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Solving covering problems and the uncapacitated plant location problem 

on trees*) 

by 

**) A.W.J. Kolen 

ABSTRACT 

Given a tree network on n vertices, a neighborhood subtree is defined 

as the set of all points on the tree within a certain radius of a given 

point, called the center. It is shown that for any two neighborhood subtrees 

containing the same endpoint of a longest path in the tree one is contained 

in the other. This result is then used to obtain O(n2) algorithms for the 

minimum cost covering problem and the minimum cost operating problem as well 

as an O(n3
) algorithm for the uncapacitated plant location problem on the 

tree. 

KEY WORDS & PHRASES: 'location theory, minimum cost covering problem, 

minimum cost operating problem, uncapacitated plant 

location problem, integer programming 
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1. INTRODUCTION 

Consider the problem of a company which has to provide goods to a pre

specified set of clients. In order to execute this task the company has to 

establish a number of facilities. For each possible facility location it 

is known what the cost is of establishing a facility at that location and 

which clients can be served from that location. It is assumed that clients 

are located on a network of roads. In the minimum cost covering problem 

each facility can serve only clients within a given distance from that 

facility and the problem is to serve all clients at minimum cost. In the 

minimum cost operating problem each facility also can serve only clients 

within a given distance from that facility but it is not necessary to serve 

all clients. If a client is not served there is a penalty cost involved. 

This penalty cost may represent for example a loss of future orders for the 

company. The minimum cost operating problem is to minimize the sum of the 

cost of establishing facilities and of the penalty cost of not serving 

clients. In the uncapacitated plant location problem each facility can serve 

all clients but beside the cost of establishing facilities there is a cost 

for transporting goods from a facility to a client which is assumed to be 

linear with respect to the distance traveled. The uncapacitated plant loca

tion problem is to minimize the sum of the cost of establishing facilities 

and of the transportation cost. The solution of these three problems is the 

subject of this paper in which we will assume that the underlying network 

contains no cycles, i.e., is a tree network. 

(I. I) 

Consider the linear programming problem given by 

m 
min I 

j=l 
m 

s.t. I 
j=l 

c.x. + 
J J 

n 

I 
i=l 

d.z. 
1 1 

a .. x. + z. ;;:; b., 
1J J 1 1 

x. 2:: 0 , 
J 

z. 2:: 0 
1 

i = 1,2, ••• ,n, 
j = 1,2, .•. ,m, 
1 = 1,2, ••• ,n, 

where A= (a .. ) is an nxm(0,1)-matrix, c. 2:: 0, j = 1,2, ••• ,m, d. 2:: O, 
1J J 1 

i = 1,2, ••• ,n, b 1 2:: b 2 2:: ••• 2:: bn 2:: 0. The corresponding dual is given by 



2 

n 
( I • 2) max I b.y. 

i=l 1 1 

n 
s.t. I y.a .. :,; 

C •' j = 1,2, .•• ,m, 
i=l 1 1J J 

0:,; Yi :,; d., i = 1,2, .•• ,n. 
1 

Let us define the 2x2 matrix A* which plays an important role in this 

paper by 

If the matrix A has the property that it does not contain A* as a submatrix, 

then HOFFMAN, KOLEN & SAKAROVITCH [5] give an O(nm) algorithm to solve both 

problem (I.I) and (1.2). If b. is integer, i = 1,2, ••• ,n, then the algorithm 
1 

constructs an integer optimal solution to problem (I.I). 

We will show that the three tree location problems considered can be 

formulated as 

m n 
(I .3) min I c.x. + I d.z. 

j=l J J i=l 1 1 

m 
s. t. I a .. x. + z. ~ , i = 1,2, ..• ,n, 

j=l 1J J 1 

x. E {0,1}, j = 1,2, .•• ,m, 
J 

z. E {0,1}, i = 1,2, ••. ,n. 
1 

Furthermore we show that the (0,1)-matrix A= (a .. ) of (1.3) can be trans-
1J 

formed by row and column permutations into a matrix which does not contain 

A* as a submatrix. We can then use the algorithm of HOFFMANN, KOLEN & 

SAK.AROVITCH ~5] to solve the LP-relaxation of (1.3) since the algorithm 

garantees a (0,1) optimal solution. By using this approach we reverse history. 

Originally the solution procedure developed for the minimum cost covering 

problem as presented at ISOLDE II motivated the research for the more general 

problem given by (I.I). 

In Section 2 we formally describe the three tree location problems we 

consider in this paper and show that they can be considered as a special 

case of problem (I .3). 

In section 3 we show that the (0,1)-matrix A= (a .. ) of the location 
1J 

problem~ formulated as a special case of problem (1.3) can be transformed 



by row and column permutations into a matrix which does not contain A* as a 

submatrix. We complete this section by describing the algorithm of HOFFMAN, 

KOLEN & SAKAROVITCH [SJ which is used to solve the location problems. 

In Section 4 we give an example of the solution procedure for each of 

the three tree location problems. 

In Section 5 we define the dual problems of the location problems and 

give an economic interpretation of the dual problems. 

2. PROBLEM FORMULATION 

3 

Let T = (V,E) be a tree with vertex set V = {v1,v2 , ••• ,vn} and edge set 

E. Each edge e EE has a positive length l(e). One can think of T as a 

planar road network. A point on T can be a vertex or a point anywhere along 

an edge. The distance d(x,y) between two points x and yon Tis defined 

to be the length of the shortest path between x and y. The shortest path 

between x and y is denoted by P(x,y). A neighborhood subtree is defined as 

the set of all points on T within a certain distance (called the radius) 

from a given point (called the center). Lets., j = 1,2, ••• ,m be possible 
J 

locations for a facility at the tree T. Assume that a facility located at 

s. can serve 
J 

only clients which are located within distance r., r. ~ 0 from 
J J 

s .• The cost 
J 

of establishing a facility at s. is given by c., c. > 0. We 
J J J 

assume clients to be located at vertices of the tree and also assume that the 

the facility locations belong to the vertex set. This can be done without 

loss of generality since if this is not the case we simply can add the cor

responding point to the vertex set and adjust the edge set accordingly. We 

say that facility j is open if there is a facility established at s.; other-
J 

wise it is said to be cZosed. The minimum cost covering probZem is to serve 

all clients at minimum cost. If we define the nxm(O,l)--matrix A= (a .. ) by 
l.J 

a .. = 1 if and only if d(v.,s.) 
l.J l. J 

served by a facility located at 

can be formulated as 

(2.1) 
m 

min L 
j=l 
m 

c.x. 
J J 

a .. x. ~ 1, 
l.J J 

~ r., i.e., the client located a·t v. can be 
J l. 

s., then the minimum cost covering probZem 
J 

i. = 1,2, ••• ,n (2.2) s. t. I 
j=l 

X, E {0,1}, j = 1,2, ••• ,m, 
J 
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where x. = 1 if and only of facility j is open. The constraints (2.2) ensure 
J 

that each client is served by at least one open facility. Note that problem 

(2.1) is a special case of (1.3) if we take d. = ~, i = 1,2, ••• ,n. 
1. 

