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ABSTRACT 
The concept of virtual input devices, enunci­

ated by Wallace, has been the accepted basis 
for producing device-independent interactive 
graphics systems. It was used by GSPC for 
the Core System, and it underlies the draft 
international standard GKS. 

During the recently concluded technical 
review of GKS, the input facilities became a 
bone of contention. The discussions revealed 
many inadequacies in the virtual input device 
concept, and were finally resolved using a 
refined and extended model of input, which is 
presented here by some of the participants in 
the discussions. Examples are included, show­
ing how the GKS facilities derive from the 
model, and the Core's "STROKE" device is 
used to show how the model controls future 
extensions to GKS; The model is also used to 
describe the other differences between the 
input facilities of .the Core System and GKS. 
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1. Introduction 

"There is a theory which states that if 
ever anyone finds out exactly what the 
Universe is for and why it is here, it 
will instantly disappear and be 
replaced by something even more 
bizarre and inexplicable." 
"The Restaurant at the End of the 
Universe" by Douglas Adams 

On a considerable basis of earlier 
work[5, 2, 8], Wallace enunciated the concept 
of virtual input devices[I0] as a means 
whereby interactive graphics applications 
could be insulated from the peculiarities of the 
input devices of particular terminals, and 
thereby become portable. The idea was that 
the applications programmer had available a 
range of virtual input devices, the only visible 
aspect of which was the type of the value they 
returned. Thus, if a position were required, a 
LOCATOR device would be selected, if a char­
acter string were required, a STRING device 
would be selected, and so on. 

From the start, it was evident that the pure 
virtual device concept was inadequate. Virtual 
devices needed other visible aspects, control­
ling details of the operator interface such as 
echoing. This logical device concept formed 
the basis for the GSPC Core System[9], and it 
was also used by the initial versions of the 
draft international standard GKS[3]. During 
the recently concluded technical review of 
GKS by a working group of the International 
Standards Organisation, the input facilities 
became a bone of contention. Criticisms of 
these versions of GKS concentrated on: 

The precise data types to be returned 
by the different classes. 

The different levels of detail at which 
different kinds of input behaviour were 
specified. 

The lack of uniformity among the 
different logical device classes as to the 
details of their behaviour. 

The lack of clear distinction between 
the concepts of: 
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Simulating a logical device using 
particular types of hardware. 

Prompting an operator for input. 

Echoing an operator's actions. 

Acknowledging an operator's gen­
eration of events. 

The difficulty of relating any of these 
"output" concepts to logical input dev­
ices. 

It became clear that these problems were all 
related to deficiences in the underlying model 
of input, and the discussions were finally 
resolved by a refined and generalised concept 
of logical input devices, which is described 
below. 

2. The Model 

An application program obtains input from 
a number of logical input devices, divided into 
classes according to the type of data obtained. 
Typical classes are LOCATOR, VALUATOR, PICK, 
CHOICE, and STRING. 

2.1. Application Program Use of Logical Input 
Devices 

At the highest level, a logical input device 
is either accessible to the application program, 
or it is inaccessible. Initially, all devices are 
inaccessible. If a device is to be used for 
input, it must first be acquired, that is, a con­
nection must be made between the identifier 
known to the application program and the 
external name(s) for the physical device(s). 
Once this connection is made, the device 
becomes accessible and interactions may take 
place using the device. The device may also 
be released, breaking the connection between 
the identifier and the physical devices. The 
device is then inaccessible until it is re­
acquired. 

There are three generally accepted ways in 
which application programs can obtain data 
from logical input devices; they are known as 
different modes of operation: 

In SAMPLE mode the application pro­
gram invokes a function to obtain the 

. ~urrent logical data value from the dev­
ice., 



In EVENT mode the operator's actions 
create events, records of the logical 
data value of the device at a specific 
moment in time; the system preserves 
these records in one or more event 
queues, the contents of which the appli­
cation program can process at its con­
venience. 

In REQUEST mode the application pro­
gram invokes a function permitting the 
operator to adjust the logical data value 
of the device and then indicate that the 
value is satisfactory; the function waits 
until this has been done and then 
returns the value. 

