
AFDELI NG INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

D.S.H. ROSENTHAL

UNIX AS A BASIS FOR CAD SOFTWARE

F>repri nt

~
MC

IW 201/82 AUGUSTUS

kruislaan 413 1098 SJ amsterdam

Blb1-.lUTHf:EK Mi\ THE.Mi\ TISCH CENTR \
-Auc~,"D tJM

"!cOlt:ril AM-

P.unted a.t .the Ma.thema.tlc.ai. C en;tJz.e, 41 3 KJULUlaa.n, Am6.teJulam.

The Ma.thematic.al. Cen;t!z.e , nou.nded .the 11-.th on FebJr.UJVr.y 1946, -l6 a non­
pll.on,{;t w:tltLLtion a,imb1g a.t .the pJtomo.tlon on pWLe. ma.thema.tlc..6 and -ih
appUc.a.ti.oru,. 1.t ,l6 .6pon6oJt.ed by .the Ne.theJri.a.ncl6 GoveJt.nment .thMugh .the
Ne.theJri.and6 0Jc.ga.niza.tlon noJt. .the Advanc.ement on PUJt.e Re.tie.Mc.h (Z.W.O.).

CR Categories and Subject Descriptors:
D.2.6 [Software Engineering]: Programming
Environments J.6 (Computer Applications]:
Computer-Aided Engineering - Computer­
aided design

UNIX as a Basis for CAD Software

by

David S. H. Rosenthal

ABSTRACT

The suitability of the UN1x* operating
system as a basis for constructing and using
CAD software is assessed in the light of
several years experience of using it for this
purpose in the Edinburgh University Depart­
ment of Architecture.

This paper was published in Computer Aided Design
14(3), (May 1982).
* UNIX is a Trademark of Bell Laboratories.

1. Introduction

The UNIX operating system was written
for the PDP-11 at Bell Labs in 1970-71[22,23].
Although it has been widely used in universi­
ties since the mid-70s[l7], until recently it has
received relatively little attention elsewhere.
Recent developments have dramatically
changed this:-

- Several demonstrations of the system's por­
tability[l l, 19] have led to its becoming
available on a wide range of hardware.
The system is currently marketed for the
IBM 370 architecture, the Perkin-Elmer
32XX, the VAX, the PDP-11 series, the
BBN C/70, the Motorola 68000, and the
Zilog Z8000.*

- The advent of single-chip processors capa­
ble of running the system with ease has
reduced the hardware cost of entering the
world of UNIX to about 8,000 pounds.
Changes in licensing arrangements mean
that a supported binary license is now
available for about 2,000 pounds. A high­
quality timesharing service at this price has
proved very attractive.

- UNIX appears to be the best candidate for
a de facto standard operating system for
the 16-bit microprocessors, filling the role
which CP /M has played for smaller
machines.

- UNIX's reputation as a highly productive
environment for programmers to work in
has stood the test of much significant com­
mercial usage, both inside[6] and out­
side[20] the Bell system.

The prospect of a powerful operating
system becoming accepted over a wide range
of hardware is of particular importance to the
CAD community. Typical CAD programs
interact with their host operating systems in
complex ways; they address the peculiarities of
physical terminals doing graphics, they main­
tain disk databases large enough to hit system

• Implementations exist, or are underway, for many
other machines, including the Univac 1100, the
Harris /6(16), the Three Rivers Perq, and the IBM
Series/ 1(27).

limits, and access them in random and
unpredictable ways. Finally, they are often
large and demanding in response time;
significant efforts frequently being invested in
adapting their behaviour to use their host sys­
tem efficiently.

Even if a program of this kind, running
on a manufacturer supplied operating system,
has been written in a "standard" language,
porting it between different systems will be a
non-trivial task. An operating system avail­
able on a wide range of hardware providing
the facilities required to construct CAD sys­
tems would greatly improve the portability
and saleability of CAD systems. Developers
and users could choose the most cost-effective
hardware available at the time of purchase;
systems would no longer become unduly
expensive through being tied to a particular
manufacturer's hardware.

This paper is not intended as an intro­
duction to the concepts and facilities of UNIX.
For this, the reader is referred to the original
description in Communications of the
ACM[22], to the July-August 1978 special
issue of the Bell System Technical Journal,
and to the paper by Kernighan and
Mashey[14].