Let us relax the condition that each client has to be served by at least 

one open facility and assume that there is a penalty cost d. if a client 
1. 

located at v. is not served by a facility, i = 1,2, ••• ,n. The minimum cost 
1. 

operating problem is to minimize the sum of the cost of establishing facili-

ties and of the penalty cost of not serving clients. This problem can be 

formulated as 

m n 
(2.3) min I c.x. + I z.d. 

j=l J J i=l 1. 1. 

m 
s.t. I a .. x. + z. ~ 

j=l l.J J 1. 
x. E {0,1}, 

J 
z. E {0,1}, 

1. 

The constraints (2.4) ensure that z. = 
1. 

the client located at v. is not served 
1. 

(2.3) is a special case of (1.3). 

i = 1,2, ••• ,n (2.4) 

j = 1,2, ••. ,m, 

i = 1,2, ••. ,n. 

1 if and only if}:~ 1 a .. x. = O, i.e., 
J = l.J J 

by an open facility. Note that problem 

For the next problem let us assume that each facility can serve all 

clients and that there is a transportation cost associated with transporting 

goods from a facility to a client which is linear with respect to the tra

veled distance. The uncapacitated plant location problem is to minimize the 

sum of the cost of establishing the facilities and of the transportation 

cost. This problem can be formulated as 

(2.5) 
m 

min }: 
j=l 
m 

s.t. I 
j=l 

c.x. + 
J J 

f.. = 
1.J 

x. - f .. ~ 
J 1.J 

f .• ~ 
1.J 

x. E 
J 

n m 
I I 

i=l j=l 
w.d(v. ,s.)f.. 

1. 1. J l.J 

1 , i = 1,2, ••. ,n, (2.6) 

o, i = 1,2, ••• ,n, j = 1,2, ••• ,m, (2. 7) 

0, i = 1,2, ••• ,n, j = 1,2, ••• ,m, 

{0,l}, j = 1,2, ... ,m, 

where f .. is the fraction of the demand of the client located at v. which is 
1.J 1. 
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supplied by the facility at s .. The constraints (2.6) ensure that each client 
J 

is served The constraints (2.7) ensure that each client is served only by 

open facilities. Formulation (2.5) with w.d(v.,s.) replaced by arbitrary 
1. 1. J 

transportation cost t .. is the standard formulation of the uncapacitated 
1.J 

plant location problem in the literature. For a survey on this problem see 

KRARUP_& PRUZAN [7]. An algorithm for the uncapacitated plant location prob·· 

lem which performs well 1.n practice is given by ERLENKOTTER [3]. The basic 

idea of this algorithm can already be found in BILDE & KRARUP [2]. 

The general uncapacitated plant location problem (also often called the 

simple plant location problem) 1.s NP-hard. We will develop a polynomial-time 

algorithm for the problem defined on a tree as is given by (2.5). By combin

ing constraints (2.6) and (2.7) it follows that at least one facility must 

be open. Given a nonempty set of open facilities, defined by the (O,I)-vector 

x, the best value v(x) corresponding to this set of open facilities is ob

tained by supplying each client from the closest open facility. Therefore 

we have 

(2.8) 
m 

v(x) = I 
j=l 

c.x. + 
J J 

n 
\ w.min. 1{d(v.,s.)}. 
l 1. J:x•= i J i=l J 

In order to describe our algorithm we have to formulate the uncapacitated 

problem as a special case of (1.3). This is possible due to a reformulation 

of the problem which was mentioned to the author by TAMIR [IO]. For each 

vertex v. we calculate the set of distances to all possible facility loca-
l. 

tions s .• If v. is not a facility location itself, then we add zero to this 
J 1. 

set of distances. The elements of this set are ordered in increasing order, 

say, 0 = ril < ri2 < ••• < rit(i)" Define ri,t(i)+l = 00
• Note that t(i) may 

be strictly less than m since there may be two. facilities at equal distance 

from v .• Define the (0,1)-variable z~, i = 1,2, ••• ,n, k = 1,2, ••• ,t(i) by 1. 1. 

z~ = { 1 if vi is not served by an open facility within distance rik from vi, 

1. 0 otherwise 

and define a~., i = 1,2, ••• ,n, k = 1,2, ••• ,t(i), j = 1,2, ••• ,m by 
1.J 

a~. = { l if d (vi' s j) ::,; r ik, 

1.J O otherwise. 
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Then the uncapacitated plant location problem can be formulated as 

m 
(2.9) min r c.x. + 

j=l J J 
m 

n 
I 

i=l 

t(i) 
I 

k=l 

k 
w.(r. k 1 - r.k)z. 1 1, + 1 1 

k k s.t. I a .. x. + z. ~ 1 , 
1J J 1 1 = 1,2, ••• ,n, k = 1,2, ••. ,t(i), (2.10) 

j=l 
x. E {0,l}, j = 1,2, ••• ,m, 

J 
k {0,1}, i 1,2, ••• ,n, k = 1,2, ••• ,t(i). z. E = 1 

The constraints (2.10) ensure that z~ = I if and only if}:~ 1 a~. x. = O, 
1 J= 1J J 

i.e., there is no open facility within distance r.k from v .• Note that prob-
1 1 

lem (2.9) is a special case of problem (1.3). Since w.(ri,t(i)+I-ri,t(i)) = 00 

we have z~(i) = 0 in an optimal solution of (2.9) and
1
hence }:~ 

1 
a;~i)x. ~ I, 

1 t . J= 1J J 
i.e., there is at least one open facility. (note that a.~1)=1.) In order to 

1J 
show that formulations (2.5) and (2.9) of the uncapacitated plant location 

problem are equivalent we demonstrate that the best value v(x) corresponding 

to a nonzero (0,1)-solution x of (2.9) is equal to (2.8). Let rube the 

shortest distance from v. to an open facility, i.e., 
1 

r. 0 = min. 1{d(v.,s.)}. Then we have l.,l.. J : X •= 1 J 
J 

m k I a .. x. ~ 1 for all k, k ~ £. 
j=l 1J J 

and 
m k I a .. x. = 0 for all k, k < .t. 

j=l 1J J 

k Therefore a minimal solution is given by z. = 0 for all k, 

for all k, k < £.. If £. = 1, then I~SP w. (~i k+l - r.k)z~ = 1 , . 1 1 
that ril = 0). 

k ~£.and z~ = 1 
1 

0 = w.r. 0 (note 1 1,l.. 