Initially, when acquired, a device is in 
REQUEST mode. When a device is in REQUEST 

mode, but is not currently the subject of a 
REQUEST function invocation, the device is not 
available to the operator. This corresponds to 
what has been called a disabled state, although 
the term seems to be dropping from use. 

A logical input device is taking part in an 
interaction while the device is in SAMPLE or 
EVENT mode, or while the device is the subject 
of a REQUEST function invocation. The term 
enabled has been used for this device state. 

Note that the definitions of these modes 
refer to two concepts, the current logical data 
value, and specific moments in time at which 
the operator indicates that the current value is 
important. These concepts are described more 
fully in the next section. 

2.2. Measures and Triggers 

All logical input devices, being abstrac­
tions, are considered to be "simulated" by an 
implementation, even if the mapping from 
physical device(s) to a logical device is quite 
direct. The simulation of a logical input dev­
ice has two major parts, the measure part and 
the trigger part. The measure part determines 
how the operator controls the logical data 
value, and the trigger part determines how the 
operator indicates that the current value is 
important. 

The measure part of a logical input device 
is only active when the device is taking part in 
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an interaction. At these times, an independent 
measure process is ( conceptually) in existence 
that uses the states and ·changes of state of 
various physical input devices to control a log­
ical data value (the device's measure) 
appropriate to the logical device's class. It is 
permitted that a single physical input device 
simultaneously affect the measures of several 
logical input devices; nevertheless, the measure 
processes are still considered distinct. 

The trigger part of a logical input device 
responds to changes in the state of physical 
input devices either by remaining quiescent,* 
or by firing. When the trigger of a logical 
input device fires, it sends a message to the 
measure process for the device. The effect of 
the signal depends upon the mode of the dev­
ice, and is explained below. 

Several logical input devices may have 
their trigger part in common. Whenever any 
of the devices sharing a particular trigger part 
are taking part in an interaction, a single 
trigger process for that trigger is ( conceptu­
ally) in existence. The firing of the trigger sig­
nals all the appropriate measure processes. It 
is a requirement that a single operator action 
cause the firing of no more than one trigger. 
Thus, in contrast to measure processes (which 
must be unique to a logical device), it is nor­
mal for trigger processes to be shared between 
logical devices. 

When a measure process receives a signal 
from the trigger process of its logical device, 
the actions it takes depend upon the device's 
mode as follows: 

In REQUEST mode, the measure process 
returns its data value to the application, 
and then dies. 

In SAMPLE mode, signals from triggers 
are always ignored. The application 
may obtain the data value from the 
measure process whenever it pleases. 

In EVENT mode, the measure process 
attempts to add an event record, con­
taining its identification and data value, 
to the appropriate input queue. Other 

* Its invisible internal state may change. 



measure processes using the same 
trigger process may also be attempting 
to add records to the same queue at the 
same time. The resulting group of 
simultaneous event records must either 
all be added to the queue, or none must 
be add1ed to the queue. If the measure 
processes fail to add their events to the 
queue, input queue overflow must be 
reported for that queue. 

Groups of simultaneous event records are 
marked as such; when an event record is 
dequeued, the application must be able to dis­
cover whether more events in the same group 
remain in the queue. 

2.3. Attributes of Logical Input Devices 

When accessible to the application pro­
gram, a logical input device has certain 
characteristics or attributes that distinguish it, 
in a general fashion, from other logical input 
devices of the same input class. Depending on 
the particular graphics system, some attributes 
will be under application control, while others 
will have been fixed by the implementor. 
Some of the attributes of logical input devices 
are: 

Current mode of operation. 

How the implementation simulates the 
logical device using physical devices. 

How the operator is informed that a 
measure process has come into 
existence, and thus that its associated 
physical devices are available for mani­
pulation. This is called the prompt. 

How the operator is informed of the 
logical device's measure (its logical data 
value). This is called the echo. 

How the operator is informed of a 
significant firing of the input device's 
trigger; this is called acknowledgement. 
A significant trigger firing is one satisfy­
ing a REQUEST function invocation, or 
adding events to the queue, 

An initial value, of the type appropriate 
to the class, for use by the device's 
measure process when it comes into 
existence. 
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A switch turning echo on or off. 

