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Adaptive stochastic filtering problems - the continuous time case*) 

by 

J.H. van Schuppen 

ABSTRACT 

The adaptive stochastic filtering problem for Gaussian processes is con

sidered. The selftuning-synthesis procedure is used to derive two algorithms 

for this problem. Almost sure convergence for the parameter estimate and the 

filtering error will be established. The convergence analysis is based on an 

almost-supermartingale convergence lemma that allows a stochastic Lyapunov 

like approach. 

KEY WORDS & PHRASES: Adaptive stochastic filtering, selftuning synthesis 

procedure, almost sure convergence. 

*) This report will appear in the Proceedings of the 2nd Bad Honnef Workshop 

on•Stochastic Differential Systems. 



1. INTRODUCTION 

The goal of this paper is to present some algorithms for a continuous-time 

adaptive stochastic filtering problem, and to establish almost sure convergence 

results for these algorithms. 

What is the adaptive stochastic filtering problem? The adaptive stochastic 

filtering problem is to predict or filter a process when the parameter values of the 

dynamical system representing the process are not known. This problem is highly 

relevant for practical prediction and filtering problems in engineering and the 

social sciences. 

Why should one consider the continuous-time version of this problem? In discrete

time the adaptive stochastic filtering problem has been investigated by many re

searchers. Hence the question why? Time is generally perceived to be continuous. In 

practice a continuous-time signal is sampled and the subsequent data processing is 

done in a discrete-time mode. One question then is what happens with the predictions 

when the sampling time gets smaller and smaller? To study these and related questions 

continuous-time algorithms must be derived, and their relationship with discrete

time algorithms investigated. 

The questions that one would like to solve for the adaptive stochastic filteri~g 

problem are how to synthesize algorithms and how to evaluate the performance of these 

algorithms? 

The selftuning synthesis procedure will be used in this paper. This procedure 

suggests first to solve the associated stochastic filtering problem, and secondly to 

estimate the values of the parameters of the filter system in an on-line fashion. 

A continuous-time parameter estimation algorithm is thus necessary. Although con-,, 
siderable attention has been given to off-line algorithms [1,2], on-line algorithms 



are scarce [3,7]. Below two new algorithms are presented. 

As to the performance evaluation of the algorithms, the major question is the 

convergence of the parameter estimates and of the error in the filtering estimate. 
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For these variables one may consider almost sure convergence and the asymptotic dis

tribution. Below an almost sure convergence result for the given algorithms will be 

presented. This result is based on a convergence lemma that is of independent interest. 

A brief outline of the paper follows. The problem formulation is given in sec

tion 2. Section 3 is devoted to the statement of the main results. The proofs of the 

results may be found elsewhere [14]. 

2. THE PROBLEM FORMULATION 

The adaptive stochastic filtering problem is to predict or filter a stochastic 

process when the parameters of the distribution of this process are not known. The 

object of this section is to make this problem formulation precise. 

Throughout this paper (Q,F,P) denotes a complete probability space. Let T R. 

The terminology of Dellacherie, Meyer [4,5] will be used. 

Assume given an R-valued Gaussian process with stationary increments. From 

stochastic realization theory it is known [8] that under certain conditions this pro

cess has a minimal realization as the output of what will be called a Gaussian 

system: 

Axtdt + Bdvt, 

Cxtdt + -dvt' 

(1) 

(2) 

where y: Q x T + R, x: Q x T + Rn, v: Q x T • Rm is a standard Brownian motion pro-
nxn nxm lxn lxm 

cess, A ER , BER , CE R , DER • The precise statement on the represen-

tation is that the distribution of the output y of this system is the same as that of 

the given process. 