2. The UNIX Environment

The UNIX environment can be provided
in one of two ways. The UNIX kernel can run
directly on the bare hardware, using no
manufacturer-supplied software at all, as it
does on the PDP- I 1. Alternatively, if the
manufacturer supplies a sufficiently adaptable
"virtual machine" system, it can run as a vir­
tual machine alongside others on top of the
manufacturer's software. This technique has
been used by, among others, Amdahl on
VM/370.

A language standard, such as FOR­
TRAN 77, specifies how an application may
perform arithmetic, and open, close, read, and
write files. Some other languages go a little
further, specifying for example how an appli­
cation may dynamically obtain and release
memory. However, interactive CAD programs
require a far wider range of services. They

may need to manipulate terminal modes,
change file access permissions, intercept sig­
nals, create and manage sub-processes, send
and receive messages, and so on. A standard
environment means that programs requiring
services such as these need not sacrifice porta­
bility.

Of course, a standard environment in
terms of system calls and utilities does not
itself guarante:e program portability; compilers
are inevitably dependent on the underlying
hardware, and may therefore be somewhat
incompatible. Fortunately, considerable
efforts have been devoted to providing UNIX

with portable compilers. The kernel and all
the utilities are written in C; among the utili­
ties is a C compiler[12] designed to be easy to
re-target. This should always be both avail­
able and efficient. The FORTRAN 77 com­
piler[?] uses the same code generator, and is
thus ported with little extra effort. The Free
University of Amsterdam have developed a
portable Pascal system, based around a high­
level intermediate code[24]. Porting this
requires wJiting a relatively simple
intermediate-code translator. Many other
languages are: available, though because the
system's portability is fairly recent, most are
not portable.

3. Basic Facilities for CAD

CAD applications implemented under
UNIX may be regarded as collections of
processes operating upon data stored in the
file system and communicating with terminals.
The facilities of the system will be discussed
under each of these headings.

3.1. Processes

The UNIX environment encourages the
construction of applications from collections
of small programs communicating via files and
pipes,* rather than as large, monolithic pro­
grams. Each user may have many (typically
up to 12) simultaneously executing processes.
Executing a new program is a frequent opera-

* A pipe is an inter-process communication channel,
which behaves as an anonymous FIFO file.

2

tion, critical to performance. It is accom­
plished by creating a new process, which then
executes the new program and dies. Typical
costs for this sequence are 0.14s (on a
VAX 11 /780) and 0.43s (on a PDP 11 / 34) in
real time, representing between 0.10s and 0.26s
of processor time, over and above the cost of
the program.

For each implementation of UNIX, there
will be a limit on how much memory an indi­
vidual process can address. Swapping systems,
such as those for the PDP-11 and the 28002,
require the whole of the program and data to
be in real memory while being run, and typi­
cally have limits corresponding to 16-bit
addressing. On processors such as the PDP-
11/23, which cannot distinguish between
instruction (I) and data (D) accesses, the pro­
gram and the data together are limited to 64K
bytes. On processors such as the 28002,
which can distinguish I and D spaces, the pro­
gram and the data are separately limited to
64K bytes each.

These limits have proved a major con­
straint, particularly on the non-I/D PDP-I ls.
As a result, a text overlay scheme has been
developed at Berkeley[9] which permits pro­
grams somewhat larger than the 64K limit to.
be run, though enough physical memory for
the entire program and data must still be
available. The effect of the overlay scheme is
shown in Figure I.

64 ', ·---·-·-·7
'

' ' ' ' ; 32 ' " 0 ' '

0
0 32

Key:

' ' ' ' ' ' '
64

Text (kbytes)

128

--Overlay ·-· - Instruction and data -------Normal

Figure 7. Data size versus maximum text size

The overlay technique could also be
applied to an 1/D processor, in which case
data sizes up to 64K bytes could theoretically
co-exist with text sizes up to 400K bytes.
However, swapping programs of this size as a
unit is quite impractical. Overlay schemes in
which the inactive overlays are disk-resident
are not often used; programs are divided into
separate processes instead.

These problems, and the advent of the
VAX, led the Berkeley team to adapt UNIX so
as to exploit the virtual memory capabilities of
suitable processors[3]. Virtual memory UNIX

is normally configured to support processes
with up to 6M bytes of program and up to 6M
bytes of data on a VAX; extensions to support
much larger processes are possible.

In practice, we have found the multi­
process facilities of the system exceptionally
useful. The ability, for example, to invoke the
screen editor from within an application pro­
gram intended to examine and alter textual
information in a database, makes it very easy
to provide a powerful and uniform user inter­
face, and reduces the amount of code to be
written and debugged. On the other hand, the
limits on process address space have been a
significant constraint. A simple drafting sys­
tem[41, for example, had to be implemented as
two processes.

