_1, \ldots, L_{\alpha+1}]$ such that $K_i \cap L_i = \emptyset$, $i = 1, \ldots, \alpha+1$. If M is a line inter-
secting $\sigma \geq 1$ lines of $[x, y]$, $\tau \geq 1$ lines of $[y, x]$ and $\sigma < \tau$, then $\sigma = \alpha-1$ and $\tau = \alpha$.

PROOF. Since $\sigma < \tau$, there exists a point of intersection u of M with a line
$L_1 \in [y, x]$ such that u is not on one of the lines of $[x, y]$. Then $w \neq x$ and
so, applying (**) to u and x, it follows that $M \in [u, x]$ intersects $\alpha-1$
of the α lines $K_1, K_2, \ldots, K_{\alpha-1}, K_{\alpha+1} \in [x, u]$. Thus $\alpha-1 \leq \sigma < \tau \leq \alpha$,
which proves our claim. []
Lemma 9. Let \(x \in X \) and \(L \in L \) such that \(x \notin L \) and \(x \) is collinear with a points \(z_2, z_3, \ldots, z_{\alpha+1} \) on \(L \). Let \(M \) be a line through \(z_{\alpha+1} \) meeting \(xx_\alpha \) in a point \(u \neq x, z_\alpha \). Suppose \(s \geq f(\alpha) \) where \(f(4) = 12 \), \(f(5) = 16 \), \(f(6) = f(7) = 17 \), \(f(8) = 18 \), \(f(9) = 19 \), \(f(10) = 21 \), \(f(11) = 23 \), \(f(\alpha) = 2\alpha \) (\(\alpha \geq 12 \)). Then \(M \) intersects at least \(\alpha-1 \) lines of \([x,L]\).

Proof. Suppose \(M \) does not meet at least two lines of \([x,L]\), \(xz_2 \) and \(xz_3 \), say. Since \(s \geq 2\alpha \) we can find \(y \in L \) such that \(x/y/f/u \). Let \([x,y] = \{K_1, K_2 = xz_2, \ldots, K_{\alpha+1} = xz_{\alpha+1}\} \) and \([y,x] = \{L_1 = L, L_2, L_3, \ldots, L_{\alpha+1}\} \) with \(K_1 \cap L_1 = \emptyset \).

Looking at \(u \) and \(y \) we find that \(M \) intersects \(\alpha-1 \) of the \(\alpha \) lines \(L_i \), \(\alpha \neq i \). Every point \(L_i \) which is collinear with \(x \) is on a line \(L_j \), \(j \neq \alpha \). If \(L_i \cap M \neq \emptyset \) for these \(\alpha-1 \) \(i \)’s, we find that \(M \) meets at least \(\alpha-1 \) of the \(\alpha \) lines \(K_1, \ldots, K_{\alpha+1} \), hence at least \(\alpha-1 \) of the lines \(K_2, \ldots, K_{\alpha+1} \), a contradiction.

Let \(t = L_i \cap M \) be a point not collinear with \(x \). Considering \(x/t/f \) we see that \(M \) intersects \(\alpha-1 \) of the \(\alpha \) lines in \([x,y] \backslash \{K_1\} \). This shows that \(i = 2 \) or \(3 \), so there are at most two such points \(t \), and that \(M \) meets \(K_1, K_4, K_5, \ldots, K_{\alpha+1} \).

Let \(V = \{K_4, K_5, M, \ldots, K_{\alpha+1}\} \) and count pairs \((y, v), y \in L, y/f/x, v \in V, v \neq y\).