\t(i) k \£.-1 
If l > 1 , then lk l w. ( r. k l - r. k) z. = lk l w. ( r. k+ l - r. k) = = 1 1, + 1 1 = 1 1, 1 w.(r. 0 -r.

1
) 1 1,l.. 1 

= w.r. 0 • We conclude that v(x) is given by (2.8). 1 1,l.. 

3. ALGORITHM 

In this section we show that the (0,1)-matrix A= (a .. ) of the location 
1J 

problems formulated as a special case of (1.3) can be transformed by row 

and column permutations into a matrix which does not contain A* as a ,. 
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submatrix. We can then use the algorithm of HOFFMAN, KOLEN & SAK.AROVITCH [SJ 

given at the end of this section to solve the location problems. 

Let T = ({1,2, ••• ,n},E) be a tree. We say that Tis rooted if 

din~ d2n 
to vertex 

tree by a 

~ ••• ~ d 1 n- n 
j. A tree T = 

1-1 mapping cr 

~ dnn' where dij denotes the distance from vertex i 

(V,E) on n vertices can be transformed into a rooted 

: V + {1,2, ••• ,n} defined as follows. Choose a vertex 

v and calculate the dis·tances from v to all other vertices and order them in 

nonincreasing order, say, d(t1,v) ~ d(t2,v) ~ ... 

Define cr(ti) = i (i = 1,2, ••• ~n). 

~ d(t ,v), where t = v. 
n n 

EXAMPLE 3.1. Consider the tree given by Figure 3.2, where the length of an 

edge is indicated between parentheses·. 

V 
6 

:4 ](I) 
(2} ( 1) , r : r 

VB v7 8 9 7 3 2 

Figure 3.2. Tree of example and corresponding rooted tree 

A 1-1 mapping a: V + {1,2, ••• ,9} which turns the tree into a rooted tree 

is given by a 

In the minimum cost covering problem and minimum cost operating problem 

a column j of the (O,1)-matrix involved corresponds to the vertices which 

are contained in the neighborhood suotree {y € T I d(y,s.} s r.}. In the 
J J 

uncapacitated plant location proolem a row i,k of the (O,1)-matrix involved 

corresponds to the facility locations which are contained in the neighbor

hood subtree {y E T l d(v ~, y} s r .k}. If tlie tree is rooted, then rows in 
1 1 . 

the uncapacitated plant location proalem and columns· in the other two prob-

lems correspond to suosets of {1 , 2, ••• , n}. We will order these subsets in a 

lexico~raphically nondecreasing order. A Zexicograpnic ordering is defined 
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as follows. Let E1,E2 be two subsets of {1,2, .•• ,n}. If E1 ~ E2, then E1 is 

lexicographic less than or equal to E2. If E1 i E2 and E2 i E
1

, then E1 is 

lexicographic less than E2 if the largest element in E
1

\E 2 is smaller than 

the largest element in E2\E1• Let E
1

,E2, ••• ,Em be subsets of {1,2, ••• ,n}. 

We say that the 1-1 mapping T : {1,2, ••• ,m} • {E 1,E2, ••• ,Em} is a Zexico

graphicaZZy nondecreasing ordering if for all i,j, i < j T(i) is lexico

graphic less than or equal to T(j). A lexicographically nondecreasing ordering 

can be obtained in O(nm) time using a radix sort procedure (see AHO, HOPCROFT 

& ULLMAN [I]). When we mention a lexicographically nondecreasing ordering of 

neighborhood subtrees we mean a lexicographically nondecreasing ordering of 

the set of vertices contained in these neighborhood subtrees. 

EXAMPLE 3.3. Consider the subsets of {1,2, ••• ,9} given by E
1 

= {4,5,6,9}, 

E 2 = {4,5,6}, E3 = {8,9}, E4 = {6,7,8,9}, ES= {3,7,9}, E6 = {1,2,3,7} and 

E7 = {l,2,3}. A lexicographically nondecreasing ordering Tis given by 

T : (1,2,3,4,5,6,7) • (E7,E2,E6,E1,E5,E3 ,E4). For example T(l) precedes T(3) 

because E
7 
~ E6, T(S) precedes T(6) f>ecaus-e 7 < 8, where 7 is the largest 

element in E5\E3 and 8 is the largest element in E3\E5 • 0 

Let T = ({1,2, ••• ,n},E) be a rooted tree. It follows from Property 3 

of the Appendix that vertex 1 is endpoint of a longest path in the tree T1, 

where T1 = T. Note that vertex 1 is a tipvertex of T1, i.e., a vertex which 

is contained in exactly one edge of T1 (see Figure 3.2). If we delete vertex 

land the unique edge containing 1 from T1, then the remaining graph is 

still a tree, called T2• In general Ti is the subtree of T obtained by delet

ing the vertices 1,2, •.• ,i-1 and the edges containing at least one of those 

vertices from T, or equivalently, T. is the suotree defined by the vertex 
]. 

set {i,i+l, ••• ,n} and all edges containing two of those vertices (i = 

1,2, ••• ,n). It follows from Property 3 of the Appendix that vertex i is end

point of a longest path in T •• 
]. 

LE:MMA 3.4. Let Ebe a neighborhood subtree. If En T. I~, then En T. is a 
]. ]. 

neighborhood subtree of Ti (i = 1,2, ••• ,n). 