3.2. File System

The UNIX file system is fairly conven­
tional, but extremely simple. It consists of a
rooted tree of files, each interior node of which
is a directory (a file containing names and
addresses of files), and each leaf of which is
either a file or a directory. Each file is just a
featureless, randomly addressable sequence of
between 0 and 1,082,201,087 bytes. It has
been observed that:-

".... a file is best described by the
attributes it lacks.

- There are no tracks or
cylinders; the system conceals
the physical characteristics of
devices instead of flaunting
them.

3

- There are no physical or logical
records or associated counts;
the only bytes in a file are the
ones put there by the user.

- Since there are no records,
there is no fixed/variable length
distinction and no blocking.

- There is no preallocation of file
space; a file is as big as it needs
to be. If another byte is writ­
ten at the end of the file, the
file is one byte bigger.

- There is no distinction between
random and sequential access;
the bytes in a file are accessible
in any order.

There are neither file types for
different types of data nor any
access methods; all files are
identical in form.

- There is . no user-controlled
buffering; the system buffers all
1/0 itself."*

This extreme effacement of all hardware
features might be expected to result in poor
performance from the file system, but meas­
ures are taken to avoid this. The kernel main­
tains a cache of recently used disk blocks in
memory. On our system this cache is 25
blocks big, and has a typical hit rate of 75 to
80% (that is, only 1 in 4 or 5 1/0 system calls
actually results in disk 1/0). This high hit
rate is achieved by several tricks, the most
important of which is read-ahead. If the ker­
nel detects that a file is being read sequen­
tially, it will pre-read into the cache the block
ahead of the block being read, a very effective
strategy.

Although access to large files is relatively
efficient, the environment encourages the use
of many small files. Figure 2 is a histogram of
the sizes of nearly 7000 files on our machine,
showing that the most popular file size is less
than 512 bytes, and 80% of files contain less
than 5120 bytes. On the other hand, Figure 3

* Reproduced from [14] by permission of the publish­
er, John Wiley and Sons, Chichester, U.K.

"'

shows that these small files occupy only a
small proportion of the space. Of course,
dividing data into many small files means that
open and close operations are very common,
and their efficiency becomes critical. Opening
and closing a file typically costs 7lms proces­
sor time (125ms real time) on a PDPl 1/60.

3200

.!! ii: 1600

800

2 8

Figure 2. File size histogram

90

., 60 u
C
C.

"' .,
"' .E
C: .,
e .,
Cl.

30

2 8

32

Blocks

32 128

Blocks

Figure 3. Cumulative space versus file size

128

4

Because the file system accesses large
numbers of small files efficiently, and because
the same file may appear in different direc­
tories under different names (multiple links), it
is possible to use the file system to provide
multiple access paths to application data. For
example, a single file containing information
on an individual part might have links from
directories containing:-

- all parts used in a particular assembly,
under their part numbers,

- all parts stored in a particular area, under
their bin numbers,

- all parts supplied by a particular supplier,
under his reference numbers,

- all parts on order from a particular sup-
plier, under their order numbers,

and so on. Data stored in this way is easily
accessible to programs written in the Shell (the
language of the command interpreter), which
is an extremely quick way to create new appli­
cations. On a typical system, 13% of the glo­
bally accessible commands are command files
of this type. The proportion of personal com­
mands implemented this way is much higher.

Two aspects of the file system's organisa­
tion cause performance problems on large
(100s of Mb) disks. When data is appended to
files, new blocks are simply acquired from the
head of the appropriate free list; no special
effort is made to keep the blocks of a file close
together. In addition, the disk mapping infor­
mation is in a single contiguous area at the
start of the disk. Thus, on large physical disks
head movement becomes excessive. The prob­
lem can be alleviated by treating a large physi­
cal disk as a number of smaller logical
volumes, but moving parts of the file system to
another volume when one volume's free space
is exhausted is operationally inconvenient.

An application which required more
efficient access to disk storage than that pro­
vided by the file system could use the so-called
'raw' devices. These by-pass the disk cache,
transferring directly between the disk and the
user process' address space. They are used in
exactly the same way as normal files, except
that they can only be read and written in units

of the block size. Using raw devices, and the
appropriate magic numbers, disks can be read
or written in complete tracks or cylinders.
Because raw devices are just files, if data is
read in block size units the decision on their
use can be postponed to run-time.

