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s logic for programming languages with two data types

Bergstra** & J.V. Tucker#®#*%

ACT

We consider the completeness of Hoare's logic with a first-order
tion language applied to while-programs containing variables of two
ore) distinct types. Whilst Cook's completeness theorem generalises
ny-sorted interpretations certain fundamentally important structures
out not to be expressive. We study the case of programs with
nguished counter variables and boolean variables adjoined; for

\le, we show that adding counters to arithmetic destroys expressiveness.
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JUCTION

Since the publication of HOARE [5] there has accumulated a large
yf knowledge about proof systems for formally verifying the partial
:tness of programs. Proof systems have been made which include a
rariety of programming features and, in particular, the soundness
ympleteness of these systems have been successfully analysed along
‘nes first set down in COOK [4]. To obtain information about what
sen achieved, at least for the sequential control aspects of

imming languages, see APT [1].

In this note we consider a simple feature of most programming

iges which has gone unnoticed to date, namely the property that

may be two (or more) distinct types of variable or identifier in
7le program. Specifically, we will concentrate on the completeness
ire's logic for while-programs having variables of an arbitrary,
~ified type together with boolean variables, and with natural number
bles or counters. We prove theorems which demonstrate that whilst
5 account of completeness generalises to include boolean variables
, surprisingly, unable to cope with while—programs with counters.

In Section 1 we summarise prerequisites and observe that Cook's
ateness theorem for Hoare's logic for while-programs applied to
-order expressive structures generalises to the many-sorted case.

er, in Section 2, we prove that adding arithmetic N to an expressive
ture A can lead to a non-expressive two-sorted interpretation [A,N].
rticular, we prove that adding arithmetic N to arithmetic N leads to
-expressive structure [N,N] and, indeed, that Hoare's logic for [N,N]
complete (Theorem 2.3). Thus, there is a general completeness

em for the two-type situation, but it cannot be applied to a canonical
le. 1In Section 3 we show that adding booleans does not give rise to
ilar problem (Theorem 3.1); the same is true for finite counters,
neralising the argument (Theorem 3.7).

We wish to thank E.R. Olderog for useful discussions on the subject

r of this paper.
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PROGRAMS AND HOARE'S LOGIC

to necessary prerequisites about two-sorted syntax and

ine the fate of Cook's étudy [4] of Hoare's logic when
two—sorted situation as this is the background of our

assume the reader is familiar with the one-sorted case :

recommend APT [1] and DE BAKKER [2] for clear accounts

or a thorough discussion of the completeness problem

see [3]. TFor a thorough discussion of program correctness

situation see [6].

t-order language L(Z) of some two-sorted signature I 1is
s of variables

1 1 2 2

X l,x 9o and x 1,x

PERERY
espectively, and the constant, function and relation

e those of X together with equality symbols of sorts 1

ductive definition of term now yields two kinds of term
ort 1 and sort 2. Atomic formulae have the forms
. i i i
1 2 k
t =.s and R(y1 s Yo aeees¥y )

rms (having values) of sort.i, = is the equality symbol
. relation symbol and the yj1j are variables of sort
,ije{l,Z}.

med formulae of L(Z) are made inductively by applying
tives A, V,", * and the quantifiers

1 1 2 2
Vx™. Ix~. Vx . Ix. i €
J J ] J J N

mntax of L(Z) the set WP(Z) of all while - programs over X
obvious way. Note, in particular, that there are two

it statement



yut that boolean tests in control statements are simply quantifier—free
‘ormulae of L(Z) and may refer to both sorts.
By a specified or asserted program we mean a triple of the form

p}s{q} where p,qeL(Z) and SeWP(Z).

SEMANTICS. The semantics of L(Z) is based on two-sorted structures A of
signature I and is formally defined in the usual manner as established by
larski. The set of all sentences of L(I) which are true in structure A
is called the first-order theory of A and is denoted Th(A). If ¢cL(Z) the
set defined in A by ¢ we denote ¢[Al.

For the semantics of WP(Z) on an interpretation A we leave the
reader free to choose any sensible account of while-program computation
in one-sorted structures and then to generalise it. Certainly, the
>perational and denotational semantics given in DE BAKKER [2] have natural
nany-sorted generalisations : see [6].

We suppose that the meaning of SeWP(Z) on interpretation A is

defined as a state transformation
MA(S) : STATES(A) -~ STATES (A)

Also if S has n variables of sort 1 and m variables of sort 2 then
STATES(A) = Aln X Azn, where Al’ A2 are the domains of sorts 1,2 in A,
and we suppose that MA(A) is represented by a mapping

- n m n m
MA(S) : A1 X A2 - A1 X A2

Putting together the semantics of L(X) and WP(IZ) we consider the
partial correctness semantics of the specified programs : {p}S{q} is valid
on A, written A |= {p}S{q}, if when p is true then either S diverges or S
converges to a state at which q is true. The set of all specified programs

valid on A is called the partial correctness theory of A and we write

pc(a) = {{p}s{q} : A E{p}siql}}.