PROOF. We have to prove that there exists a point x. ET. and a nonnegative 
]. ]. 

number ri such that En Ti= {y E Ti I d(y,xi) ~ ri}. For i = 1 this is true 
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since En T1 = E. Suppose En T. = {y ET. j d(y,x.) ~ r.} for some x. ET., 
1 1 . 1 1 1 1 

r. ~ O. Assume En T.+l / 0. Since i is a tipvertex of T. there is a unique 
1 1 . 1 

,vertex a(i) E T. adjacent to i. Define x.+.l and r. 
1 

as follows. If x. lies 
1 1 1+ 1 

on the edge [i,a(i)J, then x. 1 = a(i) and r. 
1 

= r. -d(x.,a(i)), else 
1+ 1+ 1 1 

xi+l = xi and ri+l = ri. Then we have En Ti+l = {y E Ti+l I d(y 1xi+l) 

~ ri+l}. • 
In the Appendix we shall prove the following theorem. 

THEOREM 3.5. If E1 and E2 are two neighborhood subtrees containing the same· 

endpoint of a longest path in the tree, then E
1 
~ E

2 
or E2 ~ E

1
• 

This can be viewed as a generalization of a property of intervals. Let [a,b] 

be a given interval. Let x
1

, ••• ,Xm be points in the given interval and let 

r 1, ••• ,r be nonnegative numbers. Define the intervals I.= {y I a~ y ~ b, m 1 

ly-xil ~ ri}, i = 1,2, ••• ,m. If r 1 and r 2 are intervals containing a, then 

r
1 
~ r

2 
or r

2 
~ r

1
• A tree and a neighborhood subtree can be viewed as 

generalizations of an interval and a subinterval respectively. Theorem 3.5 

expresses a generalization of the intersection property of intervals con

taining a given endpoint of the interval. The importance of this property 

is expressed in the following lemma. 

LEMMA 3.6. Let T = ({1,2, •.• ,n},E) be a rooted tree and let E1, ••• ,Em be 

neighborhood subtrees. Define the nxm(0,1)-matrix A= (a .. ) by a .. = I if 
1J 1J 

and only if i EE .• If the columns of A are ordered in a lexicographically 
J 

nondecreasing order, then the transformed matrix does not contain A* as a 

submatrix. 

PROOF. Suppose A* is a submatrix of the transformed matrix. Let the rows be 

i,j,i < j and columns corresponding to Ek and El, where Ek precedes El in 

the lexicographic ordering. Since i is endpoint of a longest path in T. we 
1 

have according to Theorem 3.5 (Ek n T.) c (E 0 n T.) or (E 0 n T.) ~ (Ek n T.) 
i- -l- 1 -l- i- 1 

(Note that according to Lenuna 3.4 Ek n Ti and El n Ti are neighborhood sub-

trees). Since j E (Ek n T.)\(E 0 n T.} we have (E 0 n T.) c (Ek n T.). This 
1 -l- 1 -l- 1 . 1 

implies however that in the lexicographic ordering El precedes Ek' which 

contradicts our starting assumption. Hence the transformed matrix does not 
. A* b • contain as a su matrix. D 
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COROLLARY 3.7. Let T = ({1,2, ••. ,n},E) be a rooted tree and Zet E1, ••• ,Em 

be neighborhood subtrees. Define the mxn (0, 1)-matrix A= (a .. ) by a •. = I 
1J 1J 

if and onZy if j EE .. If the rows of A are ordered in a ZexicographicaZZy 
1 

nondecreasing order, then the transformed matrix does not contain A* as a 

submatrix. 

PROOF. It follows from Lemma 3.6 that the transpose of the transformed 

matrix does not contain A* as a suomatrix. Since A* is symmetric also the 

transformed matrix does not contain A* as a suomatrix. D 

Lemma 3.6 indicates how the (0,1)-matrix involved in the formulation 

of the minimum cost covering and operating proolem can be transformed such 

that the transformed matrix does not contain A* as a submatrix. First we 

turn the tree into a rooted tree (this corresponds to a permutation of the 

rows) and then we order the columns in a lexicographically nondecreasing 

order. 

Corollary 3.7 indicates how the (0,1)-matrix involved in the formulation 

of the uncapacitated plant location proolem can be transformed to exclude 

A* as a submatrix. First we turn the tree into a rooted tree (this corre

sponds to a permutation of the columns) and then we ·order the rows in a 

lexicographically nondecreasing order. 

* After we have transformed the matrix of proolem (1.3) to exclude A as 

a submatrix we can use the algorithm of HOFFMAN, KOLEN & SAKAROVITCH [5] 

stated oelow. The correctness proof of the algorithm canoe found in ~5] and 

will not be repeated here. It suffices· to say that the proof is oased on the 

fact that the dual and primal s·olutions ootained are feasiole and satisfy 

the complementary slackness relations of linear progrannning. In the algorithm 

we use the convention that od and fi indicate the rend of a do and if state

ment respectively. A column j is· said to cover row i if a .• = 1. In the 
1J 

algorithm J denotes a set of indices j for which constant j is tight~ i.e. 

l~ 1 y.a .. = c. for the dual solution y constructed, I will be the index set 
1= 1 1J J 

of positive dual variables which make at least one constraint tight during 

the iteration in which that value was determined, and O will be the set of 

open facilities. As we saw in Section 2 the set of open facilities completely 

determines the optimal solution of proolem (1.3) 
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ALGORITHM 3·. 8 

beg1·n J•-d·O·-a·I·=a·c·=c· • -ip, . • -w , . 'µ, • , 

for i:=1 step 1 ton 

do y.:=min{d.,min. l c.}; 
- 1 1 J:aij= J 

if y. > 0 then if y. = c. for some j then choose the largest j and 
- 1 --.- 1 J 

end 

let J:=Ju{j};I:=Iu{i} 

fi; 

c.:=c.-y. for all j such that a •. = 
J J 1 1] 

fi 

od; 

while J-:/:(/J 

do let k be the last column of J; 

O:=O u {k}; 

od 

delete from J all columns which cover a row of I which is also 

covered by column k 

Note that the dual solution y is obtained by a greedy approach, i.e., y. is 
1 

determined by increasing index i and taken to be as large as possible with 

respect to the dual constraints. Examples of the solution procedures for 

each of the three tree location problems are given in the next section. 

Let a (O, 1)-matrix be totaUy ba'lanced if it does not contain a square 

submatrix of size at least three with no identical columns and row and column 

sums equal to two. Figure 3.9 gives two examples of the type of submatrices 

which are forbidden in a totally balanced matrix 

[~: ~i 
1 0 1 

0 0 

0 1 1 0 

0 0 1 1 

1 0 0 1 

Figure 3.8. Examples of forbidden submatrices 

It is a trivial observation that if a (0,1)-matrix A does not contain A* as 
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a submatrix, then A is totally-balanced. Let T = ({v1, ••. ,vn},E) be a tree 

and let E1, ••• ,Em be neighborhood subtrees. Define the nxm (0,1)-matrix 

A= (a .. ) by a .. = 1 if and only if v. EE .• Since the property of being 
l.J l.J l. J 

totally-balanced is not changed if we reorder the rows and columns of the 

matrix we have according to Lennna 3.6 that the matrix A is totally-balanced. 

