
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

D.S.H. ROSENTHAL, J.C. MICHENER, G. PFAFF
R. KESSENER & M. SABIN

IW 202/82

THE DETAILED SEMANTICS OF GRAPHICS INPUT DEVICES

Preprint

~
MC

AUGUSTUS

kruislaan 413 1098 SJ amsterdam

BftlllU I HttK MA TH EMA TISCH CENTRUM
-AMSTERD/\M-

Ptunted at :the Ma:thema..tlc.ai. C en.:tJie., 41 3 Kll.U.,{,6laa.n, Am6:teJUl.am.

The Ma.thema.:uc.ai. Cen:l:!Le , 6ounded :the 11-:th 06 FebJLuaJl.y 1946, ,iJ.:i a. non­
plLo 6li .iM;t,i,,t,u;t,,io n a,lm,i,ng at :the. pMmo.tlo n a 6 puJLe ma.thema..tle1i a.nd m
a.pp,Uc.a;t,i:.OM. 1:t ,iJ.:i 1.ipon601c.e.d by :the Ne:theJriand6 GoveJc.nment :thMugh :the
Ne:theJl1.a.nd6 01c.ga.n.iza..tlon 601c. :the Adva.nc.ement 06 PuJr.e Ruea.1c.c.h (Z.W.O.).

CR Categories and Subject Descriptors:
1.3.4 [Computer Graphics]: Graphics Utilities
- graphics packages;· 1.3.6 [Computer Graph­
ics]: Methodology and Techniques - device
independence; interaction techniques
General Terms: Standardization

The Detailed Semantics of Graphics Input Devices

by

David S. H. Rosenthal
James C. Michener1

Gunther Pfaff2

Rens Kessener3

Malcolm Sabin4

ABSTRACT
The concept of virtual input devices, enunci­

ated by Wallace, has been the accepted basis
for producing device-independent interactive
graphics systems. It was used by GSPC for
the Core System, and it underlies the draft
international standard GKS.

During the recently concluded technical
review of GKS, the input facilities became a
bone of contention. The discussions revealed
many inadequacies in the virtual input device
concept, and were finally resolved using a
refined and extended model of input, which is
presented here by some of the participants in
the discussions. Examples are included, show­
ing how the GKS facilities derive from the
model, and the Core's "STROKE" device is
used to show how the model controls future
extensions to GKS; The model is also used to
describe the other differences between the
input facilities of .the Core System and GKS.

This paper was presented at the ACM SIGGRAPH
'82 conference in Boston, Mass., on July 28th 1982.
It appears in the Proceedings as published in Com­
puter Graphics . The other authors' affiliations are:

I. Intermetrics Inc., Cambridge, Mass., U.S. A.

2. Technische Hochschule Darmstadt, Federal
Republic of Germany.

3. Technische Hogeschool Eindhoven.

4. CAD Centre, Cambridge, England.

1. Introduction

"There is a theory which states that if
ever anyone finds out exactly what the
Universe is for and why it is here, it
will instantly disappear and be
replaced by something even more
bizarre and inexplicable."
"The Restaurant at the End of the
Universe" by Douglas Adams

On a considerable basis of earlier
work[5, 2, 8], Wallace enunciated the concept
of virtual input devices[I0] as a means
whereby interactive graphics applications
could be insulated from the peculiarities of the
input devices of particular terminals, and
thereby become portable. The idea was that
the applications programmer had available a
range of virtual input devices, the only visible
aspect of which was the type of the value they
returned. Thus, if a position were required, a
LOCATOR device would be selected, if a char­
acter string were required, a STRING device
would be selected, and so on.

From the start, it was evident that the pure
virtual device concept was inadequate. Virtual
devices needed other visible aspects, control­
ling details of the operator interface such as
echoing. This logical device concept formed
the basis for the GSPC Core System[9], and it
was also used by the initial versions of the
draft international standard GKS[3]. During
the recently concluded technical review of
GKS by a working group of the International
Standards Organisation, the input facilities
became a bone of contention. Criticisms of
these versions of GKS concentrated on:

The precise data types to be returned
by the different classes.