The number of such pairs is at least \((s-\alpha+1)(\alpha-5)\) (first choose \(y, s-\alpha+1 \) possibilities, then given \(y \) we can find \(\alpha-3 \) points \(L_i \cap M \) as above, possibly one on \(K_1(y) \), and one is \(z_{\alpha+1} \), and at most \((\alpha-3)(\alpha-2)\) (first choose \(v \), then \(y \)). It follows that for \(\alpha > 5 \), \(s \leq 2\alpha-1 + \frac{6}{\alpha-5} \). Let \(W = V \cup \{q, q'\} = \{w \in M|w/x\} \) and count pairs \((y, w), y \in L, y/f/x, w \in W, w \neq y\). This yields \((s-\alpha+1)(\alpha-4) \leq (\alpha-3)(\alpha-2) + 2(\alpha-1)\), hence \(s \leq 2\alpha + \frac{8}{\alpha-4} \) if \(\alpha > 4 \). Above we saw that for any \(y \in L \) with \(x/f/y/u \), \(K_1 = K_1(y) \) meets \(M \). But if \(s+1 > \alpha + (\alpha-2) + 2(\alpha-1) = 4\alpha-4 \), we can find \(y \in L \) such that \(y/f/x \), \(u,q \) and \(q' \), a contradiction. Therefore we have \(s < 4\alpha-4 \). We now have obtained a contradiction for all \(\alpha \geq 4 \) and the lemma is proved. \(\square \)

Lemma 10. Some hypotheses as in Lemma 9. Then \(M \) intersects exactly \(\alpha-1 \) lines of \([x,L]\).

Proof. Take \(y \in L, y/f/x \) and let \(K_1 \) and \(L_i \) be defined as before. Put \(K := K_{\alpha+1} \) and let \(A(x,L) \) be the set of lines \(\neq K \) through \(z_{\alpha+1} \) intersecting at least \(\alpha-1 \) lines of \([x,L]\), \(A(y,K) \) the set of lines \(\neq K \) through \(z_{\alpha+1} \) intersecting at least \(\alpha-1 \) lines of \([y,K]\). Suppose a lines of \(A(x,L) \) intersects \(\alpha-1 \) lines of \([x,L]\) and \(b \) lines of \(A(x,L) \) intersect \(\alpha \) lines of \([x,L]\). Counting
the points $u \sim z_{a+1}$ on K_2, K_3, \ldots, K_a, such that $u \neq x, z_2, \ldots, z_a$ yields $a(a-2) + b(a-1) = (a-1)(a-2)$. Hence $a = 0$ and $b = a-2$ or $a = a-1$ and $b = 0$. Thus $|A(x, L)| = a-2$ or $a-1$ according as every line in $A(x, L)$ intersects all lines or all but one line in $[x, L]$. A similar result holds for $A(y, K)$.

Now $A(x, L) = A(y, K)$ for suppose $N \in A(x, L)$ then by Lemma 8, N intersects at least $a-1$ lines of $[y, x]$, so at least $a-2 \geq 2$ lines of $[y, K]$. Hence $N \in A(y, K)$ by Lemma 9. Similarly, $N \in A(y, K)$ implies $N \in A(x, L)$. Suppose $|A(x, L)| = a-2$, i.e. there are $a-2$ lines through z_{a+1} intersecting all lines of $[x, L] \cup [y, K]$. It follows that $K_2 \not\subset z_{a+1}$ so we can apply (**) to K_2. This shows that $L_{a+1} \subset [K_2 \setminus z_{a+1}]$ intersects all $N \in A(y, K) \subset [z_{a+1}, K_2 \setminus z_{a+1}]$, a contradiction, for $L_{a+1} \subset N$ implies $|[y, N]| \geq a+1$. □

Lemma 11. Let $x \in X$, $L \in L$ such that x is collinear with a point z_2, \ldots, z_{a+1} on L. Let M be a line through z_{a+1} intersecting $a-1$ lines of $[x, L]$ and let $y \in L$, $y \neq x$. Then, if $[x, y] = \{K_1(y), K_2 = xz_2, \ldots, K_{a+1} = xz_{a+1}\}$, M intersects $K_1(y)$.