This result was known before and first proved by GILES [4]. TAMIR [8] proved 

the following generalization of this result; Let E1, ••• ,Em,R1, ••• ,Rn be 

neighborhood subtrees. Define the nxm (0,1)-matrix B = (b .. ) by b .. = 1 if 
l.J l.J 

and only if R. n E. #~.Then Bis totally-balanced. The fact that this 
l. J 

special totally-balanced matrix arising in the context of tree location 

theory can be transformed into a matrix which does not contain A* as a sub

matrix makes one wonder whether this is true for arbitrary totally-balanced 

matrices. If the answer is yes, then again we can solve a whole class of 

integer progrannning problems defined on a totally-balanced matrix using the 

algorithm of HOFFMAN, KOLEN & SAKAROVITCH [SJ. It is indeed possible to trans-
2 form a nxm totally-balanced matrix into the desired form by an O(m n) algo-

rithm presented in [SJ. 

4. EXAMPLES 

In this section we demonstrate the solution procedure by giving an 

example for each of the three tree location problems. 

4.1. The minimum cost covering problem 

ALGORITHM 4.1.1. 

begin make of the tree a rooted tree; 

construct a lexicographically nondecreasing ordering T of the neighbor

hood subtrees; 

end 

define the (0, 1)-matrix A= (a .. ) 
l.J 

defined.=~, i = 1,2, .•• ,n; 
l. 

use Algorithm 3.8 

by a •• 
l.J 

= 1 if and only if i E T(j); 

EXAMPLE 4.1.2. Consider the tree T of Example 3.1 and let the neighborhood 

subtrees and their cost be given by Figure 4.1.3. ,, 
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T. cente:r radius cost 
J 

Tl v3 2 9 

T2 VI 2 7 

T3 V4 l 5 

T4 vs 2 3 

TS v9 2 3 

T6 vs 2 5 

T7 v6 2 3 

Figure 4.1.3. Data of the example 

We turn Tinto a rooted tree as indicated by Example 3.1. Then the vertices 

contained in the neighborhood subtree T. correspond to the set E. given in 
J J 

Example 3.3, j = 1,2, ••• ,7. A lexicographically nondecreasing ordering Tis 

given by Example 3.3. The matrix A corresponding to the example and the 

successive iterations to obtain the dual solution y are 

0 0 0 0 0 

0 0 0 0 0 

1 0 0 1 0 0 

0 1 0 0 0 0 

A = 0 0 0 0 0 

0 1 0 1 0 0 

0 0 1 0 0 1 

0 0 0 0 0 1 

0 0 0 1 1 1 1 

c1= 3, c2= 1, c3= s, c4= 9, c
5
= 3, c6= s, c7= 3. 

Y1=3, I={l}, J=ll}, cl=O, c3=2. 

y
2

= 0 • 

y
3

= 0 • 

y4=7, I={l,4}, J={l,2}, c 2 =0, c4 =2. 

y
5

= 0. 

y6= 0. 

y 
7
= 2 , I= { 1 , 4, 7}, J = { l , 2, 3}, c3 = 0, c5 = 1 , c7 = 1. 

y8=1, r=U,4,7,S}, J=U,2,3,7}, c6 =4, c7 =o. 

y
9

= 0 • 

The total value of the solution y is 13. The while statement of Algorithm 3.8 

operates on the submatrix of A with rows belonging to I and columns belong

ing to J. 
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I\J 1 2 3 7 Iteration 1: 0 = {7}, column 3 is deleted since it 

covers row 7. 1 0 0 

4 0 0 0 Iteration 2: 0 = {2,7}. 

7 0 0 

8 0 0 0 1 Iteration 3: 0 = {1,2,7}. 

It is easy to check that facilities 1, 2, and 7 can serve all clients at a 

cost of 13. • 
Making T a rooted tree takes O(n log n) time. The lexicographically non

decreasing ordering can be found in O(n
2
). The dual solution is obtained in 

n iterations of O(n} calculations. The while statement operates on the 

square III x !JI submatrix of A and considers each element at most once. 

Since !Jl ~ n we find that the total complexity of this algorithm is O(n2). 

4.2. The minimum cost operating proolem 

ALGORITHM 4.2.1. 

begin make of the tree a rooted tree; 

end 

construct a lexicograpfi.ically nondecreasing ordering T of the neigh

borhood subtrees-; 

define the (0,1)-matrix A 

use Algorithm 3.8 

= (a .. ) by 
1J 

a •• 
1J 

= 1 if and only if i E T(j); 

EXAMPLE 4.2.2. We use the same tree and neighborhood subtrees as in Example 

4.1.2. Therefore the matrix A is the same. We take d. = 2, i = 1, ••• ,9. The 
l. 

matrix A and the successive iteration to obtain the dual solution y are 

A= 

0 

0 

0 

0 0 

0 0 

0 0 

(f 0 

0 0 0 

0 0 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 0 0 

I O O 0 

1 0 0 

0 1 0 

0 0 

c1 = 3, 

Y1 = 2, 

Y2 = 1, 

Y3 = Q. 

y4 =2, c
2

=5, c4 =7. 

y 
5 

= 2, c2 = 3, c 
4 

= 5. 

y 6 = 2, c2 = 1, C4 = 3, c7 = I. 

y7 =1, 1={2,n, J={I,7}, c
3

=1, 2
5

=2, c
7

=o. 
Ys = O. 

Yg = 0. 
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The total value of the solution y is 10. The while statement of Algorithm 

3:8 operates on the submatrix of A with rows belonging to I and columns be

longing to J. 

I\J 1 7 Iteration 1: 0 = {7}. 

2 0 

7 0 1 Iteration 2: 0 = {1,7}. 

Facilities 1 and 7 can not serve clients at vertices 4 and 5. We have a cost 

of establishing facilities of 6 and a penalty cost of 4. The total operating 

cost is 10. D 

The complexity of this algorithm is the same as the complexity of the 
. 2 

algorithm of the minimum cost covering problem, i.e., O(n ). 