The different levels of detail at which
different kinds of input behaviour were
specified.

The lack of uniformity among the
different logical device classes as to the
details of their behaviour.

The lack of clear distinction between
the concepts of:

1

Simulating a logical device using
particular types of hardware.

Prompting an operator for input.

Echoing an operator's actions.

Acknowledging an operator's gen­
eration of events.

The difficulty of relating any of these
"output" concepts to logical input dev­
ices.

It became clear that these problems were all
related to deficiences in the underlying model
of input, and the discussions were finally
resolved by a refined and generalised concept
of logical input devices, which is described
below.

2. The Model

An application program obtains input from
a number of logical input devices, divided into
classes according to the type of data obtained.
Typical classes are LOCATOR, VALUATOR, PICK,
CHOICE, and STRING.

2.1. Application Program Use of Logical Input
Devices

At the highest level, a logical input device
is either accessible to the application program,
or it is inaccessible. Initially, all devices are
inaccessible. If a device is to be used for
input, it must first be acquired, that is, a con­
nection must be made between the identifier
known to the application program and the
external name(s) for the physical device(s).
Once this connection is made, the device
becomes accessible and interactions may take
place using the device. The device may also
be released, breaking the connection between
the identifier and the physical devices. The
device is then inaccessible until it is re­
acquired.

There are three generally accepted ways in
which application programs can obtain data
from logical input devices; they are known as
different modes of operation:

In SAMPLE mode the application pro­
gram invokes a function to obtain the

. ~urrent logical data value from the dev­
ice.,

In EVENT mode the operator's actions
create events, records of the logical
data value of the device at a specific
moment in time; the system preserves
these records in one or more event
queues, the contents of which the appli­
cation program can process at its con­
venience.

In REQUEST mode the application pro­
gram invokes a function permitting the
operator to adjust the logical data value
of the device and then indicate that the
value is satisfactory; the function waits
until this has been done and then
returns the value.

Initially, when acquired, a device is in
REQUEST mode. When a device is in REQUEST

mode, but is not currently the subject of a
REQUEST function invocation, the device is not
available to the operator. This corresponds to
what has been called a disabled state, although
the term seems to be dropping from use.

A logical input device is taking part in an
interaction while the device is in SAMPLE or
EVENT mode, or while the device is the subject
of a REQUEST function invocation. The term
enabled has been used for this device state.

Note that the definitions of these modes
refer to two concepts, the current logical data
value, and specific moments in time at which
the operator indicates that the current value is
important. These concepts are described more
fully in the next section.

2.2. Measures and Triggers

All logical input devices, being abstrac­
tions, are considered to be "simulated" by an
implementation, even if the mapping from
physical device(s) to a logical device is quite
direct. The simulation of a logical input dev­
ice has two major parts, the measure part and
the trigger part. The measure part determines
how the operator controls the logical data
value, and the trigger part determines how the
operator indicates that the current value is
important.

The measure part of a logical input device
is only active when the device is taking part in

2

an interaction. At these times, an independent
measure process is (conceptually) in existence
that uses the states and ·changes of state of
various physical input devices to control a log­
ical data value (the device's measure)
appropriate to the logical device's class. It is
permitted that a single physical input device
simultaneously affect the measures of several
logical input devices; nevertheless, the measure
processes are still considered distinct.

The trigger part of a logical input device
responds to changes in the state of physical
input devices either by remaining quiescent,*
or by firing. When the trigger of a logical
input device fires, it sends a message to the
measure process for the device. The effect of
the signal depends upon the mode of the dev­
ice, and is explained below.

Several logical input devices may have
their trigger part in common. Whenever any
of the devices sharing a particular trigger part
are taking part in an interaction, a single
trigger process for that trigger is (conceptu­
ally) in existence. The firing of the trigger sig­
nals all the appropriate measure processes. It
is a requirement that a single operator action
cause the firing of no more than one trigger.
Thus, in contrast to measure processes (which
must be unique to a logical device), it is nor­
mal for trigger processes to be shared between
logical devices.