One may construct the asymptotic Kalman-Bucy filter for the system (1,2), say: 

where xt 

This filter may be written as a Gaussian system 

Axtdt + Kdvt' 

Cxtdt + dvt, 

(3) 

(4) 

where ~ : Q x T + R is the innovations process, which is a Brownian motion process, 

say with variance cr
2
.t. It is a result of stochastic realization theory that the two 

relizations (1,2) and (3,4) are indistinguishable on the basis of information about 
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y only. For adaptive stochastic filtering one may therefor~ limit attention to the 

realization (3,4). That r;=!alization has the additional advantage that it is suitable 

for prediction purposes. The fact that (1,2) i_s a minimal realization, and hence that 

(3,4) is a minimal realization, implies that the pair (A,C) is observable and that 

the spectrum of A is in c- := {c E c!Re(c) < 0} 

2.1. PROBLEM. Assume given an R-valued Gaussian process with stationary increments 

having a minimal past-output based stochastic realization given by 

dxt Axtdt 

dyt cxtdt 

zt := ext, 

+ Kdvt, 

+ dvt, 

( 3 I) 

( 4 I) 

(5) 

with the properties mentioned above. Assume further thet the value of the dimension 
2 

of this system and the value of o occurring in the variance of v are known, but 

that the values of the parameters A,K,C are not known. The adaptive stochastic 

filtering problem for the above defined Gaussian system is to recursively estimate z 
given y. 

For the parameter estimation problem another representation of the Gaussian 

system (3,4) is needed. Such a representation is derived below. For notational con

venience the time set is taken to be T = R+ in the following. 

2.2. PROPOSITION. Given the Gaussian system (3,4). The two following representations 

describe the same relation between v and z. 

a. 

dyt Cxtdt + dvt' Yo 0. 

T 
b. dht Fhtdt + Gldyt + G2 (dyt - ht pdt), h 

0 

z T 
t ht p, 

T 
dvt, 0, dyt ht pdt + Yo 

where h: Q x T -+ R2n 

T ( ( 1) (n) -(1) -(n) 
ht yt I••• 1Yt , Vt , .•• ,Vt ), 

( 1) 
yt yt 

t 
(i) 

f 
(i-1) d for i 2,3, ••. ,n, yt y s, 
s ,. 

0 

p E R
2

n is related to A,K,C as indicated in the proof, 

o, (6) 

(7) 

(8) 

(9) 



Fl 

Gl = el E 
R2n , 

where e. is the i-th unit 
1 

The proof of this result 

3. THE MAIN RESULTS 

G = 2 

nxn 
E R 

en+l E 

vector. 

is given in 

F 

R2n, 

[14]. 

In this section two algorithms are presented for the continuous-time adaptive 

stochastic filtering problem, and convergence results are provided. The proofs of 

these results may be found in [14]. 
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In the following attention is restricted from the Gaussian system (3,4) or (6,8), 

to the auto regressive case described by 

or 

n Rn, n where now h : " x T + p E R , 

Then 

h T 
t 

( 1) (n} 
(yt , •.• ,yt ) 

(10) 

O, (11) 

(12) 

o, ( 13) 

and one concludes that asymptotically his a stationary Gauss-Markov process. Since 

the interest here is in the stationary situtation, it will henceforth be assumed 

that his a stationary Gauss-Markov process. By the stability of the Gaussian system 

the covariance function of his integrable, thus his an ergodic process [15, p. 69]. 

The first algorithm to be presented is based on the least-squares method. 

3.1.DEFINITION. The adaptive stochastic filtering algorithm for the autoregressive 

representation based in the least-squares method is defined to be 

0, 

QT> 0, 
0 



n nxn 
where p : n X T + R , Q: n X T + R , z : n X T + R. 

Here£ is the desired estimate of z, and pis an estimate of the parameter p. 

The algorithm of 3.1 may be derived as follows. One has the representation 

0, Po = p 

T 
ht ptdt + d vt, Yo 0, 
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where it is now assumed that v is a Brownian motion process, p : n x T + Rn, p is 

Gaussian G(O,Q
O

) and that p and v are independent objects. With (12) one concludes 

that (ht,F~,t ET) is adapted. The conditional Kalman-Bucy filter [9, 12.1] applied to 

the above representation then yields the algorithm given in 3.1. 