4.3. The uncapacitated plant location problem 

ALGORITHM 4.3.1. 

begin make of the tree a rooted tree; 

end 

for each i calculate the set of distances to the facility locations, 

add zero to this set and order the elements in increasing order, say, 

0 = ril < ri2 < ••• < rit(i); define ri,t(i)+l = 00
; 

construct a lexicographically nondecreasing ordering T of the sets of 

facility locations in the neighborhood subtrees T .k = {y E T I d(v. ,y) :s; 
i i 

rik}, i = 1, ••• ,n, k = 1, ••• ,t(i); 

define the (0,1)-matrix A= (a .. ) by a .. = 1 if and only if j E T(i); 
iJ iJ 

for each row i, corresponding say to Tjk' define di= w/rj,k+l -rjk); 

use Algorithm 3.8 

EX.AMPLE 4.3.2. Consider the rooted tree of Figure 4.3.3. The facility loca

tions are 1, 3, and 4 with a cost of 5, 6 and 4 respectively. We assume 

w. = 1, i = 1, ••• ,5. 
i 
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4 1 

(1) (1) 

5 (2) 3 (1) 2 

Figure 4.3.3. Rooted tree of example 

The distance rik' the corresponding facility locations in Tik and the value 

aik = wi(ri,k+l -rik) are given in Figure 4.3.4. 

vertex i distance rik Tik dik 

1 0 {I} l 

l { l ,3} 3 

4 {l,3,4} 00 

2 0 (/J l 

l {3} l 

2 {1,3} 2 

4 {1,3,4} 00 

3 0 {3} l 

l {I ,3} 2 

3 {l,3,4} 00 

4 0 {4} 3 

3 {3,4} l 

4 {l,3,4} 00 

5 0 (/J l 

l {4} l 

2 {4,3} l 

3 {4,3, I} 00 

Figure 4.3.4. Data of the example 

The matrix A, the vector d and the successive iterations to ootain the 

dual splution y are 
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c1 = 5, c
3 

= 6, t\ = 4. 

0 0 0 I y 1 = 1. 

0 0 0 Y2 = 1. 

0 0 Y3 = 1, c1 = 4. 

0 0 Y4 = 1, c3 = 5. 

0 0 1 Y5 = 1, c
3 

= 4. 

0 3 y6 = 3, c
1 

= 1, c
3 

= 1. 

0 2 Y7 = 1, 1={7}, J = {3}, c
1 

= O, c3 = O. 

A= 1 0 d= 2 Ys = O. 

0 0 3 Y9 = 3, c4 = 1. 

0 0 Y1o=l, I= {7,10}, J={3,4}, c4 = o. 

0 1 

0 1 all other values are zero 

1 <X> 

<X> 

<X> 

1 1 <X> 

<X> 

The total value of the dual solution is 13. The while statement of Algorithm 

3.8 operates on the submatrix of A with rows belonging to I and columns 

belonging to J. 

I\J 3 4 

7 1 0 

10 0 1 

Iteration 1: 0 = {4}. 

1teration 2: 0 = {3,4}. 

The cost of establishing facilities at vertices 3 and 4 is 10. Vertex 5 is 

supplied by 4 at a cost of 1, vertices 1 and 2 are supplied at a cost of 1 

each. The total cost is 13. D 

Calculating all distances from a given vertex and o.rder them in in

creasing order takes O(nlogn) time. Finding all sets corresponding to the 

rows of A therefore takes O(n2log n) time. Since there are at most n2 rows 
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we can find a lexicographically nondecreasing ordering in O(n3) time and 

also can find the dual solution in O(n3) time. The while statement operates 

on the square III x lJI submatrix and therefore takes O(n2
) time. The overall 

complexity is O(n3
). 

5. INTERPRETATION OF DUAL PROBLEMS 

In this section we formulate a dual problem of each of the location 

· problems and describe an economic interpretation of the dual problems. This 

interpretation was first observed by TAMIR [9] in the context of a tree 

location problem similar to the minimum cost covering problem. In this tree 

location problem each facility can serve all clients but each client must 

be served by a facility within a given distance from that client. This prob

lem can be solved in O(n2) time using the procedure of Section 3 as compared 

with the O(n3) dynamic progrannning algorithm given by TAMIR [8]. 

The dual problem of the minimum cost covering and operating problem 

is defined to be the dual of the LP-relaxation of the problem. The dual of 

the LP-relaxation of the uncapacitated plant location problem (2.5) is given 

by 

(5. 1) 
n 

max I 
i=l 

y. 
l. 

s.t. y. - µ .. s w.d(v.,s.), i = 1,2, ••• ,n, j = 1,2, ••• ,m, 
l. l.J l. l. J 

h 

I µ .. s C •' 
i=l l.J J 

j = 1 , 2, ••• ,m. 

j1 •• :2:: O, 
l.J i = 1,2, •.• ,n, j = 1,2, ..• ,m. 

Given y., i = 1,2, ••. ,n we can takeµ .. = max(O,y. -w.d(v.,s.)). Since 
l. l.J l. l. l. J 

y. :c: 0 in an optimal solution to (5.1) we get the following restriction of 
l. 

(5.1) which we define to be the dual problem of the uncapacitated plant 

location problem. 

(5.2) 
n 

max I 
i=l 

n 
s. t. I 

i=l 

y. 
l. 

max(O,y.-w.d(v.,s.)) s 
l.l. l.J 

y. :c: O, 
l. 

C •' J 
j = 1,2, ••• ,m, 

i = 1 , 2, ••• , n. 
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For the two covering problems it was shown in Section 3 that we have strong 

duality. The optimal dual variables of (5.2) are not available when we solve 

the uncapacitated plant location problem by Algorithm 4.3.1. Since we used 

formulation (2.9) of the problem Algorithm 4.3.1 obtains an optimal solution 

yik' i = l, ••• ,n, k = l, •.• ,t(i) of the dual problem of the LP-relaxation 

of (2.9) given by 

(5.3) 
n t(i) 

max l L 
i=l k=l 

n t(i) 
s.t. I I 

i=l k=l 

k 
y.ka .. :;;; c., j = 1,2, ••• ,m, 

l. l.J J 

i = 1,2, ••• ,n, k = 1,2, ••• ,t(i). 

We will show in Lemm.a 5.8 that an optimal solution toy., i = 1,2, ••• ,n of 
l. 