When a measure process receives a signal
from the trigger process of its logical device,
the actions it takes depend upon the device's
mode as follows:

In REQUEST mode, the measure process
returns its data value to the application,
and then dies.

In SAMPLE mode, signals from triggers
are always ignored. The application
may obtain the data value from the
measure process whenever it pleases.

In EVENT mode, the measure process
attempts to add an event record, con­
taining its identification and data value,
to the appropriate input queue. Other

* Its invisible internal state may change.

measure processes using the same
trigger process may also be attempting
to add records to the same queue at the
same time. The resulting group of
simultaneous event records must either
all be added to the queue, or none must
be add1ed to the queue. If the measure
processes fail to add their events to the
queue, input queue overflow must be
reported for that queue.

Groups of simultaneous event records are
marked as such; when an event record is
dequeued, the application must be able to dis­
cover whether more events in the same group
remain in the queue.

2.3. Attributes of Logical Input Devices

When accessible to the application pro­
gram, a logical input device has certain
characteristics or attributes that distinguish it,
in a general fashion, from other logical input
devices of the same input class. Depending on
the particular graphics system, some attributes
will be under application control, while others
will have been fixed by the implementor.
Some of the attributes of logical input devices
are:

Current mode of operation.

How the implementation simulates the
logical device using physical devices.

How the operator is informed that a
measure process has come into
existence, and thus that its associated
physical devices are available for mani­
pulation. This is called the prompt.

How the operator is informed of the
logical device's measure (its logical data
value). This is called the echo.

How the operator is informed of a
significant firing of the input device's
trigger; this is called acknowledgement.
A significant trigger firing is one satisfy­
ing a REQUEST function invocation, or
adding events to the queue,

An initial value, of the type appropriate
to the class, for use by the device's
measure process when it comes into
existence.

3

A switch turning echo on or off.

The attributes may also contain extra
information used, for example, by particular
simulation, prompting and echoing techniques.
Note, however, that the device's measure is
not considered an attribute.

2.4. The Life Cycle of an Input Device

It is now possible to outline the sequence
of operations that corresponds to a specific
logical input device taking part in a interac­
tion:

A measure process is created for the
device, and its value is set to the initial
value in the device's state.

If the trigger process for the device is
not in existence, it is created.

The operator is prompted for input,
using the selected technique.

If the echo switch in the device's state
is on, echoing is commenced, using the
selected technique.

As the operator manipulates the physi­
cal input devices, the trigger may fire,
causing the appropriate one of the set
of actions outlined above, depending on
the device's mode.

If a trigger firing is significant, it is ack­
nowledged.

Eventually, either because in REQUEST

mode the trigger fires, or because the
device leaves SAMPLE or EVENT mode,
the measure process dies.

When a trigger process has no measure
processes, it also dies.

3. Applying the Model to GKS

As an example of the use of the model, we
take the input facilities of GKS[7]. A funda­
mental concept of GKS is the workstation [4], a
collection of input and output facilities,
treated as a unit by the application program,
forming a single logical channel of communi­
cation to the user. An application may drive
many workstations, several of which may sup­
port one or more logical input devices. How­
ever, there is a single event queue shared by

all workstations.

Each logical input device is treated as part
of a particular workstation, and is acquired
and released as its workstation is opened and
closed. The attributes of each logical device
are part of the Workstation State List for the
corresponding workstation. The application
program name for a logical input device
(shown below as ID) is a pair, thus:

<Workstation identifier, Device identifier>

The implementor of the workstation selects
for each logical device a single technique by
which it is simulated using the available
hardware. The implementor may provide
different simulations as different \ogical dev­
ices in the sarne class, but GKS does not per­
mit the application program to change indivi­
dual simulation techniques.