The attributes may also contain extra 
information used, for example, by particular 
simulation, prompting and echoing techniques. 
Note, however, that the device's measure is 
not considered an attribute. 

2.4. The Life Cycle of an Input Device 

It is now possible to outline the sequence 
of operations that corresponds to a specific 
logical input device taking part in a interac­
tion: 

A measure process is created for the 
device, and its value is set to the initial 
value in the device's state. 

If the trigger process for the device is 
not in existence, it is created. 

The operator is prompted for input, 
using the selected technique. 

If the echo switch in the device's state 
is on, echoing is commenced, using the 
selected technique. 

As the operator manipulates the physi­
cal input devices, the trigger may fire, 
causing the appropriate one of the set 
of actions outlined above, depending on 
the device's mode. 

If a trigger firing is significant, it is ack­
nowledged. 

Eventually, either because in REQUEST 

mode the trigger fires, or because the 
device leaves SAMPLE or EVENT mode, 
the measure process dies. 

When a trigger process has no measure 
processes, it also dies. 

3. Applying the Model to GKS 

As an example of the use of the model, we 
take the input facilities of GKS[7]. A funda­
mental concept of GKS is the workstation [4], a 
collection of input and output facilities, 
treated as a unit by the application program, 
forming a single logical channel of communi­
cation to the user. An application may drive 
many workstations, several of which may sup­
port one or more logical input devices. How­
ever, there is a single event queue shared by 



all workstations. 

Each logical input device is treated as part 
of a particular workstation, and is acquired 
and released as its workstation is opened and 
closed. The attributes of each logical device 
are part of the Workstation State List for the 
corresponding workstation. The application 
program name for a logical input device 
(shown below as ID) is a pair, thus: 

<Workstation identifier, Device identifier> 

The implementor of the workstation selects 
for each logical device a single technique by 
which it is simulated using the available 
hardware. The implementor may provide 
different simulations as different \ogical dev­
ices in the sarne class, but GKS does not per­
mit the application program to change indivi­
dual simulation techniques. 

3.1. GKS Modes 

All GKS logical devices can operate in 
each of the three modes, REQUEST, SAMPLE, 

and EVENT. By default, devices are in 
REQUEST mod,e. Given this and omitting some 
details, the set of input functions becomes at 
least: 

Operations on the device's attributes: 

INITIALISE <class>(ID, INITIAL _Y ALUE) 

SET <class> MODE(ID, MODE) 

Input directly from the device: 

REQUEST <class>(ID, VALUE) 

SAMPLE <class>(ID, VALUE) 

Input from event queue: 

A WAIT lEVENT(ID, CLASS) 

Examination of most recently awaited 
event n:cord: 

GET <cllass>(VALUE) 
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with MODE=EVENT or MODE=SAMPLE, is 
invoked. At this point, the measure process is 
(re-)created and initialised to the value from 
the workstation state list. 

3.2. GKS Device Oasses 

GKS provides five device classes, LOCA­

TOR, VALUATOR, CHOICE, PICK, and STRING. 

The Core System, following Wallace, considers 
BUTTON more appropriate as a primitive input 
class, than CHOICE. The Core System provides 
an additional class, STROKE, which is used 
below as an example of how the model con­
trols possible extensions to GKS. 

3.2.1. LOCATOR 

Both G KS and the Core use a two-stage 
process to transform from the world coordi­
nates used by the application to the individual 
device coordinates used by each display. 
Coordinates are first transformed to a single 
space shared by all devices, called normalised 
device coordinates (NDC) by the 
window/viewport transformation. Then each 
workstation has a private transformation from 
NDC to its own device coordinates. 

Wallace originally suggested that LOCATOR 

devices returned a position in device coordi­
nates. The Core System's LOCATOR devices 
return a position in NDC. The application 
eventually needs a position in world coordi­
nates, since these are used for output. The 
difficulty in providing world coordinates lies in 
selecting the window /viewport transformation 
whose inverse is to be applied. Consider an 
application in which a view of a drawing, a 
part of a symbol library, and some menus 
share the screen. Each was created using a 
different window/viewport transformation; the 
operator's actions may require the application 
to change any of these views, and thus to re­
establish an appropriate transformation for 
drawing them. 