Proof. Suppose M does not intersect K_2, say. As shown in Lemma 10, M also intersects $a-1$ lines of $[y, K_{a+1}] = \{L_1 = L, L_2, \ldots, L_a\}$. So M intersects at least one of L_{a-1} and L_a and since $a \geq 4$, $L_2 \neq L_{a-1}, L_a$. Suppose M intersects $L_{a-1}(L_a)$ in a point v. If $v \neq x$ then apply (**) to v and x. It follows that $M \in [v, x]$ intersects $K_1(y) \in [x, v]$ for M misses $K_2 \in [x, v]$. If $v = x$ then $v = L_{a-1}K_i (v = L_{a-1}K_i)$ for some i. By Lemma 10 applied to x and $L_{a-1}(L_a)$ it follows that M intersects $K_i(y) \subset [x, L_{a-1}] (K_i(y) \subset [x, L_a])$, for M does not intersect $K_2 \in [x, L_{a-1}] (K_2 \in [x, L_a])$. □

Corollary. The line $K_1(y)$ is the same for all $y \in L$, $y \neq x$.

Lemma 12. Let $x \in X$, $L \in L$ such that x is collinear with a point $z_2, z_3, \ldots, z_{a+1}$ on L. Put $K_i = xz_i$, $i = 2, \ldots, a+1$ and let K_1 be defined by $\{K_1, K_2, \ldots, K_{a+1}\} = [x, y]$ for any $y \in L$, $y \neq x$. Then every line which intersects K_1 and a $K_i(\#)$ not in x, intersects L and therefore exactly a lines of $\{K_1, \ldots, K_{a+1}\}$.

Proof. Fix $i \in \{2, \ldots, a+1\}$. The number of pairs (u, v) such that
If in Lemma 12 we replace $L = L_1$ by a line L_j missing K_j, then it follows that every line intersecting two lines of $\{K_1, \ldots, K_{a+1}\}$ not in x, intersects exactly a lines of $\{K_1, \ldots, K_{a+1}\}$. Using this result and the foregoing lemmas we can now proceed as in the case $\alpha = a^2$. For any two intersecting lines L_1, L_2 we can define in an obvious way a partial geometry $(L_1, L_2) = (X(L_1, L_2), l(L_1, L_2))$, now with parameters $\bar{s} = s, \bar{t} = a, \bar{a} = a$ (so (L_1, L_2) is an $(\alpha+1)$-net of order $s+1$). Again $\bar{\mu} = \bar{a}(\bar{t}+1) = a(\alpha+1) = \mu$, so with the same proof as the proof of Theorem 4 we have the following theorem.

Theorem 8. Let (X, L) be a s.p.g. with parameters $s, t, a, \mu = a(\alpha+1)$. If $\alpha \geq 4$, $s \geq f(\alpha)$ (as in Lemma 9) and $t \geq a+1$ (i.e. if (X, L) is not a p.g.), then (X, L) satisfies (D).

Fix a $(d-2)$-dimensional subspace S of $\text{PG}(d, q)$, q a prime power, $d \in \mathbb{N}$. Then with the lines of $\text{PG}(d, q)$ which have no point with 3 in common as "points" and with the planes of $\text{PG}(d, q)$ intersecting S in exactly one point as "lines" and with the natural incidence relation, one obtains a s.p.g. with parameters $s = q^2-1, t = (q-1)(q^{d-1}-1)$, $\alpha = q, \mu = q(q+1)$.

DEBROEY [1] showed that a s.p.g. with parameters $s, t, a \geq 2, \mu = a(\alpha+1)$ and satisfying (D) is of this type. Combining this result with Theorems 7 and 8 we arrive at the following theorem.

Theorem 9. Let (X, L) be a s.p.g. with parameters $s, t, a, \mu = a(\alpha+1)$ which is not a p.g.. If $\alpha = 2$ and not $s = t = 28$ or if $\alpha \geq 4$ and $s \geq f(\alpha)$, then (X, L) is isomorphic to a s.p.g. consisting of the lines in $\text{PG}(d, q)$ missing a given $(d-2)$-dimensional subspace of $\text{PG}(d, q)$ and the planes intel-
secting this subspace in one point. In particular $s = q^2 - 1$,
$t = (q-1)^{-1}(q^{d-1} - 1)^{-1}$, $a = q$, $u = q(q+1)$ for some prime power q and $d \in \mathbb{N}$
and any s.p.g. with these parameters with $q \neq 3$ and $d \geq 4$ is of this type.

REFERENCES

[1] DEBROEY, I., *Semi partial geometries satisfying the diagonal axiom*,

(A) 25 (1978) 242-250.