3.1. GKS Modes

All GKS logical devices can operate in
each of the three modes, REQUEST, SAMPLE,

and EVENT. By default, devices are in
REQUEST mod,e. Given this and omitting some
details, the set of input functions becomes at
least:

Operations on the device's attributes:

INITIALISE <class>(ID, INITIAL _Y ALUE)

SET <class> MODE(ID, MODE)

Input directly from the device:

REQUEST <class>(ID, VALUE)

SAMPLE <class>(ID, VALUE)

Input from event queue:

A WAIT lEVENT(ID, CLASS)

Examination of most recently awaited
event n:cord:

GET <cllass>(VALUE)

4

with MODE=EVENT or MODE=SAMPLE, is
invoked. At this point, the measure process is
(re-)created and initialised to the value from
the workstation state list.

3.2. GKS Device Oasses

GKS provides five device classes, LOCA­

TOR, VALUATOR, CHOICE, PICK, and STRING.

The Core System, following Wallace, considers
BUTTON more appropriate as a primitive input
class, than CHOICE. The Core System provides
an additional class, STROKE, which is used
below as an example of how the model con­
trols possible extensions to GKS.

3.2.1. LOCATOR

Both G KS and the Core use a two-stage
process to transform from the world coordi­
nates used by the application to the individual
device coordinates used by each display.
Coordinates are first transformed to a single
space shared by all devices, called normalised
device coordinates (NDC) by the
window/viewport transformation. Then each
workstation has a private transformation from
NDC to its own device coordinates.

Wallace originally suggested that LOCATOR

devices returned a position in device coordi­
nates. The Core System's LOCATOR devices
return a position in NDC. The application
eventually needs a position in world coordi­
nates, since these are used for output. The
difficulty in providing world coordinates lies in
selecting the window /viewport transformation
whose inverse is to be applied. Consider an
application in which a view of a drawing, a
part of a symbol library, and some menus
share the screen. Each was created using a
different window/viewport transformation; the
operator's actions may require the application
to change any of these views, and thus to re­
establish an appropriate transformation for
drawing them.

Detection of simultaneous events: The transformation to be used cannot sim-
ply be that active for output, which must be

INQUIRE MORE SIMULTANEOUS EVENTS(FLAG) set according to output requirements, and

An interaction with a device starts when-
ever REQUEST <class>, or SET <class> MODE

changed even while devices are in EVENT

mode. The Core System's NDC locators
avoid this problem, leaving it to the applica-

tion to select an appropriate transformation.

GKS takes an alternative approach, pro­
vidin& multiple window/viewport transforma­
tions, referred to by an index. For output,
the application selects one using its index.
For input, the application arranges the
transformations in a priority order. When a
physical locator returns a coordinate, the
workstation transforms it back to NDC, and
then transforms to world coordinates by:

Scanning the list of transformations in
decreasing priority order, until the
NDC position lies inside the viewport
of a transformation.

Using the inverse of this transformation
to provide a world coordinate value.

Returning as the measure both the
world coordinate value and the index of
the selected transformation.

In this way, the locator itself selects an
appropriate transformation. In the example
above, if the locator's device coordinate posi­
tion lies within the part of the screen showing
the drawing, 1lhe drawing's window/viewport
transformation will be used. If it is in the part
showing the symbol library, the library's
transformation will be used. The application
knows which was used, because the index of
the transformation used is part of the measure.
In general, th1ere will be enough transforma­
tions to assign one to each part of the screen
in use, so that they will only need to be
changed infrequently. In any case, there is a
default transformation that cannot be
changed, in effect returning NDC if no other
transformation can be found.

3.2.2. VALUATOR

GKS provides a classical VALUATOR class,
whose measures are real values in ranges
specified on a per-device basis by the applica­
tion.

• Termed normalisation transformations, since they
transform to normalised device coordinates.

5

3.2.3. CHOICE

GKS provides a CHOICE class, whose meas­
ures are either integers up to a device-specific
limit, or an indication of "no choice". No
choice might, for example, be a state in which
no buttons on a button box were depressed.
The class is intended to provide a "menu"
capability, and has potentially complex
application-controlled prompting techniques,
including the display of a menu consisting of
strings or the primitives in a segment.