Although these facilities provide the
opportunity to design an application-specific
disk storage system, even major database
applications such as the INGRES relational
database manager have not taken it. In
retrospect[25], however, the INGRES team
believe that it would have been wise to do so.
Using virtual memory UNIX, sparse access to
large files (e.g. CAD databases) can be made
more efficient by mapping them into the pro­
cess' virtual memory. Use of this technique
will increase as it becomes more widely avail­
able.

We have used the file system to imple­
ment various data management schemes for
textual, numeric, and geometric information,
including one based on Applied Research of
Cambridge's BOS[l]. In all cases the simple
and uniform interface has made writing and
maintaining the programs easy, and the file
system's performance has been adequate.

3.3. Terminal 1/0

Terminal 1/0 uses the normal file system
calls, is full-duplex, and can be as fast as the
hardware will permit.• Programs designed to
read and write files can read and write termi­
nals with no special preparation, and vice
versa. The 1/0 redirection facilities of the
shell make this usual.

Characters typed at the terminal are nor­
mally accumulated until an end-of-line charac­
ter, and other special characters are defined to
perform delete-line, delete-character, interrupt
process and end-of-file functions. Characters
sent to the terminal may be subject to an X­
ON IX-OFF protocol. A system call is pro­
vided to change all these special character

• OMA asynchronous line multiplexers are an advan­
tage, if available. Without them, transmitter inter­
rupt service alone has been measured at 10% of an
11/70.

5

assignments, to change line speeds and delays,
and to set various modes on a dynamic, per­
line basis.

The modes available include one which
passes all 8 bits, and one which wakes the
reading process on every character. Another
mode provides upper-to-lower case mapping.
Case differences are significant for UNIX; using
an upper-case only terminal is possible but
inconvenient.

We have used the terminal facilities to
build interactive graphics systems driving vari­
ous terminal types, spoolers for various
plotters and printers, and computer-to­
computer links. Constructing these has been
significantly easier than our experience with
other systems. The complete control over spe­
cial characters, and the acceptable efficiency of
character-at-a-time 1/0 have been especially
useful.

4. The System in Use

Although UNIX as a productive environ­
ment for programming has been discussed
exhaustively[l4, 10], its characteristics as an
environment for routine production computing
have received much less attention.

The routine of administering and run­
ning a UNIX installation is not onerous. If the
system has been properly organised initially,t
all the routine tasks are performed by shell
scripts run at startup, shutdown, and at regu­
lar intervals between. On our system these
perform file system consistency checking,
incremental file dumps, and system perfor­
mance monitoring. Others add usage account­
ing, disk quotas, security audits, etc.

Another system administration task for
which the system provides assistance is that of
introducing new users to the facilities they
need. A computer-aided instruction system
called Leam[l3] is provided, capable of moni­
toring user's interactions with programs and,
based upon their actions, walking them
through a network of scripts providing graded

t The assistance of a "guru" is essential at this
stage.

amounts of help. Scripts are provided to
teach the editor and other basic facilities;
these can be used as examples for creating
new scripts.

A properly set up UNIX is almost as reli­
able as the hardware. However, the effects of
a crash used to be a problem. Although the
system rarely crashed so as to lose files com­
pletely, it usually left file systems in an inc.on­
sistent state. The tools available to repair
damaged file systems were effective in skilled
hands, but dangerous ofperwise. Work since
the release of the 7t Edition has both

improved the crash-resistance of the file sys­
tem, and provided a new file system check and
repair program[l5]. This can be used interac­
tively, but is quite safe to use automatically on
re-booting the system.

UNIX administers its resources through a
number of internal tables, whose sizes are set
at system generation time. It is possible to
make these tables so big that user processes
cannot exhaust the space in them, but this is
wasteful of address space and physical
memory, and risks are frequently taken on
smaller configurations. The risk is that pro­
grams may occasionally fail through no fault
of their own during times of heavy load,
because they are unable to acquire the
resources they need. This is rationalised as
either a good argument for upgrading the
configuration, or as a useful deterrent to anti­
social behaviour (such as running resource­
intensive programs during periods of heavy
load), depending on one's point of view.

Experience of running the system in a
hostile environment* indicates that, with
minor modifications, it is capable of resisting
determined and informed attempts at penetra­
tion. However, the price of such security is
eternal vigilance, and few installations are wil­
ling to pay it. A level of security sufficient to
resist all but the highly skilled is obtained
through simple administrative attention to
passwords, default file permissions, etc.