HOARE'S LOGIC Hoare's logic for the two-sorted WP(Z) has exactly the

same axiom scheme for assignment statements and the same rules for
composition, conditionals and iteration. In addition, any first-order

theory T may be employed to provide a specification for the underlying




;ypes and T affects program correctness proofs via the Rule of
luence (see [5,4]1). The set of all specified pfograms provable frc
lenoted HL(T).

In this paper we are interested in proving correctness with
't to a given two-sorted structure A. Cook's work on the single-
| version of this case generalises to provide us with the following

1t

‘OUNDNESS THEOREM. If Al= T then HL(T)<PC(A).

The assertion language L(Z) is said to be expressive for WP(I)
. if for any pe L(Z) and S e WP(Z) there is a formula SP(p,S) e L(X)
efines the strongest postcondition SPA(p,S) of S with respect to
. A s

SPA(p,S) = {0 € STATES (A) :ar[MA(S)(TM o & p(t)l}.

that expressiveness is actually a property of the interpretation
than L(X).

OOK'S COMPLETENESS THEOREM. Suppose L(I) <8 expressive for WP(L)
.and let T = Th(A). Then HL(T) =PC(A).

In view of Theorem 1.2 we define HL(A) =HL(Th(A)), and observe
L(A) represents the strongest Hoare logic for analysing correctnes

ecause it is equipped with all first-order true facts about A.

HEOREM If A is finite then A is expressive and HL(A) is complete

DDING ARITHMETIC

Semantically, adding counters or booleans to while—programs is
ed by interpreting the two-sorted programming language WP(I) on

n two-sorted structures of the following form.




Let A and B be single-sorted structures with disjoint signatures
A and ZB respectively. Then we define the join [A,B] of A and B to be the

wo-sorted structure of signature ZA, =ZA-U ZB whose domains and operations

re simply those of A and B. ?
What is noteworthy in this operation on structures is that
lgebraically A and B remain independent data types. Adding arithmetic
eans computing on structures [A, IN] where N is the standard model of
rithmetic. Adding booleans means computing on structures [A, IB ] where
3 ={tt,ff} equipped with A,"} (say).
The main result in this section is that Hoare's logic is incomplete
hen applied to structures [A, IN]. Before proving this we will first

tudy the join in general.
.1 PROPOSITION. If [A,B] s expressive then A and B are expressive.

ROOF. We begin by proving a basic fact about first—order definability on
A,Bl.

Let H be the smallest set of ZA,B = ZA UZB formulae that contains
(ZA) and L(ZB) and is closed under -} ,A,v. Thus, H does #not contain
ormulae with quantifiers ranging over different sorts such as

vt (6" A o0)

!.2 SEPARATION OF VARIABLES LEMMA. Fach formula ¢eL (X A B) equivalent to
b
v formula of H.

)ROOF. It is sufficient to show that, up to provable equivalence,

. e . A B
ICL(ZA B) is closed under quantification Ix and 3Ix .
’ Let ¢eH. Then ¢ can be rewritten as a formula in H in disjunctive

1ormal form, and by simple transformations we proceed :

— S t

¢ =Via Mo %
- s t A t B
=Vioy Byoy 959 A By 9 9)




— S -A B
= Vi—l (Qi A él)
re have SXA¢ = 3t CV§£1(§? @?))
, = Vo, 3@ A D)

A
Vi=1(3XA ) A5

last formula belongs to H; the proof of the Lemma 2.2 is complete.

To prove the proposition we assume [A,B] is expressive and prove
\ is expressive (the case for B follows mutatis  nomine).

Let ¢€L(ZA) and SEWP(ZA). Let SP(¢,S) define the strongest
ondition SP

2.2,

[A B](cb,S) on [A,B]. By the Separation of Variables
5

B
i

sP(9,8) = VE_ (v} A ud)

se ¢ and S involve variables of type A only, the components W? for

are closed and can be replaced by their propositional values true

alse. This done we obtain a formula WGL(ZA B), equivalent to SP(¢,S),
b
is first-order over ZA and, indeed, { defines SPA(¢,S) on A. [
Our main result implies that the converse of Proposition 2.1 is

Let N denote standard model of arithmetic; to be precise let
N = ({0,1,...} 0,1,x+l,x=1,x+y, x.y).

der the structure [Nl,NZJ of signature Zl 2 wherein Nl =N has

3
ture Zl and N, =N has signature 22, i.e. [Nl,Nz] is a pair of
raically independent copies of N. We are looking at the case of

g arithmetic to arithmetic, so to say.