3.2.4. PICK

GKS provides a PICK class, whose meas­
ures are either segment name and pick
identifier pairs, or an indication of "no pick".
No pick might, for example, be a state in
which the light pen was not pointing at any
detectable segment.

3.2.5. STRING

The measures of GKS STRING class devices
are (possibly null) strings of characters. The
operator is presented with the initial string,
and a cursor at an application-specified posi­
tion within it. Replacement of characters
starts at the cursor position, and may extend
the string up to an application-specified max­
imum length.

3.3. A Possible STROKE Device Class

GKS does not provide a STROKE device
class. However, using the model it would be
easy to design one. The design would proceed
in three stages. First, omitting some details,
the functions required are:

INITIALISE STROKE(ID, INITIAL _v ALUE)

SET STROKE MODE(ID, MODE)

REQUEST STROKE(ID, VALUE)

SAMPLE STROKE(ID, VALUE)

GET STROKE(ID, VALUE)

Secondly, the data type appropriate to the
class is determined. The measure of a STROKE

device is a (possibly null) string of positions in
world coordinates, and a normalisation
transformation number. The coordinates of
the returned polyline are re-transformed by
the inverse of the window /viewport transfor-

mation of highest priority in whose viewport
they all lie;· the index of this transformation is
part of the value.

Because their measures are both values
resulting from a sequence of operator actions,
the STROKE class behaves analogously to the
STRING class, in that it takes an initial stroke
and a cursor position within it. Replacement
of strokes starts at the cursor position .and
may extend the polyline up to an application­
specified maximum. Details such as whether
the individual positions of the stroke are trig­
gered by distance, time, or operator action,
and how the operator "rubs-out" erroneous
positions, are left to the workstation imple­
mentor.

3.4. Prompting and Echoing

The details omitted from the descriptions
above concern prompting and echoing. For
each class, GKS defines several prompt/echo
techniques. At least one very simple technique
must be supported for every device. When a
device is initialised, a particular prompt/ echo
technique is requested, and appropriate
parametric information is supplied. These
attributes include an echo area, which the
technique may use to display the prompt or
echo, and a data record containing device- and
implementation-specific information such as
an array of strings for a CHOICE device using
text menus.

3.5. Differences Between GKS and the Core

Although they are conceptually similar,
there are some detail differences between the
input facilities of GKS and the Core. The
model is equally useful for describing the
Core, though in this section we only describe
the differences.

Because the Core has no workstation con­
cept, it has explicit functions for acquiring and
releasing logical input devices, for example
INITIALIZE....DEVICE. Note that this does not
provide an initial value for the device; the
Core has individual functions for setting par­
ticular attributes of logical input classes, and
the only classes for which an initial value set­
ting function is provided are LOCATOR and

6

VALUATOR.

The Core recognises only SAMPLE and
EVENT modes. Each device class operates only
in one mode; LOCATOR and VALUATOR in
SAMPLE mode, and PICK, KEYBOARD, BUTTON,

and STROKE in EVENT mode. The measure
and trigger processes are created by an
ENABLE....DEVICE invocation, and destroyed by
a DISABLE....DEVICE invocation.

Facilities are provided to associate one or
more LOCATOR or VALUATOR devices with a
device in an "event" class. An association
between a device in a "sample" class and a
device in an "event" class in effect creates a
new logical devtce, operating in event mode,
which has the measure of the "sample" device*
and the trigger of the "event" device.

An group of associated devices share the
same trigger (that of the "event" device) and
so generate a group of simultaneous events.
Unlike GKS, the Core combines all the
reports in a group of simultaneous events into
a single complex report; the firing of a single
trigger can place at most one report in the
queue.