Detection of simultaneous events: The transformation to be used cannot sim-
ply be that active for output, which must be 

INQUIRE MORE SIMULTANEOUS EVENTS(FLAG) set according to output requirements, and 

An interaction with a device starts when-
ever REQUEST <class>, or SET <class> MODE 

changed even while devices are in EVENT 

mode. The Core System's NDC locators 
avoid this problem, leaving it to the applica-



tion to select an appropriate transformation. 

GKS takes an alternative approach, pro­
vidin& multiple window/viewport transforma­
tions, referred to by an index. For output, 
the application selects one using its index. 
For input, the application arranges the 
transformations in a priority order. When a 
physical locator returns a coordinate, the 
workstation transforms it back to NDC, and 
then transforms to world coordinates by: 

Scanning the list of transformations in 
decreasing priority order, until the 
NDC position lies inside the viewport 
of a transformation. 

Using the inverse of this transformation 
to provide a world coordinate value. 

Returning as the measure both the 
world coordinate value and the index of 
the selected transformation. 

In this way, the locator itself selects an 
appropriate transformation. In the example 
above, if the locator's device coordinate posi­
tion lies within the part of the screen showing 
the drawing, 1lhe drawing's window/viewport 
transformation will be used. If it is in the part 
showing the symbol library, the library's 
transformation will be used. The application 
knows which was used, because the index of 
the transformation used is part of the measure. 
In general, th1ere will be enough transforma­
tions to assign one to each part of the screen 
in use, so that they will only need to be 
changed infrequently. In any case, there is a 
default transformation that cannot be 
changed, in effect returning NDC if no other 
transformation can be found. 

3.2.2. VALUATOR 

GKS provides a classical VALUATOR class, 
whose measures are real values in ranges 
specified on a per-device basis by the applica­
tion. 

• Termed normalisation transformations, since they 
transform to normalised device coordinates. 
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3.2.3. CHOICE 

GKS provides a CHOICE class, whose meas­
ures are either integers up to a device-specific 
limit, or an indication of "no choice". No 
choice might, for example, be a state in which 
no buttons on a button box were depressed. 
The class is intended to provide a "menu" 
capability, and has potentially complex 
application-controlled prompting techniques, 
including the display of a menu consisting of 
strings or the primitives in a segment. 

3.2.4. PICK 

GKS provides a PICK class, whose meas­
ures are either segment name and pick 
identifier pairs, or an indication of "no pick". 
No pick might, for example, be a state in 
which the light pen was not pointing at any 
detectable segment. 

3.2.5. STRING 

The measures of GKS STRING class devices 
are (possibly null) strings of characters. The 
operator is presented with the initial string, 
and a cursor at an application-specified posi­
tion within it. Replacement of characters 
starts at the cursor position, and may extend 
the string up to an application-specified max­
imum length. 

3.3. A Possible STROKE Device Class 

GKS does not provide a STROKE device 
class. However, using the model it would be 
easy to design one. The design would proceed 
in three stages. First, omitting some details, 
the functions required are: 

INITIALISE STROKE(ID, INITIAL _v ALUE) 

SET STROKE MODE(ID, MODE) 

REQUEST STROKE(ID, VALUE) 

SAMPLE STROKE(ID, VALUE) 

GET STROKE(ID, VALUE) 

Secondly, the data type appropriate to the 
class is determined. The measure of a STROKE 

device is a (possibly null) string of positions in 
world coordinates, and a normalisation 
transformation number. The coordinates of 
the returned polyline are re-transformed by 
the inverse of the window /viewport transfor-



mation of highest priority in whose viewport 
they all lie;· the index of this transformation is 
part of the value. 

Because their measures are both values 
resulting from a sequence of operator actions, 
the STROKE class behaves analogously to the 
STRING class, in that it takes an initial stroke 
and a cursor position within it. Replacement 
of strokes starts at the cursor position .and 
may extend the polyline up to an application­
specified maximum. Details such as whether 
the individual positions of the stroke are trig­
gered by distance, time, or operator action, 
and how the operator "rubs-out" erroneous 
positions, are left to the workstation imple­
mentor. 