THEOREM. The two sorted structure [Nl,NZJ 18 not expressive and
l,Nz]) 18 not complete.




Consider the following program
S::= x:=0; z:=0;

while x#y do x:=x+l; =Z:=z+l od

,y variables of sort 1 and z a variable of sort 2. The strongest
ondition of S with respect to true is

sp(true,S) = {(a,b,c) € N, XN N, a=b=c=neN}.

e sp(true,S) is first-order definable over [Nl,NZJ then clearly

iagonal" A = {(a,b) € N xN, : a=b=n e N} is first-order definable

1
s latter statement we derive a contradiction.
By the Separation of Variables Lemma 2.2, it is sufficient to show

).
1,2
Suppose for a contradiction that A is definable by ¢eH(Zl 2) with
5

A 1is not definable by a formula of H(Z

rariables x,y of sorts 1 and 2; thus,

A = {(a,b) € leN2 : [Nl,N2] F ¢(a,b)}

Now ¢ can be rewritten in disjunctive normal form

_ \/S t
¢ =Vio Ao 955

. . € L(Z,) uL(Z,) for 1<is<s and 1<j<t. This can be compressed
i,] 1 2

b

s 1 2
¢ Vi @ A E)

'

§% € L(Zl) and @i € L(Zz) with free variables x and y respectively.
i<s, set
A. = {(a,b) € NxN, : [N.,N,] [ @1(a) A§2(b)}
i ’ 172 1272 1 i ?
it A = U%_ A.. At least one A. is infinite, say A.,. We choose
i=1 i 1 o)

yints (a,a), (b,b) € Al with a#b. Now

N, N,T F Ba(a) A Bo(a) and [N,N,1 F Bp(d) A B(b).

oy N,] F Bpta) A Ta)




neans that (a,b) ¢ AO c A which is not the case. Therefore, [Nl,Nz]
. expressive.

In order to see that HL([Nl,Nz]) is not complete consider the

am
32::= while x#0 A y#0 A z#0
do x:=x*1; y:i=y=1; z:=z*1 od.
ly,

[Nl,NZJ F {true} Sl;Sz{x=0Ay=OAz=0} .

ler to prove this valid asserted program using Hoare's logic, an

nediate assertion 6 must be found i.e. a formula such that
[N, LN, ] E {true} 8, {6}

[N;,N,] F {6} S, {x=0Ay=0Az=0} .

sp[Nl,sz(true, Sl) c e[Nl,Nz]

e[Nl,N2] c wp[Nl’sz(Sz,x=0Ay=OAz=O)

Wp[Nl,Nz](SZ’X=OAy=OAz=O) B sp[Nl,sz(true,Sl)

:nce e[Nl,Nz] = sp(true,Sl). This contradicts the fact that
1e,8;) is not definable. [

ADDING BOOLEANS

Let A be a single-sorted structure of signature ZA and let

tt,ff}, A, ).

THEOREM If A is expressive then [AB] is expressive and consequently
B1) 7Zs complete.




PROOF. We distinguish two cases : A is finite and A is infinite. When A

is finite, [A,B] is finite and expressive by Theorem 1.3. Suppose that
A is infinite. _
We add two new constants c=(c1,c2) to L(ZA) to make L(Zz). Adjoining

a . . c
a=(a1,a2) to A to make A", an interpretation for ZA,We observe

3.2 LEMMA If A <s expressive with respect to L(ZA) then A% is
expressive with respect to L(ZZ). Moreover, given ¢ € L(ZZ) and SeWP(ZZ)
there 1s SP(9,S) € L(Zz) that defines SpAa(¢,S) wniformly for any

interpretation a for c.

3.3 LEMMA If A is expressive and a=(a1,a2) with al#a2 then the

structure [A?B] is expressive.

PROOF. Let ¢ € L(ZC ) and SeWP(ZC ) have variables among
LR A,B A,B

X = Xy, oeees X and y = Yo cees Y

of types A? and B respectively. We will construct a formula

sp(¢,s)eL(zz g) which defines sp ($,9)
) (A%, B]

IDEA OF CONSTRUCTION We use a;»a, to represent in A? the elements tt, ff
fromB, and we simulate ¢ and S on A? by a formula ¢* and program S* over
ZX. By the expressiveness of A and A? (Lemma 3.2), there is a formula
SP(¢*, S*) in L(ZZ) to define spAa(¢*,S*) and from this we will obtain a
formula SP(¢S) in L(ZCA B) for sp a (¢,S5).