(5.2) can be obtained from an optimal solution y.k, i = 1,2, ••• ,n, 
' l. 

k = 1,2, ••. ,t(i) of (5.3) by defining yi = L~~~) yik' i = 1,2, .•• ,n. There-

fore we also have strong duality for the uncapacitated plant location prob

lem. These dual problems have a nice interpretation which we will now discuss. 

Suppose we want to ask client i a contribution y. in the total cost of 
l. 

serving all clients. In order for a contribution to be acceptable by all 

clients we can not charge any subset of clients more than it would cost to 

supply only those clients. If we would charge more for a particular subset 

of clients, then they may decide to form a coal.ition since this would reduce 

their contribution as a group. The problem we consider is to maximize the 

total contribution subject to the condition that no subject of clients can 

benefit from forming a coalition. We shall prove that this problem is exactly 

the dual problem of the corresponding location problem. Since we have strong 

duality the total contribution is equal to the total cost. Let us denote by 

v(I) the minimal total cost if only clients I~ N = {l~•··,n} have to be 

served. For example in the minimum cost covering problem we have 

m 
v(I) = min L 

j=l 
m 

s. t. r 
j=l 

c.x. 
J J 

a .. x. ;?; 1, i E I 
l.J J 

X. E {0,1}, j = 1,2, •.• ,m. 
J 
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The contribution problem is given by 

n 
(S.4) max I y. 

i=I l. 

s.t. I y. ~ v(I), for all Is_ N, 
iEI l. 

y. ~ O, i = 1,2, ••• ,n. 
l. 

The rest of this section is devoted to proving that the contribution 

problem is equal to the dual problem of the corresponding location problem 

as well as to show how the optimal variables of (5.2) can be obtained from 

the optimal variables of (5.3). 

LEMMA S.S. The contribution problem and the dual vroblem corresponding to 

the minimum cost covering problem are identical. 

PROOF. It is sufficient to prove that the set of feasible solutions are 

identical. Let y be a dual feasible solution -and let Is_ N. Suppose v(I) = 

l· Jc., where J s_ {1,2, ••• ,m}. Then there is a (0,1)-solution x such that 
JE J 

m 

I 
j=l 

Then we have 

a .. x. = 
l.J J 

y. ~ 
l. I 

id 

a .. ~ I for all i EI. 
l.J 

y.< I a •. ) ~ 
l. • J l.J JE 

n 
I I 

jEJ i=l 
y.a .. ~ 

l. l.J 

Hence y is feasible in the contribution problem. 

c. = v(I). 
J 

Let y be feasible in the contribution problem and let j E {1,2, ••• ,m}. 

Define I= {i I a .. = 1}. Then we have 
l.J 

y. = 
l. 

n 

I 
i=l 

y.a .. ~ v(I) 
l. l.J 

~ C •, 
J 

where v(I) ~ c. since facility j can serve all clients in I. We conclude 
J 

that y is a dual feasible solution. D 

LEMMA 5.6. The contribution problem and the dual problem corresponding to 

the minimum cost operating problem are identical. 
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PROOF. Let y be a dual feasible solution and let l ~ N. Suppose v(l) = 
l· Jc.+ l· v d., where J ~ {1,2, ••• ,m} and K ~ l. Then there is a (0,1)-, 

JE J · 1.EJ."- l. 
solution x such that 

and 

m 

I 
j=l 

m 

I 
j=l 

a .. x. = 
l.J J 

a .. x. = 
l.J J 

Then we have 

~nd 

Hence 

I y. ~ 
iEl\K l. 

y. ~ 
l. 

a •• 
l.J 

~ l for all i E l\K 

a •• = 0 for all i 
l.J 

I Y. < I a •• ) ~ 
iEI\K l. jEJ l.J 

d .• 
l. 

c. + 
J 

d. = v(l) 
l. 

EK. 

y.a .. ~ 
l. l.J 

and y is feasible in the contribution problem. 

c. 
J 

Let y be feasible in the contribution problem and let j E {1,2, ••• ,m} 

and i E {I, 2, ••• ,n}. Define 12 = {i I aij = 1} and 12 = {i}. Then we have 

n 
I 

i=l 
and 

y.a .. = 
l. l.J 

I y. ~ 
. l l. 
l.E J 

~ c. 
J 

where v({i}) ~ d. since not serving client i is a feasible solution with 
l. 

cost d .. We conclude that y is a dual feasible solution. D 
l. 

LEMMA 5.7. The contribution problem and the dual problem corresponding to 

the uncapacitated plant location problem are identical. 
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PROOF. Let y be a dual feasible solution and let I~ N. Suppose v(I) = 

L· Jc.+ L· 1 w.d .. (~).' where J ~ {1,2, .•• ,m} and j(i) is a vertex in J JE J 1E 1 1J 1 
closest to i. Then we have 

I (y. -w.d .. (")) :::; I max(O,y. -w.d •. (")) :::; 
iEI 1 1 1J 1 iEI 1 1 1J 1 

y.:::; 
1 

n 
max(O,y. -w.d .. ):::; I I max(O,y. -w.d .. ) :::; 

1 1 1J jEJ i=l 1 1 1J 

c. + 
J 

I w,d .. (') = v(I). 
iEI 1 1J 1 

Hence y is feasible in the contribution problem. 

c. 
J 

Let y be feasible in the contribution problem and let J E {1,2, ••• ,m}. 

Define I = {i I y. ;:;: w.d .. }. Then we have 1 1 1J 

I y. :::; v(I) :::; c. + I w.d .. 
iEI 1 J iEI 1 1J 

or 

.l
1

(y. -w.d .. ) :::; c .• 
1E 1 1 1J J 

By definition of I this is equivalent to 

n 
I 

i=l 
max(O,y. -w.d .. ) :::; c .• 

1 1 1J J 

Hence y is a dual feasible solution. D 

LEMMA 5.8. Let yik' i = I, ••• ,n, k = l, ••. ,t(i) he an optimal solution of 

(5.3) obtained by Algorithm. 4.3.1. Then yi = I!~t) yik' i = 1, ••• ,n is an 

optimal solution of (5.2). 