3.4. Prompting and Echoing 

The details omitted from the descriptions 
above concern prompting and echoing. For 
each class, GKS defines several prompt/echo 
techniques. At least one very simple technique 
must be supported for every device. When a 
device is initialised, a particular prompt/ echo 
technique is requested, and appropriate 
parametric information is supplied. These 
attributes include an echo area, which the 
technique may use to display the prompt or 
echo, and a data record containing device- and 
implementation-specific information such as 
an array of strings for a CHOICE device using 
text menus. 

3.5. Differences Between GKS and the Core 

Although they are conceptually similar, 
there are some detail differences between the 
input facilities of GKS and the Core. The 
model is equally useful for describing the 
Core, though in this section we only describe 
the differences. 

Because the Core has no workstation con­
cept, it has explicit functions for acquiring and 
releasing logical input devices, for example 
INITIALIZE....DEVICE. Note that this does not 
provide an initial value for the device; the 
Core has individual functions for setting par­
ticular attributes of logical input classes, and 
the only classes for which an initial value set­
ting function is provided are LOCATOR and 
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VALUATOR. 

The Core recognises only SAMPLE and 
EVENT modes. Each device class operates only 
in one mode; LOCATOR and VALUATOR in 
SAMPLE mode, and PICK, KEYBOARD, BUTTON, 

and STROKE in EVENT mode. The measure 
and trigger processes are created by an 
ENABLE....DEVICE invocation, and destroyed by 
a DISABLE....DEVICE invocation. 

Facilities are provided to associate one or 
more LOCATOR or VALUATOR devices with a 
device in an "event" class. An association 
between a device in a "sample" class and a 
device in an "event" class in effect creates a 
new logical devtce, operating in event mode, 
which has the measure of the "sample" device* 
and the trigger of the "event" device. 

An group of associated devices share the 
same trigger (that of the "event" device) and 
so generate a group of simultaneous events. 
Unlike GKS, the Core combines all the 
reports in a group of simultaneous events into 
a single complex report; the firing of a single 
trigger can place at most one report in the 
queue. 

In GKS, the creation of groups of associ­
ated devices is the preserve of the workstation 
implementor. Facilities to provide application 
control over associations would require the 
addition of two new functions (and the 
corresponding inquiries) to GKS: 

ASSOCIATE(IDl, ID2) 

DISSOCIA TE(ID2) 

The effect would be to disconnect the measure 
of device 102 from its trigger, and to connect it 
to the trigger of device 101 until it was dissoci­
ated. When the trigger of device ID1 fired, the 
resulting group of simultaneous events would 
contain an event from device 102. 

* It is thus in the class of the ~'sample" device. 



4. Implications of the Model 
Because there was otherwise no exit from a 

REQUEST except by supplying a valid value, 
GKS provides a "break" facility. This permits 
an operator, when REQUESTed for a value, to 
refuse to supply one. It provides, among other 
capabilities, an easy way for the operator to 
indicate "end-of-input". 

Another implication of the model may 
reflect on the current discussions of graphics 
virtual device interfaces. The model now 
insists that the essential preliminary to any 
input operation is an output operation provid­
ing an initial value of the appropriate type. 
This strongly encourages a symmetric 
approach to incorporating input into a virtual 
device definition, insisting that the responses 
from input devices are similar to output com­
mands. 

This symmetry is enhanced by the observa­
tion that the prompt/ echo information now 
behaves in effect as the attributes of an input 
primitive, modifying its visible appearance in a 
workstation-dependent fashion. 

5. Conclusion 

Since it was proposed, the concept of vir­
tual input devices has been extremely useful, 
but has also attracted severe criticism[6, I] 
from, among others, one of us. Although this 
refined model answers some of these attacks, 
the fundamental problems brought to light by 
the critics are still present. Nevertheless, it is 
clear that the time is not yet ripe for a stan­
dard, whose role is to codify existing good 
practice, to incorporate a more radical 
approach to input. 

We expect that the generalised and reju­
venated concept of logical input devices will 
remain the basis for the device-independence 
of interactive graphics applications for some 
considerable time. However, now that they 
have a more robust and. detailed target, we 
would welcome renewed attention from the 
critics. 
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