? [AB]

. . . . a m ,an_,aml
First, we consider semantically an encoding h:(A7)x B +(A") x(A")

defined by h(d,b) = (d,e) where for i=l,...,m

_ ) a if b, = tt
ey = { al  if bl = £f .
2 i

We transform ¢ to ¢* in such a way that

3.4 REQUIREMENT For all oe(A?)"xB™

[A%2B] E ¢(0) Zf, and only if, A% E ¢*(h(0)).




10

¢* is defined as follows. First we use the following syntactic rewrite
rules to eliminate the operators or, not of type B in favour of the

c
L(ZA,B) constructs V, A, ¥,

v

Or(tl,tz) =ty (t1=c1/\t3=cl) v (t2=c1/\t3=c1)

(£)=chty=cyrty=ey
not(tl) = t2 2~v(t1=t2)

The resulting formula we denote ¢1 .
Next choose new variables z = zl,...,zm'of sort A and replace each
occurrence of s of type B in ¢l by z;- In addition, replace each instance

of true, false in ¢1 by ¢11Cy respectively. The actions result in a

formula ¢2.

m

Define ¢* = ¢2 A A (z.=c, v z.=c2) .

i=1 i1 i

The proof of 3.4 is by induction on the complexity of ¢ and is
ommi tted.

Now we must transform S to S* such that executing S* on A?

simulates S on [AaJB] via h; more formally :

3.5 REQUIREMENT The following diagram commutes :

a,n a,m M(S*) . /a@\0 a,m
(A%) "x(A%) > (A7) x(A%)
h h
(A% B" = - (A% g™
M(S)

S* is obtained from S by rewriting the latter's B-terms. With the same
variables z as chosen earlier, boolean conditions in control statements are
rewritten without their B-operations or, not just as above. To remove the
operators from assignments the following five syntactic rewrite rules are

applied wherein the * operation on formulae is that already defined :




yi := true 2 z
y; < false > z
y; = Yj P

Z.

> _i£(t1=true)* then

if (t=true)*

11

1 S|
i )

=z,
1 ]

Vi T4
1 = * s =
else _1_f_(t2 true)* then y;i=¢q

else ¥;i=¢y

then z.:

else z.:=c

The proof of 3.5 is by induction on the complexity of S; it requires

From 3.4 and 3.5 we can conclude that

h(sp
[A2B]

. . a
1Ise A is expressive A

(9,8)) = sp ,(¢%,8%) .

A

is expressive and we can take a formula % in

- which defines sp a(d)*,S*) in A® irrespectively of the values a,,a,

212Co¢

REQUIREMENT h(6[A%B]) =

In consequence of the fact

0 is found as follows : we

ables in z occur only in the

i~ % °r
is accomplished by applying

a(zi) > (zi=c1

A . .
Our task now is to find GeL(ZZ B) such that
bl

ox[A%]
that h is injective, GEAa,B]=sp[Aa B](¢,S)-

rewrite 0* as a formula 61 in which the

forms

the rewrite rules

A a[cllzi]) v (Zi=c2 Aoiczlzi])




o is any subformula of 6% in which z; appears in an inappropriate

' is now obtained from 91 by replacing the equations z,=¢q and z.=c,

=true and yi=false. To prove 3.6 one proves that
h(6[A%B1) = 0 [A"].

mstruction, (6)* = 61 and so we are done. g

c
AB

iiformly for any choice of aj»a, with al#az.

) above defines sp (¢,S) in any

‘otice that the formula 6eL (% a
[A®,B]

'o conclude the proof of Theorem 3.1 we must deduce that [AJB] is
:ssive. Let ¢6L(ZA B) and SeWP(ZA B). Construct the formula
3 3
lz B) of Lemma 3.3. Choose variables zy, z, Dot in ¢, S and 6. By the
3

'rmity property just observed, the formula
3z, zzlefzz A 6[zl/c1, z,/c,]
in L(ZA,B) and defines SPEAJB](¢’S)' 0

'his method of adding constants can be used to prove that adding
;e arithmetics such as modulo n arithmetic (and others discussed

JARE [5]) preserves expressiveness. Most generally :

THEOREM If A 7s expressive and F is finite then [A,F] s
1:sstve and consequently HL([A,Fl) <s complete.

,UDING REMARKS

Quite clearly no useful account of the correctness of many-typed
rams can be founded on a first—order assertion language. Fortunately,
; possible to give a very thorough theory of the partial and total
sctness of the basic sequential constructs in a many-sorted abstract
‘ng if one allows the extension to a weak second-order assertion

1age : see [6].
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