PROOF. Let y.k,i= 1, ••• ,n,k= I, ••• ,t(i) be an optimal solution of (5.3) ob

tained by Al~orithm 4.3.1. In order to prove that yi = I~~})yik' i = 1, ••• ,n 

is an optimal solution of (5.2) it is sufficient to prove that it is a fea

sible solution since optimality follows from the strong duality result of 

the solution Yik•i=L .... n.k=l, ••• ,t(i). Let j E {l, .•. ,m}. We shall prove 
,t(i) k ) ,n ( ) that lk 

1 
y.ka .. = max(O,y. -w.d ..• We then have l' 1 max O,y. -w.d .. = 

~ = 1 1J 1 1 1J 1= 1 1 1J 
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\'n \'t(i) k 
li=I lk=l yikaij ~ cj. Let l 1 E {I, ••• ,t(i)} be such that ru_

1 
= dij" Then 

k - I k o d k - 0 . h . h . f \'t(i) k - \'t(i). a .. - , ~ -l-J an a .. - .ot erwise. T ere ore lk 1 y .ka •. - lk O y .k. Let l.J l.J = l. l.J =,{.. 1 l. 
t 2 E {I, ••• ,t(i)} be the first index such that O ~ Yi < w.(ri.R..

2
+1-riR.. ). 

-l2 1 , 2 
Since in Algorithm 4.3.1 yik is calculated before yiR.. is calculated (k < R..) 

and taken to be as large as possible with respect to the dual constraints 

we have yik = wi(ri,k+l - rik) for all k, k < R.. 2 and Yik = 0 for all k, 

k ~ R..2 + I • Then we hav£> 

t(i) 
r 

k=l 

\t(i) = O 
If R..2+1 ~ R.. 1 , then yi < wirilt = widij and lk=li yik • 

\'t(i) _ \',e_2 _ \'l '""'1 _ 
If l 2+I > l 1 , then lk- 0 y.k - lk-o Yi'k - y. - L,!1 y.k-y. -w,r. 0 = y 1.-w.d ..• 

--l. 1 l. --l.} l. cC- l. l. l. l.-l-1 l. l. J . 
\'t(i) k We conclude that lk 1 y.ka .. = max(O,y. -w.d .. ). D = l. l.J l. l. l.J 

APPENDIX 

In this appendix we prove our main result stated in Theorem 3.5. We 

will need the following well-known properties of trees. Proofs of the 

properties can be found for example in KOLEN [6]. 

Property 1. If x, y and z are points on a tree, then there is a point 

t E P(x,y) n P(y,z) n P(z,x). 

Property 2. If x, y and z are points on a tree such that z E P(x,y), then 

for all points ton the tree we have z E P(x,t) or z E P(y,t). 

Property 3. If vis a given vertex of a tree and tis defined to be a vertex 

at largest distance from v, then tis endpoint of a longest path 

in the tree. 

Property 4. Let P(t1,t2) be a longest path in the tree. If x ET and r ~ 0 

such that d(x,t.) :;;; r, i = 1,2, then {y E TI d(y,x) :;;; r} = T. l. 

We can now prove Theorem 3.5 which is restated in the next theorem. 
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THEOREM 5. Let p(t1,t2) be a longest path in the tree. Let E1 ={yET I d(y,x1) 

::; r 1 } and E 2 = { y E T I d (y, x2) ::; r 2} be neighborhood subtrees containing t 1 • 

Then E
1 

s E
2 

or E
2 
~ E

1
• 

PROOF. Define si E Ei to be the point on P(t
1
,t

2
) closest to t

2
• Without 

loss of generality assume that d(t2,s2)::; d(t2,s1). We shall prove that 

E1 ~ E2• If s 2 = t 2 , then it follows from Property 4 that E2 = T and hence 

E1 s E2• Therefore we may assume that s 2 I t 2 • Let p E E1 We shall prove 

that p E E
2

• According to Property 1 there is a point q E P(p,t
1

) n P(p,s
1
).n 

P(s
1
,t

1
) (Note that q E P(p,s

1
) ~ E1). We shall prove in Lennna 6 that 

d(p,q)::; d(q,t
1

) and d(p,q)::; d(q,s 1). Since q E P(t
1
,s

1
) we have according 

to Property 2. q E P(t1,x2) or q E P(s 1,x2). 

Case 1: q E P(x
2
,t

1
). Then 

d(p,x
2
)::; d(p,q) + d(q,x2) 

::; d(t 1 ,q) + d(q,x
2

) (Lemma 6) 

(q E P(x
2

, t
1
)) 

(t
1 

E E
2
). 

Case 2: q E P(s 1,x
2
). Then 

d(p,x
2
)::; d(p,q) + d(q,x2) 

::; d(s
1

,q) + d(q,x
2

) (Lemma 6) 

(q E P(s 1 ,x2
)) 

(s 1 E P(t1s 1) S P(t1,s
2

) ~ E2). 

It follows that p E E2• Hence E1 ~ E2. • 

LElflfA 6. Let s 1,s 2,t1,t2,p,q be defined as in Theorem 5. Then d(p,q)::; d(q,t1) 

and d(p,q)::; d(q,s 1). 

PROOF. first of all we prove that 
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Let y E E1• Define z to be a point at P(y,s 1) n P(s 1,t2) n P(y,t2). Since 

z E P(y,s 1) we have z E E1• Since z E P(s 1,t2) and z E E1 we have by defini

tion of s
1 

that z = s
1

• We conclude that s
1 

E P(y,t
2
). It follows from (7) 

that s
1 

E P(x
1
,t

2
) and by definition of s

1 
we have d(x

1
,s

1
) = r

1
• We have 

and 

= d(p.q) + d(q,t
2

) 

Since P(t
1
,t

2
) is a longest path in the tree we have d(t

1
,t

2
) ~ d(p,t

2
) and 

hence d(q,t
1
) ~ d(p,q). 

Since q E P(p,t 1) we have q E P(t 1,x1) or q E P(p,x1). In order to 

prove that d(p,q) ::,; d(q,s
1
) we consider these· two cases. 

Case 1: q E P(x
1
,t1). Then 

d(q,t
1
) = d(x

1
,t

1
) - d(q,x 1) 

::,; r
1 

- d(q,x
1

) 

= d(x1,s 1) - d(q,x1) 

::,; d(q,s
1
). 

Since d(p,q)::,; d(q,t
1

) we have d(p,q)::,; d(q,s 1). 

Case 2: q E P(p,x1). Then 

d(p,q) = d(p,x
1
) - d(q,x1) 

::,; r
1 

- d(q,x1) 

= d(x
1 
,s 1) -d(q,x1) 

::,; d(q,s 1). • 

(q E P(p,x
1
)) 

(p E El) 

(d(x1,s1) = r 1) 
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