In GKS, the creation of groups of associ­
ated devices is the preserve of the workstation
implementor. Facilities to provide application
control over associations would require the
addition of two new functions (and the
corresponding inquiries) to GKS:

ASSOCIATE(IDl, ID2)

DISSOCIA TE(ID2)

The effect would be to disconnect the measure
of device 102 from its trigger, and to connect it
to the trigger of device 101 until it was dissoci­
ated. When the trigger of device ID1 fired, the
resulting group of simultaneous events would
contain an event from device 102.

* It is thus in the class of the ~'sample" device.

4. Implications of the Model
Because there was otherwise no exit from a

REQUEST except by supplying a valid value,
GKS provides a "break" facility. This permits
an operator, when REQUESTed for a value, to
refuse to supply one. It provides, among other
capabilities, an easy way for the operator to
indicate "end-of-input".

Another implication of the model may
reflect on the current discussions of graphics
virtual device interfaces. The model now
insists that the essential preliminary to any
input operation is an output operation provid­
ing an initial value of the appropriate type.
This strongly encourages a symmetric
approach to incorporating input into a virtual
device definition, insisting that the responses
from input devices are similar to output com­
mands.

This symmetry is enhanced by the observa­
tion that the prompt/ echo information now
behaves in effect as the attributes of an input
primitive, modifying its visible appearance in a
workstation-dependent fashion.

5. Conclusion

Since it was proposed, the concept of vir­
tual input devices has been extremely useful,
but has also attracted severe criticism[6, I]
from, among others, one of us. Although this
refined model answers some of these attacks,
the fundamental problems brought to light by
the critics are still present. Nevertheless, it is
clear that the time is not yet ripe for a stan­
dard, whose role is to codify existing good
practice, to incorporate a more radical
approach to input.

We expect that the generalised and reju­
venated concept of logical input devices will
remain the basis for the device-independence
of interactive graphics applications for some
considerable time. However, now that they
have a more robust and. detailed target, we
would welcome renewed attention from the
critics.

7

6. Acknowledgements

Our grateful thanks are tendered to all
those who took part in the discussions on
input in the Draft Standards Subgroup of
ISO TC97 /SC5/WG2, and in the national dis­
cussions supporting them. Particular thanks
are due to Paul ten Hagen of the Stichting
Mathematisch Centrum, Amsterdam, to Ray
Spiers, to Dick Puk, and to Marcell Wein of
the National Research Council of Canada,
who was still willing to talk to us, even after
being thrown in at the deep end.

David Rosenthal was supported in this
work by Science and Engineering Research
Council grants N2B IR 0371 and GR/ A80341.

REFERENCES

[I] E. Anson, "The Semantics of Graphical
Input," Computer Graphics 13(2), pp.I 13-
120 (August 1979).

[2] I. W. Cotton, Netwo,:k Graphic Attention
Handling, Proc. Online '72 Conf., Brunel
University, Uxbridge, England (September
1972).

[3] DIN, "Graphical Kernel System (GKS) -
Functional Description," (Version 6.6)
(May 1981).

[4] J. Encarna~ao, G. Enderle, and others,
"The Workstation Concept of GKS and
the Resulting Conceptual Differences to
the GSPC Core System," Computer Graph­
ics 14(3), pp.226-230 (July 1980).

[5] J. D. Foley and V. L. Wallace, "The Art of
Natural Man-Machine Communication,"
Proc. IEEE 62(4), pp.462-471 (April 1974).

[6] R. A. Guedj and others (eds.), IFIP
Workshop on Methodology of Interaction,
(publishers North-Holland), Seillac, France
(May 1979).

[7] ISO, "Graphical Kernel System (GKS) -
Functional Description," ISO DP 7942
(January 1982).

[8] W. M. Newman, "A System for Interactive
Graphical Programming," AFIPS Confer­
ence Proceedings (SJCC) 32, pp.47-54
(1968).

[9] SIGGRAPH-ACM (GSPC), "Status
Report of the: Graphics Standards Planning
Committee," Computer Graphics 13(3)
(August 1979).

[10] V. L. Wallace, "The Semantics of Graph­
ics Input Devices," Computer Graphics
10(1) (Spring 1976).

8

MC NR

35224