• Australian computer science undergraduates.

6

Our experience of running the system
has been atypical, we are one of a tight group
of about a dozen UNIX systems, with high lev­
els of expertise.

5. The Future

5.1. Problems

We have identified a number of inade­
quacies with current UNIX implementations as
viewed from the perspective of CAD. These
include:

The limited per-process address space.

The performance of the file system on
large disks.

Interprocess communication facilities,
particularly to support server processes
and network access.

In addition, Stonebraker, from the stand­
point of DBMS support, has identified other
problems[26]. His criticisms, most of which
apply to operating systems in general, rather
than just to UNIX, include:

The inappropriate nature of the LRU
replacement strategy used in the buffer
cache, when supporting databases.

The inappropriate nature of the read­
ahead strategy used in the buffer cache,
when supporting databases.

The need to selectively force blocks out
of the cache to provide correct crash
recovery.

The performance problems of scattering
the blocks of a file.

The expense of switching between
processes.

Of course, all the problems of file I/ 0 for
databases could be resolved by designing
database-specific file systems on top of the
'raw' devices, which bypass the cache com­
pletely. However, it would be more satisfac­
tory if the standard file system provided ade­
quate performance.

5.2. Develo111ments

The most important constraint on exist­
ing small systems is the lack of process
address space. Although at present virtual
memory UNIX is only available on fairly
expensive computers, recent announcements
from the chip-makers encourage the belief that
small computers running the system are not
too far off. The changes to come in . the
MC68000 microcode, and the forthcoming
Z8003 and Intel 432 processors, should solve
the problem.

It is anticipated that single-user worksta­
tions, running UNIX on one of these proces­
sors, together with an 8-inch Winchester disk,
a high-performance raster display, a local-area
network inte:rface, and a digitising tablet, will
be available shortly for about $15,000.

The problem of maintaining the perfor­
mance of the~ file system on very large disks is
being addressed. Techniques for adding new
blocks to files which are near the existing
blocks, and for distributing the disk mapping
information through the space mapped, should
both reduce the average length of seeks. The
alternative approach, of replacing or augment­
ing the standard file system by an extent-based
system, has been tried by a number of
groups[l8].

The problems caused by caching stra­
tegies inappropriate for particular processes
can be addrnssed in the same way that Berke­
ley have accommodated processes for which
the standard page replacement strategy is
inappropriat,e. They provide a system call,
used for example by LISP during garbage col­
lection, by means of which a process may
advise the paging system of its anticipated
behaviour. Analogous system calls could be
added to advise as to suitable blocks to read­
ahead, and suitable blocks to flush from the
cache.

Although UNIX has been connected satis­
factorily to many networks, including the
ARPANET[:5], X-25, Cambridge Rings, and
various experimental networks[8], the experi­
ences of the various groups involved have led
to a re-evaluation of a number of basic system
concepts[21].. Several efforts are underway to

7

re-design the inter-process and terminal I/0
capabilities as an integrated unit, allowing net­
work and multiple virtual terminal support as
upwards compatible extensions of current sys­
tem facilities. The experimental system at Bell
Labs indicates that these permit a group of
linked UNIX systems to be presented to the
user as a single resource; operations can be
performed wherever the user finds convenient.

The excessive cost of switching between
processes is an inevitable result of the power
of the process concept in a multi-user multi­
purpose system. Processes have a large quan­
tity of context information, and traditional
processors lack hardware to support it. How­
ever, processor design is now being affected by
knowledge about the software they are going
to run. Perhaps the most important effect of
the knowledge that they will run UNIX is the
provision, for example on the BBN C/70(2], of
hardware support for rapid context switching.

6. Conclusions

Our experience indicates that the UNIX

environment provides all the basic facilities
required by CAD systems, on a range of
machines from 16-bit microprocessors to large
mainframes. Some constraints imposed by the
smaller processors have been irritating, but on
more modem processors they have been
removed.

7. Acknowledgements

This work was supported by Science and
Engineering Research Council grant
GR/ A80341. Special thanks are due to my
colleagues Jim McK.ie and Fernando Pereria.

REFERENCES

[I] ARC, BOS Infrastructure Software - A
Short Technical Description, Applied
Research of Cambridge, Ltd. (1978).

[2] BBN, C/70 Hardware Reference Manual,
BBN Computer Co., Cambridge, Mass.
(March 1981).

[3] 0. Babaoglu, W. Joy, and J. Porcar,
Design. and Implementation of the Berke­
ley Virtual Memory Extensions to the
UNIX Operating System, Computer Sci­
ence Division, University of California,
Berkeley, California.