3.2. THEOREM. Given the stochastic dynamic system of 2.1 restricted to the auto

regressive case as indicated above. Consider the adaptive stochastic filtering algo

rithm of 3.1. Under these conditions: 

a. as - lim p = p; 
t-)-0:, t 

t 
-1 f <z 

::: 
)

2
ds b. as - lim t z o. 

t-)-0:, s s 
0 

The above result shows that under the stated conditions the difference between 

the filter estimate z with known parameters and the adaptive filter estimate goes to 

zero in the above stated sense. In addition the parameter estimate converges to the 

actual value. 

One might conjecture that a result like 3.2 also holds if the restriction to the 

autoregressive case is relaxed to that of (6,8) and a recursive extended least-squares 

algorithm is used. An investigation indicates that this is unlikely. The reason why 

this is the case is not yet fully understood. 

The second algorithm is related to that of Goodwin, Ramadge, and Caines [6], 

and that of Chen [3]. The latter also provides a continuous-time algorithm not only 

for the autoregressive case but also for the general case of 2.1. 

3.3. DEFINITION. The adaptive stochastic filtering algorithm for the autoregressive 

representation (11, 12) based on the parameter estimation algorithm AML2 [6] is 

defined to be 

dpt 
-1 -2 T 

htrt CJ [dyt - ht ptdt], Po o, 

drt 
-2 T 

1 , CJ ht htdt, ro 
,:: T-
zt ht pt' 

,::: 

where p: n x T + Rn, r: n x T + R, z: n x T +Rand his given in (12). 



3.4. THEOREM. Given the stochastic dynamic systems of 2.1. restricted to the auto

regressive case as indicated above. Consider the adaptive stochastic filtering 

algorithm 3.3. Under these conditions 

as - lim 
t-+o:> 

t 
-1 I _ ::: 2 t (z - z ) ds 

s s 
0 

0. 

In [3] a convergence result is given for the representation 2.1 with an algo

rithm that has the same structure as that of 3.3. The~e the convergence is obtained 

under an unnatural assumption. One possible reason for this assumption is that the 

second innovation process 

dv = dy - h Tp- dt 
t t t t 

is directly used in hand not prefiltered. 

The above convergence results for adaptive stochastic filtering are based on a 

convergence theorem to be provided below. As some of the other concepts and results 

of system identification the convergence theorem is also inspired by the statistics 

literature, in particular by the area of stochastic approximation. H. Robbins and 
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D. Siegmund [11] have established a discrete-time convergence result for use in 

stochastic approximation theory. A simplified version of that result is given as an 

exercise in [10, II-4]. V. Solo [12, 13] has been the first to use this result in the 

system identification literature and since then it has become rather popular [6]. 

This popularity is due not only to the ease with which convergence results are proven 

but also to the formulation in terms of martingales which show up naturally in sto

chastic filtering problems. Below the continuous-time analog of [11,th.1.] is given. 

A few words about notation follow. (Ft,t ET) denotes a a-algebra family satis

, fying the usual conditions, A+ is the set of increasing processes, Mluloc the set of 

locally uniformly integrable martingales, and ~xt = xt - xt- is the jump of the 

process x at time t ET. 

3 . 5. THEOREM. Let x : Q x T + R +, a : Q x T + R + , b ; Q x T + R +, e Q x T + R + and 

m: Q x T + R be stochastic processes. Assume that 

1. XO : Q + R+ is F
0 

measurable; 

2. (at,Ft,t ET) 
+ 

o, and for all t E T ~at ~ E A , ao a < 00 a.s., c1 E R +' 00 

(bt'F t't E T) 
+ 

O; E A , bO 

3. < 00 a.s.; 

4. (mt,Ft,t ET) E Miuloc' mo O; 

5. x satisfies the stochastic differential equation 
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Then 

a. X := as-lim xt exists in R+' hence X < 00 a.s.; 
00 00 

t--+<x> 

b. b ·= as-lim bt exists and b < 00 a.s. 
00 00 

t--+<x> 
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