[4] A. Bijl and J. Nash, "Progress on Draw­
ing Systiems," Computer Aided Design
13(6), pp.351-358 (November 1981).

[5} G. L. Chesson, "The Network UNIX Sys­
tem," Operating Systems Review 9(5),
pp.60-66 (1975).

[6] T. A. Dolotta, R. C. Haight, and J. R.
Mashey, "UNIX Time-Sharing System:
The Programmer's Workbench," Bell
Sys. Tech. J. 57(6), pp.2177-2200 (1978).

[7] S. I. Feldman, "Implementation of a
Portable FORTRAN 77 Compiler Using
Modem Tools," ACM SIGPLAN Notices
14(8), pp.98-106 (Aug 1979).

[8] A. G. Fraser, "Datakit - A Modular
Network for Synchronous and Asynchro­
nous Tralnc," Proc. ICC (June 1979).

[9] C. Haley and W. N. Joy, "Running
Large Text Processes on Small UNIX
Systems," Computer Systems Research
Group, Dept. EECS, University of Cali­
fornia, Berkeley, California.

[10] E. L. Ivie, "The Programmer's Work­
bench -- A Machine for Software
Development," Comm. Assoc. Comput.
Mach. 20(10), pp.746-753 (October 1977).

[11] S. C. Johnson and D. M. Ritchie, "UNIX
Time-Sharing System: Portability of C
Programs and the UNIX System," Bell
Sys. Tech. J. 57(6), pp.2021-2048.

[12] S. C. Johnson, "A Portable Compiler:
Theory and Practice," Proc. 5th A CM
Symp. on Principles of Programming
Languages, pp.97-104 (January 1978).

[13] B. W. Kernighan and M. E. Lesk,
LEARN - Computer-Aided Instruction
on UNIX (Second Edition), Bell Labora­
tories, Murray Hill, New Jersey (January
1979).

8

[14] B. W. Kernighan and J. R. Mashey,
"The UNIX Programming Environment,"
Computer 14(4), pp.12-24, (adapted from
Software - Practice & Experience 9(1)
January 1979 ppl-16) (April 1981).

[15] T. J. Kowalski, FSCK - The UNIX File
System Check Program, Bell Labora­
tories, Murray Hill, New Jersey (1980).

[16] S. J. Leifer, A Detailed Tour through the
I 6 Portable C Compiler, Dept. of Com­
puter Engineering, Case Western Reserve
University, Cleveland, Ohio (1980).

[17] J. Lions, "Experiences with the UNIX
Timesharing System," Software - Prac­
tice and Experience 9(9), pp.701-709
(Sept 1979).

[18] H. Lycklama and D. L. Bayer, "The
MERT Operating System," Bell Syst.
Tech. J. 57(6) (1978).

[19] R. Miller, "UNIX - A Portable Operat­
ing System?," Operating Systems Review
(ACM! SIGOPS) 12(3), pp.32-37 (June
1978).

[20] I. R. Perry, "UNIX From the Point of
View of a Commercial User," European
UNIX User Group Newsletter(?), pp.28-31
(July 1980).

[21] R. F. Rashid, "An Interprocess Com­
munication Facility for UNIX," CMU­
CS-80-124, Computer Science Dept.,
Carnegie-Mellon University, Pittsburgh,
Pennsylvania (February 1980).

[22] D. M. Ritchie and K. Thompson, "The
UNIX Time-Sharing System," Comm.
Assoc. Comput. Mach. 17(7), pp.365-375
(July 1974).

[23] D. M. Ritchie, "The Evolution of the
UNIX Time-Sharing System," in Proc. of
Symp. on Language Design and Program­
ming Methodology, Sydney, Australia, ed.
J. M. Tobias, Springer-Verlag, Berlin
(September 1979).

[24] J. W. Stevenson, Pascal-VU Reference
Manual, Wiskundig Seminarium, Vrije
Universteit, Amsterdam (March 1980).

[25] M. Stonebraker, "Retrospection on a
Database! System," A CM Trans. on
Database Systems 5(2), pp.225-240 (June
1980).

[26] M. Stomibraker, "Operating System Sup­
port for Database Management," Comm.
Assoc. Comput. Mach. 24(7), pp.412-418
(July 1981).

[27] P. Jalics, Cleveland State University,
USENIX meeting, Boulder, Colorado
(February 1980).

9

MC NR

35223

SEP.

